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Abstract:

This articleandyses avergon of genetic algorithm (GA, Holland 1975) designed for
function optimization, which is smple and reliable for most applications. The novelty in current
approach is random provision of parameters, created by the GA. Chromosome portions which do
not trandate into fitness are given function to diversify control parametersfor the GA, providing
random parameter stting along the way, and doing away with fine-tuning of probahilities of
crossover and mutation. We test our algorithm on Royal Road functions to examine the difference
between our verson (GAW) and the smple GA (SGA) in the speed of discovering schemaand
creating building blocks. We also ook at the usefulness of other standard improvements, such as

non-coding segments, elitist selection and multiple crossover.
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1. Introduction and motivation

Genetic algorithms (GAs, Holland 1975, Goldberg 1989) have proved to be effective
search mechanisims. They have been adapted for function optimization in avariety of ways (see De
Jong, 1992), but one of the remaining problems is that the GA performance depends on initial
parameter settings. In most applications the parameters' are fixed throughout the run. It has been
acknowledged that variable parameter setting is more effective (see Booker, 1987 and Davis,
1991 for example). Tuson and Ross (1998) provide an overview of attenmpts inthe GA literature
to optimize parameters inorder to account for ther ability to provide morefit individuds in
successive generations In other words with adaptive parameter settings the parameters are
fitness-dependent®. We find, on the other hand, that random parameters are asgood as any in
function optimization, while they require relatively little in terms of algorithm alterations and
computation. They do not depend on fithess and, therefore, are widely gpplicable. This pointis
illustrated in what follows on Royal Road functions (Mitchell, Forrest and Holland, 1991) because
we can pinpoint the effects of the dgorithm on specific building block s and thereby compare it
with the performance of the ample GA (SGA) in Forrest and Mitchdl (1992) and Mitchell,
Holland and Forrest (1994). In Novkovic and Sverko (1998) we have illustrated the effectiveness
of aprevious vasion of the algorithm on Goldberg’s (1987) minmal deceptive problem. Our

intention here, then, isnot to find an algorithm which outperforms all othersin all cases, but to

lProbability of crossover, probability of mutation and popul ation size.

“Fitness dependency may cause a prablem with systems in which string fithessdepends on the state of the
population (Dawid, 1997).



illustrate that random parameter-based GAW is at lead as effective as any dternaive with
parameters which are known to be efficient, while it does not require search for “good”
parameters.

In our vergon of the algorithm, the GA itself createsrandom parameters The motivation
for it was our understanding of non coding segments (Novkovic and Sverko (1997,1998)),
initiated by an interview with a Swiss geneticist, M.Radman, who views the untrandated portions
of the DNA as providers of diversity, and thereby a possible source of improvement of the
species. Theintrons or nonsense codons create “ genetic waste”, i.e. the portions of genes whose
function is unknown in nature (see Berg and Singer, 1992 for example), but which we interpreted
to produce variation of parameters for a genetic algorithm purpose. Generally speaking, one can
think of these non-translated portions as of sources of diversity, i.e. creators of genetic material
which cannot be traced as heritage. T herefore, a part of string representation of individuasin a
population isset to provide new random parameters in each gereration, and it does not affect
fitness value in any way. A verson of non coding segmentswidely used in GA literature, on the
other hand, assignsto them no function at all (Levenick ,1991, Forrest and Mitchell, 1992, Wu
and Lindsay ,1995, Wu, Lindsay and Smith,1994). Their applications result in limited or no
improvements of GA performance with fixed building block representation. Wu and
Lindsay,1997, find these segment s useful with floating building blocks. T he use of “genetic
wast€’, asstated before, was motivated by the desreto do away with fine tuning of the control
parametersin agenetic dgorithm, yet not to optimize the parameters, as most researchers of the
problem have attempted to do (Baeck,1991, De Jong,1975, 1980, Grefenst ette, 1986, Srinivas and

Patnaik,1994, Wu and Cao, 1997, among others). Rather, “genetic waste’ provides different



crossover and mutation probabilities in each run for each set of mating pairs (see Section 2
below). When non translated portions are given function to diversify the parameters’, they may
result in considerable improvements of the GA*. While we do not intend to claimby our limited
research so far that the GAW verson of the dgorithm is better than every other GA inall
problems (point raised by Wolpert and Macready, 1997), we would like to illusratethat it is
usudly more effective than the SGA, and much smpler to create than GA with dynamic adaptive
operators. These properties, we believe, make GAW a good candidate for an effective
optimization tool.

