Sample Mathematics Placement Test Saint Mary's University

- The test contains a total of 40 multiple choice questions.
- Mark your answers (A, B, C, D or E) in the appropriate boxes below.
- You have 45 minutes to complete the test.
- Calculators or other aids are not permitted.

#	ANSWER
1.	
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
11.	
12.	
13.	
14.	
15.	
16.	
17.	
18.	
19.	
20.	

#	ANSWER
21.	
22.	
23.	
24.	
25.	
26.	
27.	
28.	
29.	
30.	
31.	
32.	
33.	
34.	
35.	
36.	
37.	
38.	
39.	
40.	

 $\frac{4}{5} - \frac{3}{4} =$

(B) $\frac{1}{20}$ (C) $\frac{1}{16}$ (D) $\frac{1}{12}$

(E) 12

 $0.125 \times 4 =$

2. **(A)** 55

(B) 0.55

(C) .055

(D) 0.45

(E) none of these

((1-(2-1))-2)=

3. (A) 0 (B) 1

(C) -1

(D) -2

(E) 2

 $\frac{xy}{y - \frac{y}{x}} =$

(A) $\frac{y^2}{x-1}$ (B) $\frac{x^2}{x-1}$ (C) $\frac{y^2}{1-x}$ (D) $\frac{x}{1-x}$

 $\frac{1}{\sqrt{5}-\sqrt{3}} =$

(A) $\frac{\sqrt{5} - \sqrt{3}}{2}$ (B) $\frac{\sqrt{8}}{2}$ (C) $\frac{\sqrt{5} + \sqrt{3}}{2}$ (D) $\frac{\sqrt{5} - \sqrt{3}}{8}$

(E) $\frac{\sqrt{5} + \sqrt{3}}{8}$

If $P = \sqrt{\frac{\alpha + \beta^2}{M}}$, where $\alpha = 3$, $\beta = 5$, and M = 7, then P =

6.

(A) $\frac{3}{2}$ (B) $\frac{\sqrt{3}}{2}$ (C) 2

(E) $\sqrt{3}$

Consider only (x-1), (x+1) and (x-2) as possible factors of $x^3 + x^2 + x + 1$. Of these only

7. (A) (x-1) is a factor (B) (x+1) is a factor (C) (x-2) is a factor

(D) (x-1) and (x+1) are factors.

(E) None of the preceding are true.

 $(x^2+1)(x^5+x^3+1) =$

(A) $x^7 + x^5 + x^3 + x^2 + 1$ (B) $x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$

8. (C) $x^7 + 2x^5 + 2x^3 + 2x + 1$ (D) $x^7 + 2x^5 + x^3 + x^2 + 1$

(E) $x^7 + 2x^5 + 2x^3 + 2x^2 + 1$

If $2x^2 - x = 1$, then x =

9.

(A)
$$-\frac{1}{2}$$
 or 3

(A)
$$-\frac{1}{2}$$
 or 1 (B) 2 or 1 (C) $-\frac{1}{2}$ or 2

(D) 1 or
$$-1$$
 (E) $\frac{1}{2}$ or 1

If x + 2y = 3, and 2x - y = 3, then (x, y)

10.

$$(A) = (1,1)$$

(B)
$$=(\frac{3}{2},\frac{3}{2})$$

(A) =
$$(1,1)$$
 (B) = $(\frac{3}{2}, \frac{3}{2})$ (C) = $(\frac{9}{4}, -\frac{1}{4})$ (D) = $(\frac{9}{5}, \frac{3}{5})$

(D) =
$$(\frac{9}{5}, \frac{3}{5})$$

$$(\mathbf{E})$$
 = none of these

If $f(x) = x^4 - 2x^3 + x$, then $f(\frac{1}{2}) =$

11.

(A)
$$\frac{x^4 - 2x^3 + x}{16}$$

(B) $\frac{5}{16}$

(C)
$$\frac{1}{16}$$

(D) 0

(E)
$$\frac{x^3 - x^2}{16}$$

If $f(x) = 1 + x^2$, then f(1 - x) =

12.

