On a Simple Method for Detecting Synchronization Errors in Coded Messages

S. Konstantinidis, S. Perron, L. A. Wilcox-O’Hearn

s.konstantinidis@stmarys.ca, steven.perron@hotmail.com, a.ohearn@cs.stmarys.ca

Department of Mathematics and Computing Science
Saint Mary’s University
Halifax, NS, B3H 3C3, Canada

Abstract: The concepts of unique decodability (or decipherability) and decodability with finite delay have been studied in connection with coded languages (sets of coded messages) and, in some cases, in the presence of channel errors. On the other hand, the concepts of error-correction and detection have been studied primarily in connection with uniform-length (or fixed-length) codes. In this paper, we study the method of separators for detecting synchronization (and substitution) errors with finite delay, in coded languages of the form $(pC_s)^*$, where (p, s) is a pair of words (the separators) and C is a uniform-length code. We consider the cases where the words are scattered or occur in bursts, and we evaluate a pair (p, s) in terms of the redundancy $|p| + |s|$, the delay of decoding, and the frequency of the detectable errors. The burst error-detecting ability of (p, s) strongly depends on the period of the word sp.

Keywords: Error detection, synchronization error, decoding delay, period of word.

1 Introduction

The concepts of unique decodability (or decipherability) and decodability with finite delay – [1], [2] – have been studied in connection with coded languages (sets of coded messages) and in some cases – such as [3], [4] and [5] – in the presence of channel errors. On the other hand, the concept of error-correction has been studied primarily in connection with uniform-length (or fixed-length) codes – [6], [7], [8], [9]. In the paper [10] defining the Levenshtein distance, Levenshtein also briefly discusses the method of separators for correcting scattered substitution, insertion, and deletion errors (SID errors) in coded languages. For certain channels, this method is also considered in [9]. In this work, we use that idea to define a formal and simple method for obtaining coded languages of the form $(pC_s)^*$ – sets of words of the form $pv_1sv_2v_3 \cdots sv_n$, where each v_i is in C – that are SID-error-detecting with finite delay, where (p, s) is a pair of words (the separators) and C is a uniform-length code with a certain error-detecting capability. We use the term error-detector for a pair of words (p, s) with the above property. We consider

*Research partially supported by Grant R220259 of the Natural Sciences and Engineering Research Council of Canada
two cases: when the errors are scattered and when they occur in bursts. In either case, an error-detector (p, s) is evaluated in terms of the redundancy $|p| + |s|$, the delay of decoding, and the frequency of the detectable errors. In the case of burst SID errors, we provide a complete characterization of the error-detectors (p, s), which involves the period of the word sp [11], [12].

The paper is organized as follows. In Section 2, we give the basic terminology about words, codes, channels, and error-detection. In Section 3, we define SID error types and the particular class of channels that allow bursts of SID errors, and obtain a few technical results. In Section 4, we define the method of error-detector pairs, discuss the criteria for choosing good pairs, and provide a necessary condition on the structure of such pairs. In Section 5 we focus on channels with bursts of errors and identify all optimal error-detectors for such channels. In Section 6, we consider channels with scattered errors and obtain a set of error-detectors that work for any SID error type. Then, for certain error types, we identify error-detectors with smaller redundancy at the cost of restricting to messages over the binary alphabet. Finally, Section 7 contains a few concluding remarks.

2 Basic Notation and Background

In this section we describe the notation used in the paper and review some basic concepts about codes, channels and error-detection.

We assume an alphabet X containing at least the two symbols 0 and 1. A word (over X) is any string of symbols from X including the empty word λ. For a word w we denote by $|w|$ the length of w. For example, $|11001| = 5$. If $i = 1, \ldots, |w|$ then $w[i]$ denotes the i-th symbol of w and, for $j = i, \ldots, |w|$, the notation $w[i..j]$ represents the word $w[i]w[i+1] \cdots w[j]$. If $j < i$ we agree that $w[i..j] = \lambda$. For two words w_1 and w_2 the word $w_1 w_2$ is the concatenation of w_1 and w_2. For a word w and a nonnegative integer n, w^n denotes the word that consists of n concatenated copies of w. A word p is a prefix of w if $w = ps$, for some word s. In this case, s is a suffix of w. If $p \neq w$ then p is called a proper prefix of w. Similarly, the suffix s is proper if $s \neq w$. A word v is a factor of w if w can be written as xvy for some words x and y.

The set of all words is denoted by X^* and the set of all nonempty words by X^+. Every subset of X^* is called a language. If w, v are words and L is a language then uLv is the language $\{uwv \mid w \in L\}$. If F is a finite language then ℓ_F denotes the maximum length of the words in F. For two languages L and L', LL' denotes the language $\{ww' \mid w \in L, w' \in L'\}$. If n is a nonnegative integer, then L^n is the language $\{w_1 \cdots w_n \mid w_1, \ldots, w_n \in L\}$, with $L^0 = \{\lambda\}$. Moreover, $L^* = \bigcup_{i=0}^\infty L^i$.

A nonempty language C is called a uniquely decodable code or simply a code if, for all positive integers m and n and for all words $v_1, \ldots, v_m, u_1, \ldots, u_m \in C$, the equation $v_1v_2 \cdots v_n = u_1u_2 \cdots u_m$ implies $m = n$ and $u_i = v_i$ for every $i = 1, \ldots, n$. In this paper we assume that every code contains at least two words. If all the words of a language C have the same length then C is a code and is called a uniform code. A language of the form C^*, where C is a code, is called a coded language.

A channel (over X) is a binary relation $\gamma \subseteq X^* \times X^*$. For the elements of the channel γ we prefer to write $(z \leftarrow w)$ as opposed to (z, w). Then, $(z \leftarrow w) \in \gamma$ means that the message (word) z can be received from w through the channel γ. Note that, in general, the channel is noisy, meaning that, for $(z \leftarrow w) \in \gamma$, it is possible that $z \neq w$; that is, z is received from w with errors.
A language \(L \) is called \textit{error-detecting for} \(\gamma \), [13], if the following condition is satisfied for all words \(x \in L \cup \{\lambda\} \) and \(y \in X^* \):

\[
y \in L \cup \{\lambda\} \quad \text{and} \quad (y \leftarrow x) \in \gamma \implies y = x.
\]

The meaning of the above condition is as follows: If a word \(y \) is received and \(y \) is in \(L \) then \(y \) must be equal to the transmitted word \(x \); therefore \(y \) can be processed correctly. Moreover, a nonempty word of \(L \) cannot be received from the empty word, and the empty word cannot be received from a nonempty word of \(L \). The task of verifying that a language is error-detecting could require some effort even for apparently simple languages and channels. We invite the reader to show that, for \(K = \{1011, 1101\} \), the coded language \(K^* \) is error-detecting for the SID channel \(\delta_b(1, 4) \) that allows up to 1 deletion in any four consecutive symbols of a message — see the next sections for details on SID channels.

Although error-detection is a basic property of a communications language, the process of decoding a word of such a language might require unbounded memory. This is because the decoder needs to see the entire message in order to decide whether it is correct. For coded languages, however, it is possible to define the concept of error-detection with finite delay which ensures that, as long as a sufficient number of consecutive codewords is received, the process of decoding those codewords can begin before receiving the rest of the message. On the other hand, the decoder can signal an error if it receives a part of the message which is not the concatenation of a sufficient number of codewords. In this case, the decoding process gets suspended and what follows depends on the communication protocol — usually involving retransmission techniques. More formally, for a channel \(\gamma \) and a nonnegative integer \(d \), we say that the coded language \(C^* \) is \textit{error-detecting for} \(\gamma \) \textit{with delay} \(d \), if the following condition is satisfied for all \(v \in C, z \in C^d X^* \) and \(w \in C^* \):

\[
(vz \leftarrow w) \in \gamma \implies w = vu \quad \text{and} \quad (z \leftarrow u) \in \gamma \quad \text{for some} \quad u \in C^*.
\]

For any reasonable channel \(\gamma \) — an SID channel, for instance (see below) — if \(C^* \) satisfies the above condition then \(C^* \) is indeed error-detecting for \(\gamma \) [13]. Moreover, if \(C^* \) satisfies the above then the code \(C \) has finite decoding (deciphering) delay at most \(d \) (in the sense of [2]).