What we set out to dointhis presentation isto a) illustrate the performance of “genetic
wase’ (GW) interpretation of nonsense codons on “Royal Road” functions (Mitchell, Forrest
and Holland ,1991), b) examine the effect of potentialy useful dterations such asthe non coding
segmentsreported in Mitchdl, Forrest and Holland, 1991, Forrest and Mitchell, 1992, Mitchell,
Holland and Forres,1994, and Wu and Lindsay,1995, c) evd uate comhination of GW and dite
selection on Royal Road functions, giventhe effectiveness of this combination in other
applications and d) comhine GAW with a form of variable string representation in order to
aggregate positive impact of floating building block representation on GA search (reported in Wu
and Lindsay,1997) with postive impact of the GW.

The paper is organized as follows. Section 2 describes thealgorithm. In Section 3 we

*Non cading segments do not affect fitness, by definition. We do na interpret that to necessarily mean
that they have no other function. Therefore, when “nonsense codons’ ar e diversity provider s, we term them
“geneticwaste’ (GW). When no fundion is asigned, the teem will be“non cading segments”.

on top of being simple, the GAW proved so far to be rather robust, particularly in problems where SGA
faces difficulties (such as deception, seeNovkovic and Sverko 1998).
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compar e the SGA and the GAW versions on the Royd Road problem laid out in Forrest and
Mitchell, 1992, with and without the non-coding segments. Section 4 deals with ditist selection,
while Section 5 examines the effects of variable length representation and a multiple point

crossover. Some preliminary conclusions follow in Section 6.

2. A genetic adgorithm with “genetic waste” (GAW)

In thissection we briefly reproduce the description of the structure of GAW from
Novkovic and Sverko,1998, with some refinements. In addition to the standard oper ators -
selection, crossover and mutation, the GAW incorporatesthe ‘genetic waste (GW) part of the
chromosome, which is decoded separately, not affeding the fitness valug, and which provides
different random parametersin each generation. The algorithmisa standard GA, with
proportional selection, -scding, and one point crossover, unless gated otherwise. Each gring of
length L in a population of n stringscontans an‘adive’ part of lengthl and the GW part of

length (L-1). See Figure 1.

‘ Genetic Waste ‘ Active String ‘
(L= q
L M

L
| Pc | Pm  [[Sch 1]Sch 2|Sch 3]Sch 4][Sch 5|Sch 6]Sch 7[Sch 8]

Figure 1: Each string consists of the GW part which provides probahilities of crossover and mutation, and of the
activepart which translates into fitness. With Royal Road functions the active string is decoded as 8-hit schemas
(Section 3)



The GW, which providesrandom parameters issulject to crossover and mutation onits
own. Thispart of the gring isdecoded as probabilitiesof mutation and crossover, random
sdlection is performed on it (with no relation to fitness of the active part of the string), and
obtained parameters are applied to the crossover and mutation of the active string. This way, a
whole new population of parametersis created in each generation.

In the initial population the GW part of the string is randomly chosen, toget her with the
active part of the string. It is then decoded in two parts: aleles(I+1) to (m) as the probability of
mutation and (m+ 1) to (L) as the crossover probability. The length of each of the parts depends
on the computing ahilities at hand, as well as the wanted range of values’ for the paameters.

The specific process applied here can be described as follows:

a. the GW part of the string is randomly created inthe initial generation, in the same fashion as

the active part of the string. The slection procedure of mates for creation of GW is random, i.e.
not rel ated to fitness value. Crossover of the GW occurswith certainty (p, = 1), while for
mutation of this part of the string a different probability of mutation is used for each offspring
(one fromeach of the parents rates, set in the range [0,1] increasng with increment 1/1024).

b. the active part of the gtring isinitialy randomly created. T he selection of strings for the mating

pool is proportional to fitness, and separ ate for this part of the string. For crossover of the active
part of the string, crossover probability of the second mate is applied (provided by the second

mate's GW part of the string), whilethe probability of mutation for each child isused from each

We tested different | engths of the GW and there was no significant differencein perfor mance when we
use the length specified below and when we extend the chromosomes.
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mate’'s GW.