(A)
$$1-x-x^2$$

(B)
$$2-x^2$$

(C)
$$1-2x-x^2$$

(D)
$$x^2 - 2x + 2$$

(E) none of these

If $f(x) = x^2 + x$, then f(x - h) =

13.

(A)
$$x^2 - x + h$$

(B)
$$x^2 + h^2 - x - h$$

(C)
$$x^2 + h^2 - x + h$$

(D)
$$x^2 + 2hx + h^2 - x + h$$

(E) none of these

If $f(x) = x^2 + xb$, then f(x+b) =

14.

(A)
$$x^2 + 2bx + b^2$$

(B)
$$x^2 + 3bx + b^2$$

(C)
$$x^2 + 3bx + 2b^2$$

(D)
$$x^2 + xb + b$$

(E) none of these

If |x+2|-1<7, then which of these follows?

15.

(A)
$$x < 6$$

(B)
$$x > -10$$

(C)
$$x > -2$$

(D)
$$-10 < x < 6$$

(E) none of these

Let x be the length of the side of a square. If each side is decreased by 2 inches, the area of the square is decreased by 100 square inches. What is the area of the square after the sides are decreased?

- (A) 526square inches
- (B) 426square inches
- (C) 476square inches
- (D) The area cannot be determined from the information given
- (E) None of the above is correct

 $2^{0} + 1^{-2} =$

17.

(A) 1

(B) 2

(C) $2\frac{1}{2}$

(D) 3

(E) none of these

If $3^x = 5$, then

18.

- (A) $\log_3(5) = x$
- **(B)** $\log_{x}(3) = 5$
- (C) $\log_{x}(5) = 3$

- **(D)** $\log_3(x) = 5$
- (E) none of these are true

 $\log_{10}(9) - \log_{10}(3) =$

19.

- (A) $\log_{10}(6)$
- **(B)** $\log_9(3)$
- (C) $\log_{10}(27)$
- **(D)** $\log_{10}(\frac{1}{2})$

(E) none of these

$$\frac{x-1}{x+1} - \frac{x-2}{x-1} =$$

20.

- (A) $\frac{1-2x}{x^2-1}$ (B) $\frac{3x-2}{x^2-1}$
- **(C)** 1
- (D) $\frac{3+x}{x^2-1}$

(E) none of these

The function $p(x) = (x^2 + 1)(x - 1)$

- (A) changes sign three times
- (B) changes sign twice
- (C) changes sign once
- (D) is always positive
- (E) is always negative

The slope of the line passing through the points (-1,0) and (1,3) is

22.

21.

- (A) $\frac{3}{2}$
- **(B)** 3
- (C) -2 (D) $\frac{2}{3}$
- **(E)** 2

The slope of the line perpendicular to the line 2y = 3x + 1 is

23.

- (A) 1

- (B) $-\frac{2}{3}$ (C) $\frac{1}{3}$ (D) $-\frac{1}{3}$
- (E) none of these

The distance between the points (-1,2) and (5,-5) is

- **(A)** 13
- **(B)** $\sqrt{5}$
- **(C)** 5
- **(D)** $\sqrt{55}$
- **(E)** $\sqrt{85}$

For the following set of graphs, which statement is true?

- (A) They are all graphs of functions
- (B) Exactly four of them are graphs of functions
- (C) Exactly three of them are graphs of functions
- (D) Exactly two of them are graphs of functions
- (E) Exactly one of them is a graph of a function

Which equation has this line as its graph?

26.

25.

$$(\mathbf{A}) \ y = x - 1$$

(A)
$$y = x - 1$$
 (B) $y = \frac{1}{2}x + 1$

$$(\mathbf{C}) \ x + y = 1$$

(C)
$$x + y = 1$$
 (D) $y = 2x - 2$

(E) none of these

How many of the following equations represent straight lines?

$$xy = 9$$

$$xy = 9$$
 $x^2 + y^2 = 4$ $x + 1 = y^2$ $x + y = 16$

$$x \perp 1 - u^2$$

$$x + y = 16$$

27.