Example 1 Consider again the code \(K = \{1101, 1011\} \) and recall that the language \(K^* \) is error-detecting for \(\delta_b(1, 4) \). However, \(K^* \) is not error-detecting for that channel with any finite delay. Indeed, assume that \(K^* \) is error-detecting with delay \(d \), for some nonnegative integer \(d \), and consider the words \(w = (1101)^{d+2}, v = 1011, \) and \(z = (1011)^d 101 \). By deleting the first 1 of \(w \) we have that \((vz \leftarrow w) \) is in the channel which implies that \(w \) must start with the codeword \(v \); a contradiction.

Example 2 Consider the code \(C = \{001, 011\} \) and the channel \(\delta_b(1, 4) \). Then \(C^* \) is error-detecting for \(\delta_b(1, 4) \) with delay 0. Indeed, suppose \(v \in C, z \in X^*, \) and \(w \in C^* \) such that \((vz \leftarrow w) \) is in \(\delta_b(1, 4) \). Note that \(w \) must start with a codeword of the form 0b1 for some symbol \(b \in X \). Then, \(w = 0b1u \) for some \(u \in C^* \). Suppose that 0b1 results in some word \(z_1 \) and \(u \) results in some word \(z_2 \) such that \(vz = z_1 z_2 \). If there is a deletion in 0b1, then \(|v| = |z_1| + 1 \) and there can be no error on the symbol \(u[1] \) that follows 0b1. As \(u[1] = 0 \), we have that \(v = z_1 0 \), which contradicts the assumption \(v \in C \). Thus, there can be no deletion in 01b, which implies that \(v = z_1 = 0b1 \) and \(z_2 = z \) and, therefore, \((z \leftarrow u) \in \delta_b(1, 4) \). The code

\(3 \)
C allows for the correct decoding of messages in C* without delay as long as no error occurs. For example, suppose that the concatenation of codewords 001, 011, 001, 001,... is transmitted and a deletion occurs in the third codeword, 001, so that we receive 001011010... Then, the codewords 001 and 011 can be decoded correctly and an error is detected when 010 is observed.

3 Error Types and SID Channels

In this work we consider channels that permit combinations of three possible error types: substitution, insertion, deletion, denoted by the symbols σ, ι, δ, respectively. These symbols are called the basic error types. The set of error types is

$$\{\sigma, \iota, \delta, (\sigma \circ \iota), (\sigma \circ \delta), (\iota \circ \delta), (\sigma \circ \iota \circ \delta)\}.$$

The error types ι and δ are called synchronization error types. Each error type τ can be used to define a distance function D_τ. In particular, D_σ is the Hamming distance and, for $\tau \in \{\{\iota \circ \delta\}, (\sigma \circ \iota \circ \delta)\}$, D_τ is the Levenshtein distance for errors of type τ [14].

An error specification is an expression of the form $m \tau\sigma$ such that m is a nonnegative integer, τ is an error type, and σ is one of the symbols b and s indicating the terms burst and scattered, respectively. For an error specification $m \tau\sigma$ we shall assume that $m > 0$ unless stated otherwise. Intuitively, this expression specifies possible changes (errors) that one can make in a word to obtain another word. For example, the expression $3b\delta$ specifies a size 3 burst of deletion errors and the expression $4s(\iota \circ \delta)$ specifies 4 scattered insertion-and-deletion errors. More specifically, let x and y be two words. We say that y obtains from x using $m \tau\sigma$, if it is possible to transform x to y using exactly m (scattered) errors of type τ. We say that y obtains from x using at most $m \tau\sigma$, if y obtains from x using $k \tau\sigma$, for some integer k with $0 \leq k \leq m$. We say that y obtains from x using (at most) $m b\tau$, if there are words p, s, u, u' such that $|u| \leq m$, $x = pu$s, $y = pu'u'$, and u' obtains from u using at most $m \tau$. For example, the word 111111 obtains from 0111110 using $2s(\sigma \circ \delta)$, and the word 00101000 obtains from 00111000 using $2b(\sigma \circ \iota)$.

For an error type τ and two integers m and ℓ, with $1 \leq m < \ell$, the expression $\tau_{\ell}(m, \ell)$ denotes an SID channel with scattered errors. Informally, $(z \leftarrow w)$ is in the channel if it is possible to obtain z from w using errors of type τ such that no more than m errors can be used in any factor of length ℓ (or less) of w. We note that channels $\tau_{\ell}(m, \ell)$ with $\tau \in \{\iota, \delta, (\iota \circ \delta), (\sigma \circ \iota \circ \delta)\}$ are considered in [10] in the context of error-correcting codes for such channels. As an example, consider the channel $(\sigma \circ \delta)_{5}(2, 5)$ that permits a total of up to 2 substitutions and deletions in any factor of length 5 of the message. As 101000 obtains from $w = 0000000$ by deleting $w[7]$ and substituting $w[3]$ with 1 and $w[1]$ with 1, it follows that $(101000 \leftarrow w) \in (\sigma \circ \delta)_{5}(2, 5)$. On the other hand, to obtain 101001 from w using errors of type $(\sigma \circ \delta)$, one symbol of w must be deleted and three of its symbols must be substituted. But it is not possible to choose four such symbols, unless three of them occur in a factor of w of length 5. Hence, $(101001 \leftarrow w) \notin (\sigma \circ \delta)_{5}(2, 5)$.

Let m be a positive integer. A set B of m-burst errors is a set that consists of pairs $(u' \leftarrow u)$ such that $|u| \leq m$. Of particular interest are the SID sets of m-burst errors: For any error type τ, define $B_{m}(\tau) = \{(u' \leftarrow u) \mid |u| \leq m$ and u' obtains from u using at most $m \tau\}$. Given a set B of m-burst errors and an integer $\ell > m$, we define the channel $\beta_{\ell}[B]$ as follows:
\((z \leftarrow w) \in \beta_{\ell}[B]\) if and only if there is an integer \(n \geq 0\) and words \(x_0, \ldots, x_n, u_1, \ldots, u_n, u'_1, \ldots, u'_n\) such that

- \(w = x_0u_1x_1 \cdots u_nx_n\) and \(z = x_0u'_1x_1 \cdots u'_nx_n\);
- \(\|x_i\| \geq \ell - 1\);
- \((u'_i \leftarrow u_i)\) is in \(B\) and \(u'_i \neq u_i\), for all \(i = 1, \ldots, n\).

Informally, the above conditions mean that if \(z\) obtains from \(w\) through \(\beta_{\ell}[B]\) then, in \(w\), there are zero or more bursts of errors each of size \(m\) (or less) such that there is at most one burst (or part of a burst) in any \(\ell\) consecutive symbols of \(w\). In case \(B = B_m(\tau)\), we call the channel \(\beta_{\ell}[B_m(\tau)]\) an SID channel with bursts of errors and we shall use the notation \(\tau_b(m, \ell)\) instead of \(\beta_{\ell}[B_m(\tau)]\) which is consistent with the notation we use for SID channels with scattered errors. For example, let \(\gamma = (\sigma \circ \iota \circ \delta)_{b(2, 8)}\), let \(w = 0^{2110711081}\), and let \(z = 0^21007009010\). Then \((z \leftarrow w) \in \gamma\).

Next we obtain a few technical results concerning SID channels, which are needed in the sequel. The proofs can be found in the appendix.

Lemma 1 Let \(m \times \tau\) be an error specification, other than \(ms(\iota \circ \delta)\) and \(ms(\sigma \circ \iota \circ \delta)\), containing at least two different error types and let \(v\) and \(v'\) be two words of the same length. Then, \(v'\) obtains from \(v\) using at most \(m \times \tau\) if and only if \(v'\) obtains from \(v\) using at most \(m \times \sigma\).

Lemma 2 Let \(m \times \tau\) be an error specification and let \(p, v, v', s\) be words such that \(v\) and \(v'\) are of the same length. Then, \(pv's\) obtains from \(pves\) using at most \(m \times \tau\) if and only if \(v'\) obtains from \(v\) using at most \(m \times \tau\).

We continue with a few interesting observations about the sets \(B_m(\tau)\) that are used to define SID channels with bursts of errors. In particular, we establish relationships between such sets involving different error types. First we have the following utility results.

Lemma 3 Let \(m\) be a positive integer and let \(u\) and \(u'\) be two words such that \(|u| \leq m\) and \(u'\) obtains from \(u\) using at most \(ms(\sigma \circ \iota \circ \delta)\).

1. If \(|u'| \leq |u|\) then \(u'\) obtains from \(u\) using at most \(ms(\sigma \circ \delta)\).
2. If \(|u'| > |u|\) then \(u'\) obtains from \(u\) using at most \(max\{1, 2m - 2\} s(\sigma \circ \iota)\).
3. If the alphabet \(X\) is binary and \(|u'| = |u| + 1\) then \(u'\) obtains from \(u\) using at most \(ms(\sigma \circ \iota)\).