Probability of mutation. The SGA version of the dgorithm uses the mutation probahility
(p,,) set at afixed rate. For stochastic mutation rates applied here, we use dleles(I+1) to (m) of
the GW string part to decodetheminto p,, for each string in each generation. The number of
allelesused in this procedurelimit the range of mutation probabilities, but the possibilities are
obviously enormous. Wetypicaly use 10 alldes, which translates into mutation probabilitiesin the
range [0, 0.02], changing with an increment of 1/1024, but this may be changed asrequired (see
previous footnote).

Probability of crossover is decoded from the GW, alleles (m+1) to (L). The p, isalso
random, rather than fixed exogenously. In our version of the dgorithm, the crossover probalility
can range from[0,1].

The dgorithm so enhanced (GAW) providesincreased diversity of the population by
varying control parametersin each run, asillustrated in section 3. T his feature may not be
intuitive, asthe digtribution of random parametersis uniform. An important advantage of GAW
over the SGA (and other versionsof enhanced GA used inthe literature) is that parameter values
are automatically provided, doing away with search for the best combination. To that extent, the
algorithmis universally applicable.

In the following sections we first compare GAW to SGA. In order to assess the usefulness
of additional algorithm conplexity, we then combine GAW with other GA refinements, some of
which were dso applied by Mitchdl, Holland and Forrest (1994) in search of the GA which would

outperform hill-climbing.



3. GAW and SGA with non coding segments

3.1. SGA and GAW compared

Asan illugration of the GAW peformance, we usethe Royad Road functions (Mitchell,
Forrest and Holland (1991) and Forrest and Mitchdl (1992)) because they are a convenient tool
for examination of the impact that the potentially disruptive rates of crossover and mutation of the
GAW may have on the building blocks, as schemasare explicitly defined. We examine two

functions, R1 and R2 (Figure 2, adopted from Forrest and Mitchell (FM ’92)), defined as
R(x) = Z c,0,(x)
seS

with X represerting abit gring, ¢, = order (s) isvaue assgnedtotheschemas, and =1if xis
aningance of s, and 0 otherwise. In Figure 2, R1 is represented by schemasss, through s;, while

R2 includes al 14 schemas.

S_]_ e 11111111*** khkkhkkhkkkhkkhhkkhhhkkhdhhhhhkddhhhhkhddhhhhkhddhhkhkkddkkkhkkkk*x%k *****; Cj_ - 8
Sz — kkkk% ***11111111* kkkhkkkkhkhkkkhkkhkhhkhkkhkkhkhkhhkkhkkhhkhkhkhkkhhkkhkhkdhhkkxkhkhkkhkxkkx%x- CZ —
1
— kkkkkhkkkhkkkkkkkk%x kkkkhkkkhkkhkkhkkhhkkhkhkkhkhhkkhhhkkhkhhkkhdhhkkhkhhkkhdhhkkhkkhhkkhdhkkk*x- —_
s,= 11111111  Cy
S4 — kkkkkhhhkkkkkhkkkhkkhkxkhkkik 11111111**** kkhkkkkhkkhkkkhkkkkhkkhhkkhkkkikhkkhkkk* *****; C4 —_
85 — kkkkkhhhkkkkkhkkhhhkkhxhhhkkhkxhkkhk **11111111** kkhkkkkhkkhkkkhkkkkhkkhkkhkkkkhkkhkkkk*k- C - 8
1 V5
56 = kkkkkhkhkkhkkkhkhhkhkkkhhhkhkhkkhkxkhhkkhkxkkkk *****11111111***** *kkkkk*k *****; C6 - 8
S7 — kkkkkhhhkkhhhhhhkkhhhhhhdhkhhhhdhhhhhdddhhkhdhrdhkkhhhikkx 11111111**** *kk*k%k- C —_
» L7
% — kkkkhhhkkhkhkhkhkhhhkhkhkhhxhhhhhhdhhhhhdhhhhhhdhddrhkhhrdrkhhhdkx ***11111111 C —_
1 Y8

