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Abstract:

This article analyses a version of genetic algorithm (GA, Holland 1975) designed for

function optimization, which is simple and reliable for most applications. The novelty in current

approach is random provision of parameters, created by the GA. Chromosome portions which do

not t ranslate into fitness are given function to diversify control parameters for the GA, providing

random parameter setting along the way, and doing away with fine-tuning of probabilities of

crossover and mutation. We test our algorithm on Royal Road functions to examine the difference

between our version (GAW) and the simple GA (SGA) in the speed of discovering schema and

creating building blocks. We also look at the usefulness of other standard improvements, such as

non-coding segments, elitist selection and multiple crossover.
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1Probability of crossover, probability of mutation and population size.

2Fitness dependency may cause a problem with systems in which string fitness depends on the state of the

population (Dawid, 1997).
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1. Introduction and motivation

Genetic algorithms (GAs, Holland 1975, Goldberg 1989) have proved to be effective

search mechanisms. They have been adapted for function optimization in a variety of ways (see De

Jong, 1992), but one of the remaining problems is that the GA performance depends on initial

parameter settings. In most applications the parameters1 are fixed throughout the run. It has been

acknowledged that variable parameter setting is more effective (see Booker, 1987 and Davis,

1991 for example). Tuson and Ross (1998) provide an overview of attempts in the GA literature

to optimize parameters  in order to account for their ability to provide more fit  individuals in

successive generations. In other words, with adaptive parameter settings the parameters are

fitness-dependent2.  We find, on the other hand, that random parameters are as good as any in

function optimization, while they require relatively little in terms of algorithm alterat ions and

computation. They do not depend on fitness and, therefore, are widely applicable.  This point is

illustrated in what follows on Royal Road functions (Mitchell, Forrest and Holland, 1991) because

we can pinpoint the effects of the algorithm on specific building blocks and thereby compare it

with the performance of the simple GA (SGA) in Forrest and Mitchell (1992) and Mitchell,

Holland and Forrest (1994). In Novkovic and Sverko (1998) we have illustrated the effectiveness

of a previous version of the algorithm on Goldberg’s (1987) minimal deceptive problem. Our

intention here, then, is not to find an algorithm which outperforms all others in all cases, but to
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illustrate that random parameter-based GAW is at least as effective as any alternative with

parameters which are known to be efficient, while it does not require search for “good”

parameters.

In our version of the algorithm, the GA itself creates random parameters. The motivation

for it was our understanding of non coding segments (Novkovic and Šverko (1997,1998)),

initiated by an interview with a Swiss geneticist, M.Radman, who views the untranslated portions

of the DNA as providers of diversity, and thereby a possible source of improvement of the

species. The introns or nonsense codons create “genetic waste”, i.e. the portions of genes whose

function is unknown in nature (see Berg and Singer, 1992 for example), but which we interpreted

to produce variation of parameters for a genetic algorithm purpose. Generally speaking, one can

think of these non-translated portions as of sources of diversity, i.e. creators of genetic material

which cannot be traced as heritage. Therefore, a part of string representation of individuals in a

population is set to provide new random parameters in each generation, and it does not affect

fitness value in any way. A version of non coding segments widely used in GA literature, on the

other hand, assigns to them no function at all (Levenick ,1991, Forrest and Mitchell,1992,  Wu

and Lindsay ,1995, Wu, Lindsay and Smith,1994). Their applications result in limited or no

improvements of GA performance with fixed building block representation. Wu and

Lindsay,1997, find these segments useful with floating building blocks. The use of “genetic

waste”, as stated before, was motivated by the desire to do away with fine tuning of the control

parameters in a genetic algorithm, yet not to optimize the parameters, as most researchers of the

problem have attempted to do (Baeck,1991, De Jong,1975, 1980, Grefenstette,1986, Srinivas and

Patnaik,1994, Wu and Cao, 1997, among others). Rather, “genet ic waste” provides different



3Non coding segments do not affect fitness, by definition. We do not interpret that to necessarily mean
that they have no other  function.  Therefore,  when “nonsense codons” are diversity providers, we term them
“genetic waste” (GW). When no function is assigned, the term will be “non coding segments”.