Proposition 1 For all integers \(m \geq 2\), \(B_m(\sigma \circ \iota \circ \delta) \subseteq B_m(\sigma \circ \delta) \cup B_{2m-2}(\sigma \circ \iota)\)

Proof. The claim follows easily from the previous Lemma. □

A natural question that arises is whether the above proposition can be strengthened by replacing \(B_{2m-2}(\sigma \circ \iota)\) with \(B_m(\sigma \circ \iota)\). It turns out that this is possible only when \(m < 5\).

Proposition 2 Consider the alphabet \(X\) and a positive integer \(m\). Then, \(B_m(\sigma \circ \iota \circ \delta) = B_m(\sigma \circ \delta) \cup B_m(\sigma \circ \iota)\) if and only if \(m \in \{1, 2\}\), or \(m \in \{3, 4\}\) and \(X = \{0, 1\}\).
Proof. Assume that $B_m(\sigma \circ \iota \circ \delta) = B_m(\sigma \circ \delta) \cup B_m(\sigma \circ \iota)$. First we show that $m \leq 4$. Indeed, suppose $m \geq 5$. Then there are positive integers q and r such that $m = 3q + r$ and $r \geq 2q$ (for example, $q = 1$ and $r = m - 3$). Consider the words $u = 0^{q+r}10^q$ and $u' = 1^{2q+r}0^{q+r}1^q$.

Then, $|u| = m$, $|u'| = |u| + q + r$, and u' obtains from u using $(2q + r)s\delta$ and $q\delta$; therefore, $(u' \leftarrow u) \in B_m(\sigma \circ \iota \circ \delta)$. Suppose now that u' obtains from u using $ks(\sigma \circ \iota)$, for some integer k with $q + r \leq k \leq m$. Then also u obtains from u' using $ks(\sigma \circ \delta)$ which implies that there is a word z such that z obtains from u' using $(q + r)s\delta$ and u obtains from z using $(k - q - r)s\sigma$—see [14] for instance. Then, z is of the form $1^{2q+r-i}0^{q+r-j}1^{q-t}$ for some nonnegative integers i, j, t with $t \leq q$ and $i + j + t = q + r$. By distinguishing two cases depending on whether $|1^q0^q| < |1^{q+r-j}1^{q-t}|$, it follows that $D_{\sigma}(z, u) > 2q$; therefore, $k > q + r + 2q = m$ which is a contradiction. Hence, $m \leq 4$. To complete the ‘only if’ part we need to show that, if $m \in \{3, 4\}$, then X must be $\{0, 1\}$. For the sake of contradiction suppose there is a symbol $a \in X \setminus \{0, 1\}$ and consider the words $u = 01a^{m-2}$ and $u' = 1a0^{m-1}$, with $m \in \{3, 4\}$. Then, u' obtains from u using $ms(\sigma \circ \iota \circ \delta)$ but u cannot obtain from u' using at most $ms(\sigma \circ \delta)$; therefore, u' cannot obtain from u using at most $ms(\sigma \circ \iota)$.

For the reverse inclusion, let $(u' \leftarrow u) \in B_m(\sigma \circ \iota \circ \delta)$ and consider the following cases.

Case 1: $m = 1$. One verifies by inspection that $(u' \leftarrow u) \in B_1(\sigma \circ \delta) \cup B_1(\sigma \circ \iota)$.

Case 2: $m = 2$. In this case, $2m - 2 = 2$ and it follows from Proposition 1 that $(u' \leftarrow u) \in B_2(\sigma \circ \delta) \cup B_2(\sigma \circ \iota)$.

Case 3: $m = 3$ and $X = \{0, 1\}$. We use Lemma 3. If $|u'| \leq |u|$, then $(u' \leftarrow u) \in B_3(\sigma \circ \iota)$. If $|u'| > |u|$ there are two subcases. If no deletions are used to obtain u' from u then clearly $(u' \leftarrow u) \in B_3(\sigma \circ \iota)$. If a deletion is used in obtaining u' from u then $|u'| = |u| + 1$ and, therefore, $(u' \leftarrow u) \in B_3(\sigma \circ \iota)$.

Case 4: $m = 4$ and $X = \{0, 1\}$. We use again Lemma 3. If $|u'| \leq |u|$, then $(u' \leftarrow u) \in B_4(\sigma \circ \iota)$. So assume $|u'| > |u|$. If $|u'| = |u| + 1$, then we are done as in Case 3. If $|u'| > |u| + 1$, then, as $|u| \leq m = 4$, it follows that $|u'| = |u| + 2$. If no deletion is used in u then we are done. If a deletion is used in u then it is the only one and there are also exactly three insertions to obtain u'. Hence, u' obtains from u using $3s\sigma$ and $1s\delta$. Then, using a long case distinction, one can verify that again $(u' \leftarrow u) \in B_4(\sigma \circ \iota)$. □

The above considerations motivate us to define a new type of SID channels with bursts of errors as follows: For two error types τ_1 and τ_2, let $(\tau_1 \lor \tau_2)_{\ast h}(m, \ell)$ be the channel $\beta_{\ell}[B_m(\tau_1) \cup B_m(\tau_2)]$. Then, every burst of errors in a transmitted message is of type $mb\tau_1$ or $mb\tau_2$. By Proposition 2, it follows that, for $X = \{0, 1\}$ and $m < 5$, the channel $((\sigma \circ \iota) \lor (\sigma \circ \delta))_{\ast h}(m, \ell)$ coincides with the channel $(\sigma \circ \iota \circ \delta)_{\ast h}(m, \ell)$.

4 A Coding Schema for the Detection of SID Errors

In [10], Levenshtein briefly discusses the method of separators for correcting certain scattered SID errors in messages, with finite delay. Loosely speaking, if a coded language K^* is error-correcting for a channel γ with finite delay then, for every received message w, it is possible to determine the first codeword of the original message by looking only at a prefix of w of bounded length. The method of separators involves choosing an appropriate pair of words (p, s) such that $(pC_s)^*$ is error-correcting for γ with finite delay, for any uniform code C that
is error-correcting for \(\gamma \). In this section we use the above idea to define a formal method for obtaining coded languages of the form \((pC_s)^*\) that are error-detecting with finite delay for SID channels with scattered errors or with bursts of errors.

Let \(m \) be a positive integer. The symbol \(\mathcal{U}^m \) denotes the class of all uniform codes of length greater than \(m \). For an error specification \(m \times \tau \), we write \(\mathcal{U}_{m \times \tau} \) for the class of all uniform codes \(C \) such that \(C \) is error-detecting for \(\tau_s(m, \ell_C) \). By the definition of error-detection and by Lemma 1, the following obtains.

Lemma 4 Let \(m \times \tau \) be an error specification.

- If \(\tau \in \{ \iota, \delta \} \) then \(\mathcal{U}_{m \times \tau} = \mathcal{U}^m \).
- If \(\tau \notin \{ \iota, \delta \} \) and \(\mathbf{x} = \mathbf{b} \) then \(\mathcal{U}_{m \times \tau} = \mathcal{U}_{m \times \sigma} \).
- If \(\tau \in \{ \sigma, (\sigma \circ \delta), (\sigma \circ \iota) \} \) and \(\mathbf{x} = \mathbf{s} \) then \(\mathcal{U}_{m \times \tau} = \mathcal{U}_{m \times \sigma} \).

It follows also that \(\mathcal{U}_{m_{s(\sigma \circ \delta)}} \subseteq \mathcal{U}_{m_{s \sigma}} \subseteq \mathcal{U}_{m_{s \sigma}} \subseteq \mathcal{U}^m \). Codes in the classes \(\mathcal{U}_{m_{s \sigma}} \) and \(\mathcal{U}_{m_{s \sigma}} \) have been studied extensively – see [6], for instance. On the other hand, at a first glance, it appears that codes in the classes \(\mathcal{U}_{m_{s(\sigma \circ \delta)}} \) and \(\mathcal{U}_{m_{s(\sigma \circ \delta)}} \) have not been considered in the past. By the results of [10], however, the following obtains.

Remark 1 Let \(\tau \in \{ \iota \circ \delta, (\sigma \circ \iota \circ \delta) \} \) and let \(m \) be a positive integer. A uniform code \(C \) is error-correcting for \(\tau_s(m, \ell_C) \) if and only if it is error-detecting for \(\tau_s(2m, \ell_C) \).