S‘) - 11111 111111 11111* khkkhkkkkkhkkhkkhkkhkhhkkhkkkhkhhkkhhkkhkhkkhhhkkhkkkikkkkhkkkk%x *****; Cg — 16

810: kkkkkkhkkkkk*k *****1111111111111111*** khkkhkkkhkkkkhkkkhkkkhkkikkkkhkk*%x *****; C]_O = 16

S_‘[]_: kkhkkhkkkkhkkkkhkkkhkkkhkkkhkkhkhkkkhkkkk*k ***1111111111111111***** *kkkkk*k *****; C]_]_ = 16
812: kkhkkkkkhkkkkhkkkkhkkhkhkhkkhkkhkkhkhhkhkkkhkkhkhkkkikkkkkkkk*%x *******’I’I’l’l’l ’l’l’l’l’l’l ’l’l’l’l’l C]_2 = 16

= 11111111111111111 110770 11111 DT L#H% %okt sk koo ok ok ko 0 = 32
Sy = FHRFEH FRA R R ARk kxR %111 11111111111111111111111111111; ¢, = 32
Sopt:1111111111111111111111111111111111111111111111111111111111111111

Figure 2: Royd Road functions - an optimal string is broken up into eéght building blocks. R1 (x) is computed by
summing the coefficients ¢, to ¢g, while R2 (x) adds ¢, to c,,.
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We run the generational SGA with one point crossover to repeat the results of previous
experiments, and thenrun the GAW with varigble probabilities of mutation, asdescribed in Sedtion

2 above, for comparative performance. The following parameters were employed:

Population size 128 Probability of mutaion 0.005
String length 64 Probability of crossover 0.7
Number of runs 200 Max. expected offspring 15

The above parameters are used for the SGA version, with -scaling (Tanese 1989, FM’ 92),
restricting maximum expected offspring by any string to 1.5.

Whenwe run the GAW version, -scaling remains, and so do the population size and the
number of runs String length now increases by 16 alleles (GW), usad for provision of random
parameters, and eliminating the need to provide fixed parameters ex ante. Let us note, however,
that alarger population size would produce better results for both versions of the dgorithm®, but
we apply the parameters used by FM’ 92 for consistency of the comparison. As stated earlier, our
intention here is nat to find an algorithm which outperforms all othersin all cases, but to illustrae
that random parameter-based GAW is at least as effedive as any alternative with parameters which
are knownto be efident.

The resultsarereported in Table 1 for the SGA, and Table 2 for the GAW; numbers in
brackets represent standard errors. For performance criteriawe use number of generations and

number of function evaluations required until the optimum isfound. Our results for SGA differ

SWe tested population size 1024, to find that the SGA result improves three-fold and becomes comparable
to tha of the GAW with equal population.
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somewhat from FM ‘92 and Wu and Lindsay,1995 (WL ‘95), mogt likely due to differences in
program structure and randomness of the GA search process, but together with resultsin Table 2
they illustrate our point that when GAW is used the performance is no worse, and likely better than
with the SGA with very good parameters, confirming the findings of our previous studies

(Novkovic and Sverko’,1997, 1998).

R1-SGA R2-SGA
evd. gen. evd. gen.
Average 71961 566 84582 665

(2633) (1) (3222) (25
Std.Dev. 37143 292 45456 357
Median 65429 514 78304 616

Tablel: Generational SGA, onepoint crossover, -scding

R1-GAW R2-GAW
evd. gen. evd. gen.
Average 56011 440 60185 469

(1899)  (15) (2360)  (18)
Sd.Dev. 26788 210 33373 260
Median 51544 405 53834 420

Table2:GAW with -scding

’In the context of other applications, GAW finds better solutions than alternative GAs, with no need to
look for good control parameters.
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An illugtration of evolution of schemafor GAW is given by Figures 3 to 6. The algorithm
found the optimum in 410 generations in a snglerun, which is representative of any other run on

average.