4On top of being simple, the GAW proved so far to be rather robust, particularly in problems where SGA

faces difficulties (such as deception, see Novkovic and Sverko 1998).
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crossover and mutation probabilities in each run for each set of mating pairs (see Section 2

below). When non translated portions are given function to diversify the parameters3, they may

result in considerable improvements of the GA4. While we do not intend to claim by our limited

research so far that the GAW version of the algorithm is better than every other GA in all

problems (point raised by Wolpert and Macready, 1997), we would like to illustrate that it is

usually more effective than the SGA, and much simpler to  create than GA with dynamic adaptive

operators. These properties, we believe,  make GAW a good candidate for an effective

optimization tool.

What we set out to do in this presentation is to a) illustrate the performance of “genetic

waste” (GW) interpretation of  nonsense codons on “Royal Road” functions (Mitchell, Forrest

and Holland ,1991), b) examine the effect of potentially useful alterations such as the non coding

segments reported in Mitchell, Forrest and Holland,1991, Forrest and Mitchell,1992, Mitchell,

Holland and Forrest,1994, and Wu and Lindsay,1995, c) evaluate combination of GW and elite

selection on Royal Road functions, given the effectiveness of this combination in other

applications, and d) combine GAW with a form of variable string representation in order to

aggregate positive impact of floating building block representation on GA search (reported in Wu

and Lindsay,1997) with positive impact of the GW.

The paper is organized as follows. Section 2 describes the algorithm. In Section 3 we
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 Figure 1: Each string consists of the GW part which provides probabilities of crossover and mutation, and of the
active part which translates into fitness. With Royal Road functions the active string is decoded as 8-bit schemas
(Section 3) 

compare the SGA and the GAW versions on the Royal Road problem laid out in Forrest  and

Mitchell, 1992, with and without the non-coding segments. Section 4 deals with elitist selection,

while Section 5 examines the effects of variable length representation and a multiple point

crossover. Some preliminary conclusions follow in Section 6.

2. A genetic algorithm with “genetic waste” (GAW)

In this section we briefly reproduce the description of the structure of GAW from

Novkovic and Šverko,1998, with some refinements. In addition to the standard operators -

selection, crossover and mutation, the GAW incorporates the ‘genetic waste’ (GW) part of the

chromosome, which is decoded separately, not affecting the fitness value, and which provides

different random parameters in each generation. The algorithm is a standard GA, with

proportional selection, F-scaling, and one point crossover, unless stated otherwise. Each string of

length L in  a population of n strings contains an ‘active’ part of length l and the GW part of

length (L-l).  See Figure 1. 



5We tested different lengths of the GW and there was no significan t difference in  performance when we
use the length specified below and when we extend the chromosomes.
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The GW, which provides random parameters, is subject to crossover and mutation on its

own. This part of the string is decoded as probabilities of mutation and crossover, random

selection is performed on it (with no relation to fitness of the active part of the string), and

obtained parameters are applied to the crossover and mutation of the active string. This way, a

whole new population of parameters is created in each generation.

In the initial population the GW part of the string is randomly chosen, together with the

active part of the string. It is then decoded in two parts: alleles (l+1) to (m) as the probability of

mutation and (m+1) to (L) as the crossover probability. The length of each of the parts depends

on the computing abilities at hand, as well as the wanted range of values5 for the parameters. 

The specific process applied here can be described as follows: 

a.  the GW part of the string is randomly created in the initial generation, in the same fashion as

the active part of the string. The selection procedure of mates for creation of GW is random, i.e.

not related to fitness value. Crossover of the GW occurs with certainty (pc = 1), while for

mutation of this part of the string a different probability of mutation is used for each offspring

(one from each of the parents rates, set in the range [0,1] increasing with increment 1/1024).

b. the active part of the string is initially randomly created. The selection of strings for the mating

pool is proportional to fitness, and separate for this part of the string. For crossover of the active

part of the string,  crossover probability of the second mate is applied (provided by the second

mate’s GW part of the string), while the probability of mutation for each child is used from each
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mate’s GW. 

Probability of mutation. The SGA version of the algorithm uses the mutation probability

(pm) set at a fixed rate. For stochastic mutation rates applied here, we use alleles (l+1) to (m) of

the GW string part to decode them into pm for each string in each generation. The number of

alleles used in this procedure limit the range of mutation probabilities, but the possibilities are

obviously enormous. We typically use 10 alleles, which translates into mutation probabilities in the

range [0, 0.02], changing with an increment of 1/1024, but this may be changed as required (see

previous footnote).