The above follows when we note that (i) a code \(C \) is error-correcting for \(\tau_s(m, \ell_C) \) if and only if \(D_s(C) > 2m \), and (ii) a code \(C \) is error-detecting for \(\tau_s(m, \ell_C) \) if and only if \(D_s(C) > m \).

We also note that, to our knowledge, only very few general construction methods exist for codes that are error-correcting for \((\iota \circ \delta)_{s}(m, \ell_C) \) and only when \(m = 1 \) – see for instance [8] and [15].

Definition 1 Let \(m \times \tau \) be an error specification. A pair of words \((p, s)\) is called a uniform error-detector for \(m \times \tau \) (or simply an \(m \times \tau \)-detector) if there are two nonnegative integers \(d \) and \(t \) such that, for every code \(C \) in \(\mathcal{U}_{m \times \tau} \), the coded language \((pC_s)^*\) is error-detecting for \(\tau_s(m, \ell_C + |ps| + t) \) with delay \(d \). Then, we say that \((p, s)\) has redundancy \(|p| + |s|\), delay \(d \), and offset \(t \).

For a given error specification \(m \times \tau \), the design of a uniform \(m \times \tau \)-detector should consider the following criteria.

1. Low redundancy of the encoding \(C \mapsto pC_s \): This is achieved by choosing a pair \((p, s)\) with small redundancy \(|p| + |s|\).
2. High frequency of the errors detectable by \((pC_s)^*\): This is achieved by choosing a pair \((p, s)\) with small offset \(t \).
3. Small amount of memory for decoding words in \((pC_s)^*\): This is achieved by choosing a pair \((p, s)\) with small delay \(d \).
Our primary criterion will be the optimization of the redundancy of a uniform error-detector \((p, s)\). With this constraint, we shall attempt to define error-detectors with minimal delay and minimal offset.

The first result gives a necessary condition on the structure of uniform error-detectors that involves the notion of period of a word. A positive integer \(k\) is called a period of a nonempty word \(w\), if \(w[i] = w[k+i]\) for every \(i \in \{1, \ldots, |w| - k\}\). The smallest \(k\) satisfying this condition is called the period of the word \(w\) and we denote it by \(\text{per}(w)\). It should be clear that \(1 \leq \text{per}(w) \leq |w|\). This concept is important in various domains including pattern matching algorithms and game theory, [16], and word combinatorics [11].

Lemma 5 1. For any nonempty word \(w\) there are words \(u, x, y\) such that \(w = ux = yu\) and \(|x| = |y| = \text{per}(w)\).

2. For every nonempty words \(u_1, x_1, u_2, x_2\) with \(|u_1| = |u_2|\) and \(u_1x_1 = x_2u_2\), if \(\text{per}(u_1x_1) > |x_1|\) then \(u_1 \neq u_2\).

Proof. The statements follow easily if we note that \(k\) is a period of \(w\) if and only if, either \(k \geq |w|\), or \(w = xu = yu\) for some \(u \in X^+\) and \(x, y \in X^k\). \(\Box\)

Proposition 3 Let \(m\tau\) be an error specification not in \(\{m\sigma, \sigma \sigma, \sigma \sigma \sigma\}\). If a pair of words \((p, s)\) is a uniform error-detector for \(m\tau\) then \(\text{per}(sp) > m\) and, therefore, the redundancy of \((p, s)\) is greater than \(m\).

Proof. Assume \((p, s)\) is a uniform \(m\tau\)-detector and consider first the case where \(|sp| > 0\). Then \(sp = ux = yu\) for some words \(u, x, y\) with \(|x| = |y| = \text{per}(sp)\). Suppose \(\text{per}(sp) \leq m\).

We shall obtain a contradiction by constructing a uniform code \(C\) that is error-detecting for \(\sigma_\tau(m, \ell_C)\) but the coded language \((pCs)^*\) is not error-detecting for \(\tau_\tau(m, \ell_C + |ps| + t)\) with finite delay, for any \(x \in \{b, s\}\) and for any nonnegative integer \(t\). Let \(v = (1|\ell|0|\ell|)^{1+[m/2|\ell|]}\).

Then, the words \(xv\) and \(vy\) are of the same length and they differ in at least \(m + 1\) positions; therefore, the code \(C = \{xv, vy\}\) is error-detecting for \(\sigma_\tau(m, \ell_C)\). Now assume \((pCs)^*\) is error-detecting for \(\tau_\tau(m, \ell_C + |ps| + t)\) with delay \(\delta\), for some nonnegative integers \(t\) and \(\delta\). Let \(w\) be the word \((pxvs)^{d+3} = pxvuxv(yuxv)^{d+1}s\) if \(\tau\) contains \(\delta\), or \((pxv)^{d+2}\) otherwise. Consider the word

\[z = \begin{cases}
pxvuxv(yuxv)^{d+1}s, & \text{if } \tau \text{ contains } \delta, \\
pxvys(pxv)^{d+1}, & \text{otherwise}.
\end{cases}\]

In the first case, \(z\) obtains from \(w\) by deleting the word \(y\). In the second case, \(z\) obtains from \(w\) by inserting the word \(x\). Moreover, as the word \(z\) can be written as

\[\begin{cases}
(pxv)^d(pxv)(pxvs)^{d+1}u, & \text{if } \tau \text{ contains } \delta, \\
pxvs(pxv)^dpxvs, & \text{otherwise},
\end{cases}\]

the assumption about \((pCs)^*\) implies that \(pxvs = pxv\) as well as \(pxv = xv\), a contradiction.

Finally suppose \(|sp| = 0\). Define the code \(C = \{0^m1^m, 1^m0^m\}\) which is error-detecting for \(\sigma_\tau(m, \ell_C)\). Then, depending on \(\tau\), one can choose words \(y\) and \(u\) such that

\[(0^m1^m)^d_y \leftarrow (1^m0^m)^d u \in \tau_\tau(m, \ell_C),\]

for any nonnegative integer \(d\). Hence, \(C^*\) is not error-detecting for \(\tau_\tau(m, \ell_C + t)\) with finite delay, for any offset \(t\). \(\Box\)
5 The Case of Burst Errors

In this section we provide a detailed analysis on the structure of uniform error-detectors for SID channels with bursts of errors. The analysis allows us to identify the error-detectors that are optimal in terms of redundancy, delay, and offset.

Proposition 4 Let \(mb \sigma \) be a burst-error specification and let \((p,s)\) be a pair of words with \(|sp| > 0\). If \(\text{per}(sp) > m \) then \((p,s)\) is a uniform error-detector for \(mb \sigma \) with offset 1 and delay 2. Moreover, if \(p \) is empty then \((p,s)\) has delay 1.

Proof. Suppose \(\text{per}(sp) > m \) and let \(C \) be any code in \(U_{mb \sigma} \). We show that \((pC)s^*\) is error-detecting for \(\gamma = \tau_b(m, \ell_C + |sp| + 1) \) with delay \(d \in \{1,2\} \), where \(d = 1 \) if \(|p| = 0 \). For this, assume \((p_0s \cdots p_dsy \leftarrow p_0spw_1su) \in \gamma \), where \(w_0, w_1, \ldots, w_d \in C \), \(y \in X^* \), and \(u \in (pC)s^* \). We need to show that \(v_0 = w_0 \) and \((p_1s \cdots p_dsy \leftarrow w_1su) \in \gamma \). If there are no errors in \(pw_0su \) then we are done. So assume there is a burst \((x' - x) \in B_m(\tau)\), with \(x \neq x' \), that affects \(pw_0su \); that is, there are words \(z_1, z_2, z_3, z_3' \) with \(|z_1| < |pw_0s|\) and \(|z_2| \geq \ell_C + |sp|\) such that \(pw_0spw_1su = z_1x_2z_3z_3' \) and \(p_1s \cdots p_dsy = z_1x'z_2z'_3 \) and \((z_3' \leftarrow z_3) \in \gamma \). Obviously this is the only burst that affects \(pw_0su \). Let \(q = |x'| - |x| \). Then, \(0 \leq |q| \leq m \). We distinguish six cases about the sign of \(q \) and the position of the burst \((x' - x)\) in \(pw_0spw_1su \).

Case 1: \(q = 0 \) and the burst occurs before the factor \(w_1 \) of \(pw_0spw_1su \); that is, \(|z_1x| > |pw_0su| \) and \(pw_0sp \) results in \(pw_0su \), which implies that \(v_0 = w_0 \), as \(pCsp \) is in \(U_{mb \sigma} \), and \((v_1s \cdots v_dsy \leftarrow w_1su) \in \gamma \). Hence, also \((p_1s \cdots p_dsy \leftarrow w_1su) \in \gamma \), as required.