GAW_Schema_Evolution

120 |
100 |

80 |

60 | ||‘1

Number_of_Schemas

£ Schema_1

40 |
C Schema_2

+ Schema_1+2

50 100 150 200 250 300 350

Generations

Figure 3: Evolution of schemas 1,2,and 9. The intermediate level schema appears oon after both low-arder schemas
are found. The number of schemas in the population varies much more than with the SGA (FM ‘92), indicating less
dability.
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Figure 4: Evdution of schemas 3,4 and 10. The intermediate level schema appears soon after schema 3 is present in
sufficient numbers (around 140 generations).

120 GAW_Schema_Evolution
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40 . Schema_5
C Schema_6
20 | + Schema_5+6
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50 100 150 200 250 300 350
Generations

Figure 5: Evdution of schemas 5,6 and 11. Schema 6 isfound late in the run (288 generation) and lost until
rediscovered & the end of the run. This isthe causeof prdonged sarch for the optimum.
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GAW_Schema_Evolution

120 |

100 |
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60 |

Number_of_Schemas

Schema_7

40 |
C Schema_8

+ Schema_7+8
20 |
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Figure 6: Evolution of schemas 7,8 and 12. All thr ee schemas appear very early and maintain presence, even though
with high vari ability.

The above figures illustrate that GAW displays more variahility in the numbers of schemas
it preserves relative to the SGA (FM * 92, Figure 3, p.116). Decreased stability compared with the
SGA does not adversely affect its overall searching ability. Like the SGA, the search time of the
GAW wasprolonged by itsinability to find onelow-level schema. The timeto find intermediate
level schemas istypically very short once low-order schemas ae presert. We condude that more
variability brought about by the GAW gructure does not prevent “hitchhiking” (FM “92), but it

may help find schemasfager dueto potentially larger mutatior? applied on some strings.

8Even though mutation may be the same on average, with GAW somestrings will be exposed tolarge
mutation, while other tolow, rather than all to equal (average) rate, thereby producing different mating pairsin
consecutive gener ations. For exampl e, two strings, one with pmut=0, and the other with pmut=1 wil | not produce
the same mates as two strings with pmut=1/2.
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3.2. Non coding segments

Non coding segments are applied next, asin FM *92, Mitchell, Holland and Forrest, 1994
and WL *95.We use them between each schema and of equd length (8 alleles). Forrest and
Mitchell report no improvement when non coding segments are used. We confirm their resultsin
Table 3, while Table 4 reports the results when non coding segments are added to the GAW
version of the algorithm, also demonstrating no significant change. We may need to explore the
combination of non coding segments and diversity provided by GW further, before any conclusive
results can be reported. If the intuition tha non coding segmerts redrain thediguption of
crosover iscorrect (FM ‘92), then the combination of this effect with our potentidly farly
disruptive operator (GW) should be more effective than introns combined with the SGA. Even
though the combination of GAW with non coding segments does not seem to be sgnificantly

berefiad with Royal Road functions, one should not a priori dismissit in different problems.

R1-SGA with NCS R2-SGA with NCS

evd. gen. evd. gen.

Average 90279 704 84852 662
(3443) (27)  (3175) (25)

Std. Dev. 48702 380 44906 350
Median 79618 621 77100 601

Table 3:SGA with non-coding segments
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R1-GAW with NCS R2-GAW with NCS

evd. gen. evd. gen.

Average 56196 438 58299 454
(2452) (190 (2482 (19)

Std. Dev. 34679 270 35095 274
Median 48320 377 48438 378

Table 4:GAW with non-coding segments

4. Elite Slection

Generdly speaking, elite selection improves algorithm performance (De Jong (1975),
Goldberg (1989)). Various forms of €elite selection have been applied in the literatur e, the most
often probably one where the string with maximum fitness is given a 100% chance of survival, i.e.
it is carried to the next generation in one or more copies. In problems of different nature we
combined the GAW with elite selection, and improved GA performance (see Novkovic and Sverko
1998), asthis operator preserves useful information which may be lost due to potentialy disruptive
natur e of random crossover and mutation rates. Others use dlite selection for smilar results. We
wart to seehow dite sdection affects GAW here, giventhat it proved to snooththe goproach to
the optimum and decrease divesity of the population, offsetting added population variance caused
by mutation inour previous studies.