Probability of crossover is decoded from the GW, alleles (m+1) to (L). The pc is also

random, rather than fixed exogenously. In our version of the algorithm, the crossover probability

can range from [0,1].

The algorithm so enhanced (GAW) provides increased diversity of the populat ion by

varying control parameters in each run, as illustrated in section 3.  This feature may not be

intuitive, as the distribution of random parameters is uniform. An important advantage of GAW

over the SGA (and other versions of enhanced GA used in the literature) is that parameter values

are automat ically provided,  doing away with search for the best combination. To that extent , the

algorithm is universally applicable.

In the following sections we first compare GAW to SGA. In order to assess the usefulness

of additional algorithm complexity, we then combine GAW with other GA refinements, some of

which were also applied by Mitchell,  Holland and Forrest (1994) in search of the GA which would

outperform hill-climbing.
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3. GAW and SGA with non coding segments 

3.1. SGA and GAW compared

As an illustrat ion of the GAW performance, we use the Royal Road functions (Mitchell,

Forrest and Holland (1991) and Forrest and Mitchell (1992)) because they are a convenient tool

for examination of the impact that the potentially disruptive rates of crossover and mutation of the

GAW may have on the building blocks, as schemas are explicitly defined. We examine two

functions, R1 and R2 (Figure 2, adopted from Forrest and Mitchell (FM ’92)), defined as 

with x representing a bit string, cs = order (s) is value assigned to the schema s, and Fs = 1 if x is

an instance of s, and 0 otherwise. In Figure 2, R1 is represented by schemas s1 through s8, while

R2 includes all 14 schemas.

s1 = 11111111********************************************************; c1  = 8
s2 = ********11111111************************************************; c2  = 8
s3 = ***************11111111*****************************************; c3  = 8
s4 = ***********************11111111*********************************; c4  = 8
s5 = *******************************11111111*************************; c5  = 8
s6 = ****************************************11111111****************; c6  = 8
s7 = ***********************************************11111111*********; c7  = 8
s8 = ********************************************************11111111; c8  = 8
s9 = 1111111111111111************************************************; c9  = 16
s10= ****************1111111111111111********************************; c10 = 16
s11= ********************************1111111111111111****************; c11 = 16
s12= ************************************************1111111111111111; c12 = 16
s13= 11111111111111111111111111111111********************************; c13 = 32
s14= ********************************11111111111111111111111111111111; c14 = 32
sopt= 1111111111111111111111111111111111111111111111111111111111111111

Figure 2: Royal Road functions - an optimal string is broken up into eight building blocks. R1 (x) is computed by
summing the coefficients c1  to c8, while R2 (x) adds c1 to c14.



6We tested population size 1024, to find that the SGA result improves three-fold and becomes comparable
to that of the GAW with equal population.
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We run the generational SGA with one point crossover to repeat the results of previous

experiments, and then run the GAW with variable probabilities of mutation, as described in Section

2 above, for comparative performance. The following parameters were employed:

Population size 128 Probability of mutation 0.005

String length   64 Probability of crossover 0.7

Number of runs 200 Max. expected offspring 1.5

The above parameters are used for the SGA version, with F-scaling (Tanese,1989, FM’92),

restricting maximum expected offspring by any string to 1.5.

When we run the GAW version, F-scaling remains, and so do the population size and the

number of runs. String length now increases by 16 alleles (GW), used for provision of random

parameters, and eliminating the need to provide fixed parameters ex ante. Let us note, however,

that a larger population size would produce better results for both versions of the algorithm6, but

we apply the parameters used by FM’92 for consistency of the comparison. As stated earlier, our

intention here is not to find an algorithm which outperforms all others in all cases, but to illustrate

that random parameter-based GAW is at least as effective as any alternative with parameters which

are known to be efficient.

The results are reported in Table 1 for the SGA, and Table 2 for the GAW; numbers in

brackets represent standard errors. For performance criteria we use number of generations and

number of function evaluations required until the optimum is found. Our results for SGA differ



7In the context of other applications, GAW finds better solutions than alternative GAs, with no need to
look for good control parameters.