Case 2: \(q = 0 \) and the burst affects the factor \(w_1 \) of \(pw_0spw_1su \); that is, \(|z_1x| > |pw_0su| \). Moreover, as \(|x| \leq m \) and \(|z_1| < |pw_0s| \) and \(|sp| > m \), we have that \(x \) is of the form \(s_2px_1 \) and \(x' \) is of the form \(s_2py_1 \), for some prefix \(x_1 \) of \(w_1 \) and for some prefix \(y_1 \) of \(v_1 \) and for some suffix \(s_2 \) of \(s \). Now as there are no errors in \(z_2 \), it follows that the codewords \(v_1 \) and \(w_1 \) differ in at most \(|x_1| \) symbols. Hence, \(w_1 = v_1 \) which implies that \(x_1 = y_1 \). This, however, contradicts the fact that \(x \neq x' \).

In the next four cases we assume \(|q| \neq 0 \). Then, \(sp = x_1u_1 = u_2x_2 \) for some words \(x_1, x_2, u_1, u_2 \) such that \(|x_1| = |x_2| = |q| \) and \(|u_1| = |u_2| - |q| \). As \(\text{per}(sp) > |q| \), it follows that \(u_1 \neq u_2 \). Let \(k \) be the largest position of \(u_1 \) and \(u_2 \) such that \(u_1[k] \neq u_2[k] \).

Case 3: \(q < 0 \) and the burst occurs before the position \(|q| + k\) of the factor \(sp = x_1u_1 \) of \(pw_0spw_1su \); that is, \(|z_1x| = |pw_0x_1u_1[1..k - 1]| \). In this case, \(pw_0x_1u_1[1..k - 1] \) results in the prefix \(pw_0u_2[1..k - 1] \) of \(pw_0s \cdots pw_dsy \) and the next symbol \(u_1[k] \) results in \(u_2[k] \) with no errors. This contradicts the fact that \(u_1[k] \neq u_2[k] \).

Case 4: \(q < 0 \) and the burst contains the position \(|q| + k\) of the factor \(sp = x_1u_1 \) of \(pw_0spw_1su \); that is, \(|z_1x| \geq |pw_0x_1u_1[1..k]| \). In this case, there can be no error in the prefix \(x_1u_1[1..k] \) of the second \(sp \) in \(pw_0spw_1sp \). Then, \(pw_0spw_1x_1 \) results in \(pw_0spv_1 \) and the next \(k \) symbols \(u_1[1..k] \) result in the prefix \(u_2[1..k] \) of \(sp \) with no errors. This contradicts the fact that \(u_1[k] \neq u_2[k] \).

Case 5: \(q > 0 \) and the burst occurs before the position \(k \) of \(sp = u_2x_2 \); that is, \(|z_1x| \leq |pw_0u_2[1..k - 1]| \). In this case, \(pw_0u_2[1..k - 1] \) results in the prefix \(pw_0x_1u_1[1..k - 1] \) of \(pw_0s \cdots pw_dsy \) and the next symbol \(u_2[k] \) results in \(u_1[k] \) with no errors. This contradicts the fact that \(u_1[k] \neq u_2[k] \).

Case 6: \(q > 0 \) and the burst contains the position \(k \) of the factor \(sp = u_2x_2 \) of \(pw_0spw_1su \); that is, \(|z_1x| \geq |pw_0u_2[1..k]| \). In this case, there can be no error in the prefix \(u_2[1..k] \) of the
second sp in $pu_{0}spu_{1}sp$. Then, $pu_{0}spu_{1}$ results in $pu_{0}spu_{1}u_{1}$ and the next k symbols $u_{2}[1..k]$ result in the suffix $u_{1}[1..k]$ of sp with no errors. This contradicts the fact that $u_{1}[k] \neq u_{2}[k]$. □

For burst-error specifications, Propositions 3 and 4 provide a complete characterization of the structure of their uniform error-detectors. Moreover, it is possible to characterize precisely all such error-detectors (p, s) having optimal redundancy. Indeed, Proposition 3 implies that $m + 1$ is the smallest value of $|p| + |s|$ and this value is possible when $\text{per}(sp) \geq m + 1$. But, as $\text{per}(sp) \leq |sp|$, it follows that (p, s) is an error-detector with optimal redundancy when $|sp| = \text{per}(sp)$. This condition is equivalent to the constraint that the word sp is unbordered [11] (or self-uncorrelated [17]): no proper and nonempty prefix of sp is also a suffix of sp. It turns out that there are many unbordered words even for binary alphabets: about 27% of all binary words are unbordered, and this quantity increases for larger alphabets [16]. For example, the words 0^71 and 0^210101 are unbordered and, therefore, the pairs $(1, 0^7)$ and $(1^20101, 0^2)$ are uniform $7b\tau$-detectors with delay 1 and offset 1, for every error type τ. We summarize the above remarks as follows.

Corollary 1 Let $mb\tau$ be a burst-error specification. A pair of words (p, s) is a uniform $mb\tau$-detector with optimal redundancy if and only if $|sp| = m + 1$ and the word sp is unbordered.

The next result concerns the question of whether an error-detector with optimal redundancy can have offset 0.

Proposition 5 Let $mb\tau$ be a burst-error specification containing at least two different basic error types and such that $mb\tau \neq 1b(\land \delta)$. If (p, s) is an error-detector for $mb\tau$ with redundancy $m + 1$ then (p, s) has offset greater than zero.

Proof. The assumptions about $mb\tau$ imply that τ is in $\{(\sigma \land \delta), (\sigma \land \delta), (\land \delta), (\sigma \land \sigma \land \delta)\}$. Assume that (p, s) is an $mb\tau$-detector with redundancy $m + 1$, offset 0 and delay d, for some nonnegative integer d. We shall obtain a contradiction by constructing a code $C \in \mathcal{U}_{mb\tau}$ such that $(pCs)^{*}$ is not error-detecting for $\tau_{b}(m, \ell_{C} + |ps|)$ with delay d. First, write the word sp in the form axb, for some $a, b \in X$ and $x \in X^{*}$, and let $C = \{xyb, yax\}$, where $y = 1^{m}0^{m}1^{m}$. Then, C is error-detecting for $\tau_{b}(m, \ell_{C})$ and, therefore, $C \in \mathcal{U}_{mb\tau}$. Now let w be the word $(pxbys)^{d+3}$ if τ contains δ, or $(pyaxs)^{d+3}$ otherwise; then $w = pxby(axb)yb(xby(axb))^{d}xbys$ or $w = pyax(axb)yax(axb)(yax(axb))^{d}yaxs$. Consider also the word

$$z = \begin{cases}
pxby(axb)y(axb)(xby(axa))^{d}xbys, & \text{if } \tau \text{ contains } \delta,
pyax(axb)(ybx)(yaz(bxb))^{d}yaxs, & \text{otherwise.}
\end{cases}$$

Then, $z = (pxbys)(pyaxs)(pyax)_{s}^{d}pys$ or $z = (pyaxs)(pxbys)(pybys)^{d}pxbyaxs$. If τ contains δ, then z obtains from w by deleting the suffix xb in the prefix $pxbysaxb$ of w, and then by transforming $d + 1$ b's in w to a's using the errors permitted. If τ does not contain δ, then z obtains from w by inserting the word xb at the end of the prefix $pyaxa$ of w, and then by transforming $d + 1$ a's in w to b's using the errors permitted. In either case, it follows that $(z \leftarrow w) \in \tau_{b}(m, \ell_{C} + m + 1)$ which implies that $pyaxs = pxbys$: a contradiction. □

Consider an error type τ that permits insertion errors. In [13] it is shown that there exists no coded language that is error-detecting with delay 0 for any SID channel of the form
The argument used for proving this statement can also be repeated for channels of the form \(\tau_\ell(m, \ell) \). On the other hand, for an error type \(\tau \in \{ \tau, (\sigma \circ \tau) \} \) it is possible to define \(\text{mb}_\tau \)-detectors with delay 0. In fact, we obtain a precise characterization of all those error-detectors which shows that the process of choosing a pair \((p, s)\) from a word \(w = sp\) is important when it comes to the delay of \((p, s)\) as an error-detector. This observation follows also from Proposition 4, where an empty \(p \) ensures that \((p, s)\) has delay 1.