With Roya Road functions low-order schemas are known ex ante, and fitness measure
depends on their appearance in the string. Elite selection which preserves the string with maximum

fitness to dat e does not prove exceptionaly effective on these functions, as it does not prevent the
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disappearance of low-order schemas from the population, even though it improvesthe result

somewhat. See Tableb.

R1-GAW with elite  R2-GAW with elite

selection selection
Eva gen. evd. gen.
Average 43143 339 45134 354
(1551) (12) (1621) (13)
Std. Dev. 21878 172 22864 180
Median 39086 307 40217 316

Table 5:GAW with elite seledion, preserving the string with maxi mum
fitness.

While two strings may have equal (maximum) fitness, they may contain different low-order
schemas, one of whichisscarcely presert inthe populaion and as such is more vduable for
formation of high order schemas. Mitchdl, Forrest and Holland, 1991 report that the waiting time
for intermediate-level schemas to appear inthe population isprolonged by loss of lower-levd
schemas. Assigning flat fitness val ue to s;-s; will not prevent loss of relaively scarce low-order
schemas in the population. The prodem perseveres withthe GAW, as illustraed in Section 3. Y et,
one can make a case that the approximate 20% improvement in perfor mance is worth applying the
elite selection®. Still, a more appropriate form of elite selection would presarve a copy of each
schema asit appears, but this kind of elite selection camnot be used in gereral, as we typically do

not have prior knowledge about the placement of the schema. Mitchell, Holland and Forrest,1994

*We obtain an improvement of similar magnitude for the SGA (22% for R1 and 14% far R2).
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crede thel GA (“idealized genetic algorithn’) making use of a similar elitist sd ection, withaim to
condruct atype of GA which will outperform hill-climbing dgorithms. It is no surprise then that a
GA with thiskind of string preservation does well. We added this featureto both the GAW and the

SGA, to conclude that this “idealized” variart benefits the GAW more. Tables 6 and 7 illustrate.

R1-SGA with R2-SGA with
idealized elite idealized elite
selection selection

Eva gen. evd. gen.
Average 58615 457 67305 525
(2525) (29 (2976) (23)
Std. Dev. 35718 279 42089 328
Median 51572 402 56747 443

Table6:SGA with “idealized” dite sledion, preserving each |low-order

schemaonceit appears in the population

R1-GAW with R2-GAW with
idealized €elite idealized €elite
selection selection

evd. gen. evd. gen.
Average 17887 139 24941 194
(996) (8) (1042) (8)
Std. Dev. 14080 109 14738 115
Median 12545 97 20973 163

Table7:GAW with “idealized” dite sledion, preserving each low-orde
schemaonceit appears in the population

An observation can be made that elite selectionaddsto GA eficiency, but fixed control
parameters of the SGA, which were extremely good for the original version, are no longer

appropriae. Assuming that the parametes used in FM’ 92 were optimal (aside from the popul ation
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sze), with addition of the dlitist selection, another set of parametersisrequired to improve the
agorithm performance. Thisisexactly what can be avoided with the use of random parameters in
GAW, and the point we wish to make with this presentation.

The form of €elite selection presented above was motivated by loss of low-order schemas
from the population. Although unusable in generd, its incluson improves the chances that the
algorithmwill capitalize on the presence of low-order schemas inthe population. Intermediate level
schemasmay, however, still disappear and defer finding the optimum. In the next section we
analy<e possible advantages of variable length representation. Let usjust reiterate that the elitist
selection one can combine with GAW may be of different types. With Royal Road functions,
fitnessis assigned to parts of the string, and we use that information. Clearly, in practice, different
fitness assignment will be relevant, and one should use whatever information is avail eble to
preserve themog valuabl eindividuals in future generations In general, elite selection with

preservation of strings with maximum fitness does not hinder the performance.