11

somewhat  from FM ‘92 and Wu and Lindsay,1995 (WL ‘95), most  likely due to differences in

program structure and randomness of the GA search process, but together with results in Table 2

they illustrate our point that when GAW is used the performance is no worse, and likely better than

with the SGA with very good parameters, confirming the findings of our previous studies

(Novkovic and Šverko7,1997, 1998).

R1-SGA R2-SGA
eval. gen. eval. gen.

Average 71961

(2633)

566

(21)

84582

(3222)

665

(25)
Std. Dev. 37143 292 45456 357
Median 65429 514 78304 616

Table 1: Generational SGA, one point crossover,F-scaling

R1-GAW R2-GAW
eval. gen. eval. gen.

Average 56011

(1899)

440

(15)

60185

(2360)

469

(18)
Std. Dev. 26788 210 33373 260
Median 51544 405 53834 420

Table 2:GAW with F-scaling
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Figure 3: Evolution of schemas 1,2,and 9. The intermediate level schema appears soon after both low-order schemas
are found. The number of schemas in the population varies much more than with  the SGA (FM ‘92), indicating less
stability.

An illustration of evolution of schema for GAW is given by Figures 3 to 6. The algorithm

found the optimum in 410 generations in a single run, which is representative of any other run on

average.



13

Figure 4: Evolution of schemas 3,4 and 10. The intermediate level schema appears soon after schema 3 is present in
sufficient numbers (around 140 generations). 

Figure 5: Evolution of schemas 5,6 and 11. Schema 6 is found late in the run (288 generation) and lost until
rediscovered at the end of the run. This is the cause of prolonged search for the optimum. 



8Even though mutation may be the same on average, with GAW some strings will be exposed to large
mutation, while other to low, rather than all to equal (average) rate, thereby producing different mating pairs in
consecutive generations.  For example, two strings, one with pmut=0,  and the other with  pmut=1 wil l not produce
the same mates as two strings with pmut=1/2.
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Figure 6: Evolution of schemas 7,8 and 12. All three schemas appear very early and maintain  presence, even though
with high variability.

The above figures illustrate that GAW displays more variability in the numbers of schemas

it preserves relative to the SGA (FM ‘92, Figure 3, p.116). Decreased stability compared with the

SGA does not adversely affect its overall searching ability. Like the SGA, the search time of the

GAW was prolonged by its inability to find one low-level schema. The time to find intermediate

level schemas is typically very short once low-order schemas are present. We conclude that more

variability brought about by the GAW structure does not prevent “hitchhiking” (FM ‘92), but it

may help find schemas faster due to potentially larger mutation8 applied on some strings.
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3.2. Non coding segments

Non coding segments are applied next, as in FM ‘92, Mitchell, Holland and Forrest, 1994

and WL ‘95.We use them between each schema and of equal length (8 alleles).  Forrest and

Mitchell report no improvement when non coding segments are used. We confirm their results in

Table 3, while Table 4 reports the results when non coding segments are added to the GAW

version of the algorithm, also demonstrating no significant change. We may need to explore the

combination of non coding segments and diversity provided by GW further, before any conclusive

results can be reported. If the intuition that non coding segments restrain the disruption of

crossover is correct (FM ‘92), then the combination of this effect with our potentially fairly

disruptive operator (GW) should be more effective than introns combined with the SGA. Even

though the combination of GAW with non coding segments does not seem to be significantly

beneficial with Royal Road functions, one should not a priori dismiss it in different problems.

R1-SGA with NCS R2-SGA with NCS
eval. gen. eval. gen.

Average 90279

(3443)

704

(27)

84852

(3175)

662

(25)
Std. Dev. 48702 380 44906 350
Median 79618 621 77100 601

Table 3:SGA with non-coding segments
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R1-GAW with NCS R2-GAW with NCS
eval. gen. eval. gen.

Average 56196

(2452)

438

(19)

58299

(2482)

454

(19)
Std. Dev. 34679 270 35095 274
Median 48320 377 48438 378

Table 4:GAW with non-coding segments

4. Elite selection

Generally speaking, elite selection improves algorithm performance (De Jong (1975),

Goldberg (1989)). Various forms of  elite selection have been applied in the literature, the most

often probably one where the string with maximum fitness is given a 100% chance of survival, i.e.

it is carried to the next generation in one or more copies. In problems of different nature we

combined the GAW with elite selection, and improved GA performance (see Novkovic and Šverko

1998), as this operator preserves useful information which may be lost due to potentially disruptive

nature of random crossover and mutation rates. Others use elite selection for similar results. We

want to see how elite selection affects GAW here, given that it proved to smooth the approach to

the optimum and decrease diversity of the population, offsetting added population variance caused

by mutation in our previous studies.