Lemma 6 Let \(\text{mb}_\tau \) be a burst-error specification and let \(\ell \) be an integer greater than \(m \). For every \((z \leftarrow w)\) in the channel \(\tau_\ell(m, \ell) \) one has that

\[
|w| - |z| \leq m|w|/(|\ell - 1 + m|) + \min\{m, |w|\%(\ell - 1 + m)\},
\]

where \(|w|\%(\ell - 1 + m) \) is the remainder of the integer division \(|w|/|\ell - 1 + m| \).

Proposition 6 Let \(\tau \) be an error type in \(\{ \tau, (\sigma \circ \tau) \} \). A pair of words \((p, s)\) is a uniform error-detector for \(\text{mb}_\tau \) with delay 0 and offset 1 if and only if \(s \in X^*a \) and \(p \in (X \setminus \{ a \})^m X^* \) for some symbol \(a \in X \).

Proof. First we consider the ‘if’ part. Assume that \(s \in X^*a \) and \(p \in (X \setminus \{ a \})^m X^* \), and consider a code \(C \) in \(\mathcal{U}_{\text{mb}_\tau} \) and the channel \(\gamma = \tau(m, \ell + |sp| + 1) \). We show that \((pCs)^*\) is error-detecting for \(\gamma \) with delay 0. For this suppose \((pw_0sy \leftarrow pw_0su) \in \gamma\), where \(w_0, u_0 \in C \), \(y \in X^* \), and \((pCs)^*\) results in a prefix \(z_0 \) of \(pw_0sy \) and \(u \) results in the word \(z \) with \(z_0z = pw_0sy \); therefore, \((z \leftarrow u) \in \gamma \). If \(|z_0| = |pw_0s| \) then \(z = y \) and \(z_0 = pw_0s \) which implies that \((y \leftarrow u)\) is in \(\gamma \) and that \(pw_0s = pw_0s \) as \(C \) is in \(\mathcal{U}_{\text{mb}_\tau} \). In this case, we are done. Now suppose that \(|z_0| < |pw_0s| \). Then a burst of errors affects \(pw_0s \) and there are \(d = |pw_0s| - |z_0| \) deletions in \(pw_0s \). Moreover, \(u = pw_1su' \) for some \(w_1 \) in \(C \) and \(u' \in (pCs)^* \). Now \(pw_0s \) can be written as \(z_0z_1 \) such that \(|z_1| = d \) and \(z_1 \) obtains from some prefix of \(pw_1s \). In particular, \(z_1[d] \), the last symbol of \(z_1 \), obtains from some symbol \(p[i] \in X \setminus \{ a \} \) of \(p \), for some \(i \) in \(\{ 1, \ldots, m \} \). Moreover, it follows that \(z_1 \) obtains from \(p[1..i] \) through \(\gamma \). If \(\tau = \delta \), then \(z_1[d] = p[i] \) which is impossible and the ‘if’ part is complete for the case where \(\tau = \delta \). So suppose that \(\tau = (\sigma \circ \delta) \) and that \(p[i] \) is substituted with \(a = z_1[d] \).

First we argue that there is only one burst of errors in \(pw_0sp[1..i] \). Indeed, if there are two bursts then there will be at least \(\ell_C + |sp| \) symbols of \(pw_0sp[1..i] \) between the bursts and, therefore, the first burst would occur in some prefix \(p[1..i-1] \) of \(p \), where \(i > i_1 \geq d \). Moreover, the second burst would occur after the prefix \(p[1..i-1] \) of \(p[1..i] \). But then the last symbol \(a \) of \(pw_0s \) would be equal to the symbol \(p[d] \) of \(p[1..i] \) which is impossible. Hence, only one burst of \((\sigma \circ \delta) \) errors occurs in \(pw_0sp[1..i] \) such that the last symbol of \(p[1..i] \) is substituted with \(a = z_1[d] \). The beginning of the burst will be at or after the position \(|p| + \ell_C - m + 2 \) of \(pw_0s \) which implies that \(u_0 \) differs from \(u_0 \) in at most \(m - 2 \) consecutive symbols. Hence, as \(C \) is in \(\mathcal{U}_{\text{mb}_\tau} \), it follows that \(p = pw_0s \). It remains to show that \((y \leftarrow u) \in \gamma \).

Consider in more detail the first burst, say \((u'_1z_1u_2 \leftarrow u_ip[1..i]u_2)\), that occurs in \(pw_0spw_1su' \) to get \(z_0z_1 \), such that \(pw_0s = xu_1 \) for some word \(x, z_0 = xu'_1, p[i + 1..i]su' = u_2x_2 \) for some word \(x_2 \), and \(y \in u'_2X^* \). Then, also \((y \leftarrow u_2x_2) \in \gamma \). Then, also \((y \leftarrow p[1..i]u_2x_2) \) is in \(\gamma \) by deleting the prefix \(p[1..i] \) of \(p[1..i]u_2x_2 \) and keeping the rest of the error bursts that existed in \(u_2x_2 \). Note that this is possible since the \(d \) deletions required for that already existed in the part \((u'_1z_1u'_2 \leftarrow u_ip[1..i]u_2)\) of the burst \((u'_1z_1u'_2 \leftarrow u_ip[1..i]u_2)\) — recall the \(d \) deletions in \(u_1 \) and
the $|p[i, i]| - |z_1|$ deletions in $p[1..i]$ to obtain z_1. Hence, the ‘if’ part is complete when we recall that $u = p[1..i]u_2x_2$.

We turn now to the ‘only if’ part. Assume that (p, s) is a uniform error-detector for m_{τ} with delay 0 and offset 1. Then, $|sp| > m$ by Proposition 3. Suppose it is not the case that $s \in X^*a$ and $p \in (X \setminus \{a\})^mX^*$. We distinguish three cases. In the first case, $s = \lambda$. Let $y = p[1..m]$ and let $C = \{yz, zy\}$, where z is any word of length m differing from y in all positions; then C is in $U_{m_{\tau}}$. Now it is the case that $(pzy)\tau[p + 1].|yz \leftarrow pzy$.pyz)$ is in $T_b(m, \ell_C + |sp| + 1)$ by deleting the word y in pzy, which implies that $pyz = p\tau y$; a contradiction.

In the second case, $s = s_1a$, for some word s_1, and $|p| \geq m$, but p is of the form p_1ap_2 with $|p_1| < m$. Let C be any code in $U_{m_{\tau}}$ with $\ell_C = 2m|sp| - |sp| + m + |p_1|$, and let v be any word in C. The word $(pv_2v_1s)^2|sp|^{+3}$ is in $(pC^*)^*$ and can be written as $(pv_2v_1s)(p_1ap_2v_3s)p_1z$, where $z = ap_2v_3s(pv_2s)^2|sp|$. Then, z can be written as $z_1 \cdots z_2|sp|y$ such that $|y| = m$ and each z_i is of length $m + \ell_C + |sp|$. Now consider the word $(pv_2v_1s)p_2v_3sp_1z'$ such that $(pv_2v_1s)p_2v_3sp_1z'$ obtains from $(pv_1s_1a)(pv_1a)p_2v_3sp_1$ by deleting the word ap_1 and z' obtains from $z_1 \cdots z_2|sp|y$ by deleting the suffix y and the prefix of length m of every z_i. Then, $|z_1 - |z'|| = (2|sp| + 1)m$. Moreover, it follows that $(pv_1a)p_2v_3sp_1z' \leftarrow (pv_1a)(p_1a)p_2v_3sp_1$ is in the channel $T_b(m, \ell_C + |sp| + 1)$ and the assumption about (p, s) implies that $(p_2v_3sp_1z' \leftarrow p_1a)p_2v_3sp_1$ is also in the channel. Let $w = p_1a)p_2v_3sp_1z$. By Lemma 6, $|w| - |p_2v_3sp_1z'| \leq m(|w|/\ell_C + |sp| + m) + \min\{m, |w|/\ell_C + |sp| + m\}$ which gives $1 + |p_1| + |z_1 - z'|| \leq m(2|sp| + 1) + |p_1|$. This is impossible, however, when we recall that $|z_1 - |z'|| = m(2|sp| + 1)$.

In the third case, $s = s_1\lambda$, for some word s_1, and $|p| < m$. This case can be eliminated by considering the code $C = \{a^{\ell_C}, a^{\ell_C}-(m+1)b^{m+1}\} \subseteq U_{m_{\tau}}$, with $\ell_C = 2|s|m + m - |s|$ and $b \in X \setminus \{a\}$, and the word $(pa^{\ell_C}s)^2|sp|^{+3}$ and then continuing as in the second case. We leave the details to the reader. □

6 The Case of Scattered Errors

Our first result gives a set of error-detectors for m_{τ}, for any error type τ. Then, we show that, for $\tau \in \{\iota, \delta, (\sigma \circ \delta), (\sigma \circ \iota)\}$, the result can be improved in terms of the redundancy of the error-detectors.