5.Varialde length representation

Unless dite selection is used (Sedion4), GA performanceisimpeded by the loss of low
level schemas, even after they initidly appear in the population. We observed that most often only
one low level schemais missing for along time, prolonging the time required to find the best
solution. When dite selectionis gpplied, intermediate level schemas may still disappear. This
motivated us to consider variable building block representation (Wu and Lindsay,1997). Our

version of floating representation is less computationally demanding than Wu and Lindsay’s, but
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we believe it suits well the Roya Road function representation. We add one tail segment to the
string, essentialy creating aring representation connecting the string head to tail. The algorithm
checks for fitness of eight 8-tuples, closing the circle and diding down one alele to repeat the

process™. See Figure 7.

o
g e

Figure 7: A ring representation of variable length. The tail segment increases the stri ng length by some integer
multiple of 8 alleles. The GA checks the gring for fitness of all 8-tuplelocations, and then it dides down thering
one bit at atime, repeating the process.

We firgt look at a zero-length tail segment, i.e. we close the original string (64 alleles) ina

circle, and witness a change from the original mean of 60185 evaluations for R2 down to 47297

e also goplied the 8-tuple (schemag)slide, but bit by bit explores the space more effidently. Slidng
down the ri ng by one schema at atime was on average 30% | ess efficient than the one bit-dide.
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(369 generations). The improvement could be expected, as more information is contained in
varieble representation of building blocks even thissimple- the GA exploresover goping hits

seven more times than before'.

R1- 72 bit string R2- 72 bit string

evd. gen. evd. gen.

Average 17717 139 25342 199
(652) (5) (1055) 8)

Std. Dev. 9203 72 14885 117
Median 15537 122 20463 161

Table 8: GAW with variable buil ding block representation. Ei ght all eles
are added to thestringin aring representation.

R1- 128 hit string R2- 128 hit string

evd. gen. evd. gen.

Average 34310 269 51234 402
(1361) (12) (3632) (16)

Sid. Dev. 19198 151 29006 228
Median 29142 229 45828 360

Table 9: GAW with variable buil ding block representation. 64 aleles
are added to thestringin a ring represantation.

Tables8 and 9 illustrate the GAW with variable representation when tail with 8 bitsis
added and when 64 hits are added to the string.
While extending the genome length by eght bits improves the average performance, longer

string representation does not benefit it as much. The reason is tha we just transform fixed

A noteon reporting the results- wereport oneevduation no matter how many fitness cal culations were
performed, as long asno crassover, mutation and sledion were goplied. In this case, 8 calculations of fitness were
needed for each eval uation.
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building block representation, as the low order schemas till have to be together in a block for best
performance. As string length inareases, the role of crossover operator decreases, since it becomes
more difficult to obtain a mor e fit combination of schemas from different mates when their building
blocks are potentially far apart. Wetherefore conjecture that multiple point crossove is necessary
when longer strings are used (Spearsand De Jong,1991, Schaffer and Eshelman,1991).

Wefirst isolate the effect of amultiple crossover on a 64-bit string. While more than one
crosover poirt increases GA efficiency, there islittle dfference inresultsif fixed number of
crossing sites are selected, or if eachmating pair is exposed to randomized™ sdlection of the
number of Stes. The first threerowsin Tables 10 and 11 illustraethisfor R1 and R2, respectively.

The bottom three rows of Tables 10 and 11 show the results of implementation of multiple
crossng sites on stringswith non coding segmerts (total genome length is 128 allel es). Addition of
non coding segments and large number of crossover points (8 or random) is less effective than a
smaller number of crossing stes (2 and 4). When string length increases dueto addition of alleles
which can tranglate into fitness, large number of crossing sites becomes the most effective Tables
12 and 13 illustrate. First three rowsof Teble 12 show mean, standard deviationand medianfor
one crossing site and random crossing site on R1 (1024 bit string length). When NCS are added,

string length doubles, but the GA is equally as efficient as with 1024 bits and a nultiple crossover.

27 different number of cross ng poi nts (between 1 and the number of 8-tuplesin the string) is selected for
each pair of mates.
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R1-Number of crossing sites

2 4 8 Random
Avg No 39823 310 34604 269 36349 283 40725 317

NCS (1664) (12) (1800) (14) (1466) (11) (1626) (12
St.dev 23535 183 25455 108 20743 162 22996 179
Median 35385 275 27024 210 31378 245 33655 262

Avg  With 39576 308 42331 330 51011 398 48932 381

NCS (1670) (13) (2025) (15) (2081) (16) (2127)  (16)
St.dev 23623 184 28644 223 29433 229 30085 235
Median 33240 259 33707 262 42711 333 43455 339

Table 10: A multi ple poi nt crossover on R1. Mean, standard deviation and median for GAW wi thout non
coding segments (first 3 rows, 64 bits) and with non coding segments (last 3 rows, 128 bits). Number of
crossing sites 2,4,8, or randomly selected.