With Royal Road functions low-order schemas are known ex ante, and fitness measure

depends on their appearance in the string. Elite selection which preserves the string with maximum

fitness to date does not prove exceptionally effective on these functions, as it does not prevent  the



9We obtain an improvement of similar magnitude for the SGA (22% for R1 and 14% for R2).
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disappearance of low-order schemas from the population, even though it improves the result

somewhat. See Table 5.

R1-GAW with elite

selection

R2-GAW with elite

selection
Eva. gen. eval. gen.

Average 43143

(1551)

339

(12)

45134

(1621)

354

(13)
Std. Dev. 21878 172 22864 180
Median 39086 307 40217 316

Table 5:GAW with elite selection, preserving the string with maximum
fitness.

While two strings may have equal (maximum) fitness, they may contain different low-order

schemas, one of which is scarcely present in the population and as such is more valuable for

formation of high order schemas. Mitchell,  Forrest and Holland,1991 report that the waiting time

for intermediate-level schemas to appear in the population is prolonged by loss of lower-level

schemas. Assigning flat fitness value to s1-s8 will not prevent loss of  relatively scarce low-order

schemas in the population. The problem perseveres with the GAW, as illustrated in Section 3. Yet,

one can make a case that  the approximate 20% improvement in performance is worth applying the

elite selection9. Still, a more appropriate form of elite selection would preserve a copy of each

schema as it appears, but this kind of elite selection cannot be used in general, as we typically do

not have prior knowledge about the placement of the schema. Mitchell, Holland and Forrest,1994



18

create the IGA (“idealized genetic algorithm”) making use of a similar elitist selection, with aim to

construct a type of GA which will outperform hill-climbing algorithms. It is no surprise then that a

GA with this kind of string preservation does well. We added this feature to both the GAW and the

SGA, to conclude that this “idealized” variant benefits the GAW more. Tables 6 and 7 illustrate.

R1-SGA with
idealized elite

selection

R2-SGA with
idealized elite

selection
Eva. gen. eval. gen.

Average 58615

(2525)

457

(19)

67305

(2976)

525

(23)
Std. Dev. 35718 279 42089 328
Median 51572 402 56747 443

Table 6:SGA with “idealized”elite selection, preserving each low-order 

schema once i t appears in the populat ion 
 

R1-GAW with 
idealized elite

selection

R2-GAW with
idealized elite

selection
eval. gen. eval. gen.

Average 17887

(996)

139

(8)

24941

(1042)

194

(8)
Std. Dev. 14080 109 14738 115
Median 12545 97 20973 163

Table 7:GAW with “idealized” elite selection, preserving each low-order 
schema once i t appears in the populat ion

An observation can be made that elite selection adds to GA efficiency, but fixed control

parameters of the SGA, which were extremely good for the original version, are no longer

appropriate. Assuming that the parameters used in FM’92 were optimal (aside from the population
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size), with addition of the elitist selection, another set of parameters is required to improve the

algorithm performance. This is exact ly what can be avoided with the use of random parameters in

GAW, and the point we wish to make with this presentation.

The form of elite selection presented above was motivated by loss of low-order schemas

from the population. Although unusable in general, its inclusion improves the chances that the

algorithm will capitalize on the presence of low-order schemas in the population. Intermediate level

schemas may, however, still disappear and defer finding the optimum. In the next section we

analyse possible advantages of variable length representation. Let us just reiterate that the elitist

selection one can combine with GAW may be of different types. With Royal Road functions,

fitness is assigned to parts of the string,  and we use that information. Clearly, in practice, different

fitness assignment will be relevant, and one should use whatever information is available to

preserve the most valuable individuals in future generations. In general, elite selection with

preservation of strings with maximum fitness does not hinder the performance.