Proposition 7 Let m_{τ} be a scattered-error specification and let (p, s) be a pair of words. If $p \in u^mX^*$, for some word u with per$(u) > m$, then (p, s) is a uniform error-detector for m_{τ} with delay 1 and offset $m|u|$.

Proof. Assume $p = u^mX$ for some word x and consider a code C in $U_{m_{\tau}}$. Let $\gamma = T_b(m, \ell_C + |sp| + m|u|)$ and take any $(pv_1su_{i}m_{x}uv_2s_{y}y_{2} \leftarrow pv_1su_{i}m_{x}uv_2s_{y}y_{2})$ in γ, where $v_1, v_2, u_1, u_2 \in C$ and $y \in X^*$ and $u \in (pC^*)^*$. We need to show that $v_1 = u_1$ and $(u^m_{x}uv_2s_{y}y_{2} \leftarrow u^m_{x}uv_2s_{y}y_{2}) \in \gamma$. We agree to write u_i for the i-th factor u of u^m, where $i \in \{1, \ldots, m\}$. Suppose that pv_1s results in some word z_1, each u_i results in some word u_i', and xuv_2s results in some word z_2 such that $z_1u_1' \cdots u_m'z_2 = pv_1su_{i}m_{x}uv_2s_{y}y_{2}$. If $|z_1| = |pv_1s|$ then $z_1 = pv_1s$ and we are done. So assume that $d \geq 1$, where $d = ||z_1| - |pv_1s||$; then at least d errors occur in pv_1s and, therefore, $d \leq m$. Moreover, there is $k \in \{1, \ldots, m\}$ such that there is no error in u_k, namely $u_k' = u_k$ and there are at most $m - d$ errors in $u_1 \cdots u_{k-1}$. Then, $z_1u_1' \cdots u_{k-1}'u_k'z_2$ obtains from $pv_1su_{i}m_{x}uv_2s_{y}y_{2}$.
and
\[|pu_1u_2 \cdots u_{k-1}u_k| - m \leq |z_1u'_1 \cdots u'_{k-1}u'_k| \leq |pu_1u_2 \cdots u_{k-1}u_k| + m. \]

At the same time \(z_1u'_1 \cdots u'_{k-1}u'_k \) is a prefix of \(pu_1u_2 \cdots u_{k+2}u_{k+3}u_{k+4} \), which implies that \(u'_k \) is a factor of \(pu_1u_2 \cdots u_{k+2}u_{k+3}u_{k+4} \) such that, either \(u'_k \) begins in the factor \(u_k \) of the word \(pu_1u_2 \cdots u_{k+2}u_{k+3}u_{k+4} \) (when \(|z_1u'_1 \cdots u'_{k-1}u'_k| \geq |pu_1u_2 \cdots u_{k-1}u_k| \)), or \(u'_k \) ends in the factor \(u_k \) of the word \(pu_1u_2 \cdots u_{k+2}u_{k+3}u_{k+4} \) (when \(|z_1u'_1 \cdots u'_{k-1}u'_k| \leq |pu_1u_2 \cdots u_{k-1}u_k| \)). In either case, as \(u'_k = u_k = u \) and the period of \(u \) is greater than \(m \), it follows that the factor \(u'_k \) coincides with the factor \(u_k \); therefore, \(|z_1u'_1 \cdots u'_{k-1}u'_k| = |pu_1u_2 \cdots u_{k-1}u_k| \). This implies that \(u_{k+1} \cdots u_{m+1} \in \gamma \) and \((pu_1u_2 \cdots u_k = pu_1u_2 \cdots u_k) \in \gamma \). The former relation gives \(u_{m+1}u_{m+2} = \gamma \) and the latter one implies that \(pu_1u_2 \cdots u_k \) obtains from \(pu_1u_2 \cdots u_k \) using at most \(m \). Moreover, Lemma 2 implies that \(v_1 \) obtains from \(w_1 \) using at most \(m \) and, therefore, \(v_1 = w_1 \). □

The above statement allows us to define various error-detectors for any scattered-error specification. The most efficient error-detectors based on this method are those of the form \((u^m, \lambda) \), where \(u \) is an unbordered word of length \(m + 1 \).

In [13] it is shown that the coded language \((0^m X^{t-2m-1})^* \) is error-detecting for \(\delta_t(m, \ell) \) with delay 0, and for \(t = (m, \ell) \) with delay 1. With the terminology of the present paper it follows that the pair \((0^m, 1) \) is a uniform \(m \delta \) detector with delay 0 and offset \(m \), and a uniform \(m \delta \) detector with delay 1 and offset \(m \). Moreover, by Proposition 3, \((0^m, 1) \) is an error-detector with optimal redundancy. Unlike the case of burst error-detectors where the offset can be independent of \(m \), the offset \(m \) of \((0^m, 1) \) cannot be improved.

Proposition 8 If the pair \((0^m, 1) \) is a uniform \(m \delta \) detector with delay 0 and offset \(t \), then \(t \geq m \).

Proof. For the sake of contradiction assume that the offset \(t < m \) and consider the code \(C = \{w_1, w_2, w_3\} \), where \(w_1 = 0^m(10)^k, w_2 = 0^{m-1}(10)^k 1, w_3 = 1^{2k+m}, k = 1 + [m/2] \). Then, \(C \in \mathcal{U}^m \). Now consider the words \(0^m w_1 10^{m+1} w_3 \) and \(0^m w_1 1 w_3 1 \). Then, \((0^m w_1 10^{m+1} w_3 1) \in \delta_t(m, \ell) + m + 1 + t \). Moreover, as \(0^m w_1 1 w_3 1 \in 0^m w_2 1 X^* \) and \((0^m, 1) \) has delay 0, it follows that \(w_2 = w_1 \) which is impossible. □

Before we present uniform error-detectors for \((\sigma \circ \iota) \) and \((\sigma \circ \delta) \), we establish certain notation and utility results some of which are of interest in their own right.

Every nonempty word \(w \) can be written in the form \(a_1^n a_2^n \cdots a_r^n \), where \(r, n_1, \ldots, n_r \) are positive integers, \(a_1, \ldots, a_r \in X \), and \(a_i \neq a_{i+1} \) for all \(i \in \{1, \ldots, r - 1\} \). In this case, each factor \(a_i^n \) of \(w \) is called a run. We use the symbol \(w(\hat{i}) \) to denote the \(i \)-th run of \(w \). Now let \(r, n \) be positive integers with \(r \geq 2 \). An \((r, n) \)-alternating word is a word \(w \) of the form \(a_1^n a_2^n \cdots a_r^n \), where \(w(\hat{i}) = a^n \) for all \(i \in \{1, \ldots, r\} \). In the sequel, when we use the term \((r, n) \)-alternating word we assume without mention that \(r \) and \(n \) are positive integers with \(r \geq 2 \).

Lemma 7 Assume that \(X = \{0, 1\} \) and \(a_1^n \cdots a_r^n \) is an \((r, n) \)-alternating word. Consider the word \(w = a_t^{-1} a_1^n \cdots a_r^n \), where \(t \) is a positive integer with \(t < n \), and suppose that a prefix \(p \) of \(a_1^n \cdots a_r^n \) obtains from \(w \) using \(k_1 \sigma \) and \(k_2 \sigma \), for some nonnegative integers \(k_1 \) and \(k_2 \). Then, in obtaining \(p \) from \(w \), the following statements hold true about \(k_1 \sigma \) and \(k_2 \sigma \).
1. If fewer than $|w(i)|$ errors are used in $w(i)$ for every $i = 1, \ldots, r$, then $k_1 \geq r - 1$.

2. If there is an $i \in \{1, \ldots, r - 1\}$ such that $|w(i)|$ errors are used in $w(i)$, then $k_1 + k_2 \geq 2n - t$.

Proposition 9 Assume $X = \{0, 1\}$ and let k be a nonnegative integer. Let u be an (r, n)-alternating word and let v be a proper and nonempty suffix of u.