- (A) none
- (B) one equation
- (C) two equations
- (D) three equations
- (E) all four equations

How many of the following equations represent parabolas?

$$x^2 - y = 9$$

$$5x + y^2 = 4$$

$$x^{2} - y = 9$$
 $5x + y^{2} = 4$ $x^{2} + 1 = -y^{2}$ $x^{2} - y = 0$

$$m^2$$
 $a_1 = 0$

28.

- (A) none (B) one equation
- (C) two equations
- (D) three equations
- (E) all four equations

The area of a triangle with base of length 3 and height (or altitude) of 10 is

- **(A)** 13
- **(B)** $\sqrt{13}$
- **(C)** 15
- **(D)** $\sqrt{30}$
- (E) none of these

Which of the following curves passes through the points (1,2) and (2,-1)?

(A)
$$x^2 - y^2 = 5$$

(B)
$$x = y - 3$$

(B)
$$x = y - 3$$
 (C) $y = 5 - 3x$

(D)
$$x^2 + y^2 = 3$$
 (E) none of these

In the following diagram $\tan \theta =$

31.

- (A) $\frac{5}{4}$ (B) $\frac{4}{5}$ (C) $\frac{3}{4}$ (D) $\frac{3}{5}$
- (E) none of these

Which of these is $\frac{\pi}{2}$ radians?

32.

- **(A)** 57.3° **(B)** $\frac{22^{\circ}}{7}$
- (C) 90°
- **(D)** 180°
- (E) none of these

 $\sin(60^{\circ})$ is

33.

- (A) $\frac{\sqrt{3}}{2}$ (B) $\frac{1}{2}$
- (C) $\frac{1}{\sqrt{2}}$
- **(D)** 1
- (E) none of these

 $\tan(-\pi)$ is

34.

- (A) 1
- **(B)** 0
- **(C)** 1
- (D) undefined
- (E) none of these

If $\sin \theta = \frac{2}{5}$ and θ is in the first quadrant, then $\cos \theta =$

35.

- (A) $\frac{3}{5}$ (B) $\frac{\sqrt{21}}{5}$ (C) $\frac{\pi}{7}$
- (E) none of these

 $\sin(2x) =$

36.

- (A) $2\sin(x)$ (B) $2\cos(x)\sin(x)$
- (C) $\cos(x)\sin(x)$

- **(D)** $\cos^2(x) \sin^2(x)$
- (E) none of these

 $\sin^2(\frac{\pi}{4}) - \cos^2(\frac{\pi}{4}) =$

- **(A)** 1
- **(B)** 0 **(C)** $\frac{2}{\sqrt{2}}$ **(D)** $\frac{\sqrt{2}}{2}$
- (E) none of these

In the following diagram $\cot \theta =$

38.

39.

40.

- (A) $\frac{x}{r}$ (B) $\frac{x}{y}$ (C) $\frac{y}{r}$

- (E) none of these

For the equation $\cos^2(x) - 3\cos(x) + 2 = 0$ in the interval $[-\pi, \pi]$:

- (A) there are no solutions
- (B) there is exactly one solution
- (C) there are exactly two solutions
- (D) there are exactly three solutions
- (E) none of the above is true

The equation $2^{2 \sin x} + 2^{\sin x} - 6 = 0$ has

- (A) only the solution $x = \frac{\pi}{2}$
- (B) the solutions $x = \frac{\pi}{2} + k\pi$, k any integer (C) the solutions $x = \frac{\pi}{2} + 2k\pi$, k any integer
- **(D)** only the solution $x = \pi$
- (E) the solutions $x = k\pi$, π any integer

Answer Key

#	Answer
1.	В
2.	Е
3.	D B C C B
4. 5. 6. 7.	В
5.	С
6.	С
7.	В
8.	D A
9.	A
10.	D B D E C D
11. 12. 13.	В
12.	D
13.	Ε
14. 15.	С
15.	D
16.	E
16. 17. 18.	В
	A
19.	E
20.	Е

#	Answer
21.	С
22. 23.	A B
	В
24.	Е
25.	С
26.	D
27.	В
28.	D
29.	С
30.	C C C
31.	С
32.	
33.	A
34.	В
35.	В
36.	В
37.	В
38.	В
39.	В
40.	С