5.Variable length representation

Unless elite selection is used (Section 4), GA performance is impeded by the loss of low

level schemas, even after they initially appear in the population. We observed that most  often only

one low level schema is missing for a long time, prolonging the time required to find the best

solution. When elite selection is applied, intermediate level schemas may still disappear. This

motivated us to consider variable building block representation (Wu and Lindsay,1997). Our

version of floating representation is less computationally demanding than Wu and Lindsay’s, but



10We also applied the 8-tuple (schema)slide, but bit by bit explores the space more efficiently. Sliding
down the ring by one schema at a time was on average 30% less efficient than the one bit-slide.
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Figure 7:  A ring representation of var iable length. The tail segmen t increases the string length by some integer
multiple of 8 alleles. The GA checks the string for fitness of all 8-tuple locations, and then it slides down the ring
one bit at a time, repeating the process.   

we believe it suits well the Royal Road function representation. We add one tail segment to  the

string,  essentially creating a ring representation connecting the string head to tail. The algorithm

checks for fitness of eight 8-tuples, closing the circle and sliding down one allele to repeat the

process10. See Figure 7.

We first look at a zero-length tail segment, i.e. we close the original string (64 alleles) in a

circle, and witness a change from the original mean of 60185 evaluations for R2 down to 47297



11A note on reporting the results - we report one evaluation no matter how many fitness calculations were
performed, as long as no crossover, mutation and selection were applied. In this case, 8 calculations of fitness were
needed for each evaluation.
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(369 generations). The improvement could be expected, as more information is contained in

variable representation of building blocks, even this simple - the GA explores overlapping bits

seven more times than before11.

R1- 72 bit string R2- 72 bit string
eval. gen. eval. gen.

Average 17717

(652)

139

(5)

25342

(1055)

199

(8)
Std. Dev. 9203 72 14885 117
Median 15537 122 20463 161

Table 8: GAW with  variable building block representa tion. Eight alleles

are added to the string in a ring representation. 

R1- 128 bit string R2- 128 bit string
eval. gen. eval. gen.

Average 34310

(1361)

269

(11)

51234

(3632)

402

(16)
Std. Dev. 19198 151 29006 228
Median 29142 229 45828 360

Table 9: GAW with  variable building block representa tion. 64 alleles
are added to the string in a ring representation.

 

Tables 8 and 9 illustrate the GAW with variable representation when tail with 8 bits is

added and when 64 bits are added to the string.

While extending the genome length by eight bits improves the average performance, longer

string representation does not benefit it as much. The reason is that we just transform fixed



12A different number of crossing points (between 1 and the number of 8-tuples in  the st ring) is selected for
each pair of mates.
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building block representation, as the low order schemas still have to be together in a block for best

performance.  As string length increases, the role of crossover operator decreases, since it becomes

more difficult to obtain a more fit combination of schemas from different  mates when their building

blocks are potentially far apart. We therefore conjecture that multiple point crossover is necessary

when longer strings are used (Spears and De Jong,1991, Schaffer and Eshelman,1991). 

We first isolate the effect of a multiple crossover on a 64-bit string. While more than one

crossover point increases GA efficiency, there is little difference in results if fixed number of

crossing sites are selected, or if each mating pair is exposed to randomized12 selection of the

number of sites. The first three rows in Tables 10 and 11 illustrate this for R1 and R2, respectively.

The bottom three rows of Tables 10 and 11 show the results of implementation of multiple

crossing sites on strings with non coding segments (total genome length is 128 alleles). Addition of

non coding segments and large number of crossover points (8 or random) is less effective than a

smaller number of crossing sites (2 and 4). When string length increases due to addition of alleles

which can translate into fitness, large number of crossing sites becomes the most effective. Tables

12 and 13 illustrate. First three rows of Table 12 show mean, standard deviation and median for

one crossing site and random crossing site on R1 (1024 bit string length). When NCS are added,

string length doubles, but the GA is equally as efficient as with 1024 bits and a multiple crossover.
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R1-Number of crossing sites
2 4 8 Random

Avg No

NCS

39823

(1664)

310

(12)

34604

(1800)

269

(14)

36349

(1466)

283

(11)

40725

(1626)

317

(12)
St.dev 23535 183 25455 198 20743 162 22996 179
Median 35385 275 27024 210 31378 245 33655 262

Avg With

NCS

39576

(1670)

308

(13)

42331

(2025)

330

(15)

51011

(2081)

398

(16)

48932

(2127)

381

(16)
St.dev 23623 184 28644 223 29433 229 30085 235
Median 33240 259 33707 262 42711 333 43455 339

Table 10: A multiple point crossover on  R1. Mean, standard deviat ion and median  for GAW without non
coding segments ( first  3 rows, 64 bits) and with  non coding segments (last 3 rows, 128 bits).  Number  of

crossing sites 2,4,8, or randomly selected. 