R2-Number of crossing sites

2 4 8 Random
Avg No 43831 341 43011 335 42091 328 44929 350

NCS (1815) (14) (1854) (14) (1640) (12) (1782)  (13)
St.dev 25678 200 26230 204 23204 181 25215 196
Median 37975 296 34766 271 36517 285 38434 300

Avg  With 42930 334 43381 338 57615 449 53093 414

NCS (2023) (15) (1810) (14) (2496) (19) (2348)  (18)
St.dev 28623 223 25609 200 35300 275 33218 259
Median 36801 287 36152 281 48259 376 45422 354

Table 11: A multi ple poi nt crossover on R2. Mean, standard deviation and median for GAW wi thout non
coding segments (first 3 rows, 64 bits) and with non coding segments (last 3 rows, 128 hits). Number of
crossing sites 1,2,4,8, or randomly selected.

R1-Number of crossing sites

1 Random
Avg No NCS 149862 1170 24106 187

(17349) (135) (3129) (24)
St dev 122680 958 22129 172
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Median 115767 904 19397 151

Avg 128- NCS 26751 208

(2647) (20
St dev 18723 146
Median 24918 194

Table 12: Impact o a multiple pant crossover on R1 with string length 1024 hts (first 3
rows). Addition of non cading segments (last 3 rows) doublesthe string length to 2048

bits.
R2-Number of crossing sites
1 16 128 Random

Avg No NCS 109892 858 31939 248 24814 193 23558 183
(11225) (87) (2526) (19) (1802) (10) (1802) (14)
St.dev 79379 620 17866 139 12746 76 12746 99
Median 94596 738 28162 219 22553 175 19655 153
Avg 128 - NCS 39176 305
(3738) (29)
St dev 26435 206
Median. 33098 258

Table 13: Impact of a multiple point crossover on R2 with string length 1024 bits (first 3 rows). Addition
of non coding segments (last 3 rows) doubles the string length to 2048 hits.

Table 13 shows similar results for R2. Large string r epresentation without non coding
segmentsisextramely eficient when comhined with a multiple point crossover. Addition of non

coding segments to a long string does not significantly hamper the reaults.

6. Concluding remarks

In thispaper we present the GAW version of a genetic algorithm for function optimization

(Novkovic and Sverko 1997,1998), where non trarslated portions of the DNA provide random
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control parameters for the algorithm and we apply it to Roya Road functions. The GAW variesthe
probabilitiesof mutation and crossover, rather than use fixed parametersor inves in search for
optimal parameter setting, which can be costly and uncertain. The GW part of the genetic makeup
enauresthat the performance of the GA does not depend entirely onthe programmer’ s choice of
initia control parameters (probabilities of crossover and mutation, in particular). We find the
performance of GAW farly reliade inmost cases, confirming the result of our previous research
where it proved robust with minima deceptive problem (Novkovic and Sverko, 1998). Due to
potentialy high mutation, GAW proves most efficient when combined with dlitist selection.

We d0 invedigae theimpact of non coding segments and variable string representaion on
our algorithm to condude that the former isnot exceptionally effective with Royal Road functions.
Variable string representation, on the other hand, has a positive effect on agorithm performance,
especidly if shorter strings are used. When long strings are created one should apply multiple point
crossover to improve the speed of search. Inclusion of non coding segments in variable string
representation has the same effect as with fixed representation, contrary to findings by Wu and
Lindsay, but this may be a result of our smplified vergon of variable string length.

It is clear that population diversity brought about by varying the control parameters
throughout the runsislikely to improve GA performance. But, more importantly, there is no need
to conduct search for successful parameter setting prior to GA gpplication. Combined with some
exploitation-inducing operator, such as elite selection, the GAW produces excellent results and can
be safely used for optimization problems. One can combine ot her helpful dterations to increase the
speed of search of the algorithm. Further research should illuminate most successful combinations,

as well as their shortcomings.
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