R2-Number of crossing sites
2 4 8 Random

Avg No

NCS

43831

(1815)

341

(14)

43011

(1854)

335

(14)

42091

(1640)

328

(12)

44929

(1782)

350

(13)
St.dev 25678 200 26230 204 23204 181 25215 196
Median 37975 296 34766 271 36517 285 38434 300

Avg With

NCS

42930

(2023)

334

(15)

43381

(1810)

338

(14)

57615

(2496)

449

(19)

53093

(2348)

414

(18)
St.dev 28623 223 25609 200 35300 275 33218 259
Median   36801 287 36152 281 48259 376 45422 354

Table 11: A multiple point crossover on  R2. Mean, standard deviat ion and median  for GAW without non
coding segments ( first  3 rows, 64 bits) and with  non coding segments (last 3 rows, 128 bits).  Number  of

crossing sites 1,2,4,8, or randomly selected. 

R1-Number of crossing sites
1 Random

Avg No NCS 149862

(17349)

1170

(135)

24106

(3129)

187

(24)
St dev 122680 958 22129 172
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Median 115767 904 19397 151

Avg 128- NCS 26751

(2647)

208

(20)
St dev 18723 146
Median    24918 194

Table 12: Impact of a multiple point crossover on R1 with string length 1024 bits (first 3
rows). Addition of non coding segments (last 3 rows) doubles the string length to 2048

bits. 

R2-Number of crossing sites
1 16 128 Random

Avg No NCS 109892

(11225)

858

(87)

31939

(2526)

248

(19)

24814

(1802)

193

(10)

23558

(1802)

183

(14)
St.dev 79379 620 17866 139 12746 76 12746 99
Median 94596 738 28162 219 22553 175 19655 153

Avg 128 - NCS 39176

(3738)

305

(29)
St dev 26435 206
Median.    33098 258

Table 13: Impact of a  mult iple point crossover  on R2 with str ing length 1024 bits (first 3 rows). Addition

of non coding segments (last 3 rows) doubles the string length  to 2048 bits. 

Table 13 shows similar results for R2. Large string representat ion without non coding

segments is extremely efficient when combined with a multiple point crossover. Addition of non

coding segments to a long string does not significantly hamper the results. 

6. Concluding remarks

In this paper we present the GAW version of a genetic algorithm for function optimization

(Novkovic and Šverko 1997,1998), where non translated portions of the DNA provide random
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control parameters for the algorithm and we apply it to Royal Road functions. The GAW varies the

probabilities of mutation and crossover, rather than use fixed parameters or invest in search for

optimal parameter setting, which can be costly and uncertain. The GW part of the genetic makeup

ensures that the performance of the GA does not depend entirely on the programmer’s choice of

initial control parameters (probabilities of crossover and mutat ion, in particular). We find the

performance of GAW fairly reliable in most cases, confirming the result of our previous research

where it proved robust with minimal deceptive problem (Novkovic and Šverko, 1998). Due to

potentially high mutation, GAW proves most efficient when combined with elitist selection.

We also investigate the impact of non coding segments and variable string representation on

our algorithm to conclude that the former is not exceptionally effective with Royal Road functions. 

Variable string representation, on the other hand, has a positive effect on algorithm performance,

especially if shorter strings are used. When long strings are created one should apply multiple point

crossover to improve the speed of search. Inclusion of non coding segments in variable string

representation has the same effect as with fixed representation, contrary to findings by Wu and

Lindsay, but this may be a result of our simplified version of variable string length. 

It is clear that population diversity brought about by varying the control parameters

throughout the runs is likely to improve GA performance. But, more importantly, there is no need

to conduct search for successful parameter setting prior to GA application. Combined with some

exploitation-inducing operator, such as elite selection, the GAW produces excellent results and can

be safely used for optimization problems. One can combine other helpful alterations to increase the

speed of search of the algorithm. Further research should illuminate most successful combinations,

as well as their shortcomings.
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