1. If a prefix of u obtains from v using $ks(\sigma \circ \delta)$, then $k \geq \min\{r - 1, 2n - (|u| - |v|)\}$.

2. If v obtains from a prefix of u using $ks(\sigma \circ i)$, then $k \geq \min\{r - 1, 2n - (|u| - |v|)\}$.

Proof. Assume $u = pv$ with $p, v \neq \lambda$. For the first part, suppose that v results in a prefix of u using $ks(\sigma \circ \delta)$. If $2n \leq |u| - |v|$ we are done. So assume $|u| - |v| < 2n$. If $|u| - |v| = n + t$, for some integer t with $0 \leq t < n$, then $v = a_1^{n-t}a_2^n \cdots a_r^n$ results in a prefix of $a_1^n \cdots a_r^n$ using $ks(\sigma \circ \delta)$. But, as $a_1 \neq a_2$, there must be $n + t$ errors in the prefix a_2^{n-t} of v. Hence, $k \geq n - t = 2n - (n + t)$ as required. Now assume $|u| - |v| = t$ with $t < n$; then $v = a_1^{n-t}a_2^n \cdots a_r^n$ results in a prefix of $a_1^n a_2^n \cdots a_{r-1}^n$ using $k_1 \sigma \delta$ and $k_2 \sigma \delta$, where $k_1 + k_2 = k$. We consider three cases. In the first case, no run $v(i)$ of v has $|v(i)|$ errors. Then $k_1 \geq r - 1$ which implies $k \geq r - 1$ as required. In the second case, some run $v(i)$, with $i \in \{1, \ldots, r - 1\}$, has $|v(i)|$ errors. Then, $k \geq 2n - t$ as required. In the third case, there are $|v(n)|$ errors in the last run a^n of v and, therefore, $k \geq n$. If $r = 2$ we are done. If $r \geq 3$ then note that the word $a_1^{n-t}a_2^n \cdots a_{r-1}^n$ results in a prefix of $a_1^n a_2^n \cdots a_{r-1}^n$ using $(k - n)s(\sigma \circ \delta)$ and, by Lemma 7, it follows that $k - n \geq \min\{r - 2, n - t\}$. Hence, $k \geq \min\{r - 1, 2n - t\}$ as required.

For the second part, assume that v results from a prefix of u using $ks(\sigma \circ i)$. Then the prefix of u results from v using $ks(\sigma \circ \delta)$ and the claim follows from the first part. □

Proposition 10 Assume $X = \{0, 1\}$ and let k be a nonnegative integer. Let v be a nonempty word and let u be an (r, n)-alternating word.

1. If a prefix of vu obtains from u using $ks(\sigma \circ \delta)$, then $k \geq \min\{r - 1, 2n - |v|\}$.

2. If u obtains from a prefix of vu using $ks(\sigma \circ i)$, then $k \geq \min\{r - 1, 2n - |v|\}$.

Proof. We only show the first part; the second part follows easily as in the previous proposition. If u results in a prefix of v then at least $|u| - |v|$ deletions must be used in u; therefore, $k \geq 2n - |v|$ as required. So assume that u results in vp, where p is a nonempty prefix of u. Then there is a prefix x of u, with $|x| \geq |v|$, such that v obtains from x using $k_1 s(\sigma \circ \delta)$, and p obtains from y using $k_2 s(\sigma \circ \delta)$, where $k_1 + k_2 = k$ and y is such that $u = xy$. As there must be exactly $|x| - |v|$ deletions in x, we have that $k_1 \geq |x| - |v|$. If $|x| \geq 2n$ then we are done. So assume $|x| < 2n$. If $|x| = n + t$ with $0 \leq t < n$ then $x = a_1^t a_2^n$ and $y = a_2^{n-t} a_3^n \cdots a_r^n$ which results in a prefix of $a_1^n \cdots a_r^n$. Then, as $a_1 \neq a_2$, there must be $n + t$ errors in the prefix a_2^{n-t} of y and, therefore, $k_2 \geq n - t$. Hence, $k_1 + k_2 \geq 2n - |v|$ as required. Now assume $|x| < n$. Then, $x = a_1^t$, $y = a_1^{n-t} a_2^n \cdots a_r^n$, and a prefix of $a_1^n \cdots a_r^n$ obtains from y using $k_2 s(\sigma \circ \delta)$. This implies that $k_2 \geq \min\{r - 1, 2n - |x|\}$, which in turn implies that $k_1 + k_2 \geq \min\{r - 1, 2n - |v|\}$ as required. □
Proposition 11 Let m be a positive integer, let $n = [m/2] + 1$, and assume $X = \{0, 1\}$. For any (r, n)-alternating word $a_1^n \cdots a_m^n$ the following statements hold true.

1. If $r \geq m + 1$ then $(\lambda, a_1^n \cdots a_m^n)$ is a uniform error-detector for $\mathcal{mS}(\sigma \odot \delta)$ with delay 1 and offset $2n^2$.

2. If $r \geq 2n + 1$ then $(\lambda, a_1^n \cdots a_m^n)$ is a uniform error-detector for $\mathcal{mS}(\sigma \odot \delta)$ with delay 1 and offset 0.

Proof. We prove both statements simultaneously. Moreover, we only consider the case where $m \geq 2$ and, therefore, $n \geq 2$. One can verify that the claim also holds for $m = 1$. Let C be any code in $\mathcal{U}_{\mathcal{mS}}$, let $s = a_1^n \cdots a_m^n$, and let $\gamma = (\sigma \odot \delta)_s(m, \ell_{C} + |s| + t)$, where $t = 2n^2$ if $r = 2n$, and $t = 0$ if $r \geq 2n + 1$. Suppose $(v_1, sv_{2y} \leftarrow v_1sv_{2y}) \in \gamma$ for some words $v_1, v_2, w_1, w_2 \in C$ and $y \in X^*$ and $u \in (C\delta)^*$. We need to show that $v_1 = w_1$ and $(v_2sy \leftarrow w_2sy) \in \gamma$. If there are no errors in w_1, then we are done. If there are only substitution errors in w_1, then they all occur in w_1, and therefore, v_1 and w_1 are equal up to m substitutions which contradicts the fact that $C \in \mathcal{U}_{\mathcal{mS}}$. Now assume there is at least one deletion in w_1. In particular let d_1 be the number of deletions in w_1, let d_2 be the number of deletions in the first s of w_1sw_2s, and let d_3 be the number of deletions in w_2. Then $d_1 + d_2 \geq 1$.

If $d_1 \geq 1$ then v_1 results in a prefix of length $\ell_{C} - d_1$ of v_1 and s results in a prefix of x, where x is the suffix of length d_1 of v_1. Then there are at least $\min\{r - 1, 2n - |x|\} \geq \min\{m, 2n - d_1\}$ errors in s and, therefore, at least $d_1 + \min\{m, 2n - d_1\}$ errors in w_1 which is of length $\ell_{C} + |s|$. This is a contradiction, however, as $2n > m$. So in the rest of the proof we assume that $d_1 = 0$ and $d_2 \geq 1$; then $d_2 + d_3 \leq m$. Also, w_1sv_{2y} results in a prefix of length $\ell_{C} + |s| + \ell_{C} - (d_2 + d_3)$ of v_1sv_{2y} and the second s of w_1sw_2s results in a prefix of x, where x is the suffix of length $d_2 + d_3$ of v_1sv_{2y}. Then, there are at least $2n - |x| = 2n - (d_2 + d_3)$ errors in the second s which gives at least $m + 1$ errors in sw_2s whose length is $\ell_{C} + |s| + |s|$. Then a contradiction arises when $r = 2n$ and $t = 2n^2$, and the first statement is proved. So in the sequel we assume that $r \geq 2n + 1$ and $t = 0$; that is, the channel γ is $(\sigma \odot \delta)_s(m, \ell_{C} + |s|)$. Consider the run $s(i) = a_i^n$ of s containing the first of the d_2 deletions.

Let $w = a_i^n a_{i+1}^n \cdots a_{i+r-1}^n w_{2a_i^n} \cdots \cdot a_m^n$ using $ks(\sigma \odot \delta)$, for some integer k with $d_2 + d_3 < k < 2n$. We shall show that our assumptions lead to a contradiction. First note that the word $z = a_i^{n-1} a_{i+1}^n \cdots a_{i+r-2}^n w_{2a_i^n} \cdots a_m^n$ obtains from w using the first deletion in a_i^n and then a prefix of $a_i^n \cdots a_{i+r-2}^n w_{2a_i^n} \cdots a_m^n$ obtains from z using $(k - 1)\sigma \odot \delta)$. Hence, if $i \leq r - 1$ then there are at least $\min\{r - i, 2n - 1\}$ errors in the prefix $a_i^{n-1} a_{i+1}^n \cdots a_m^n$ of z. Also note that $a_i^n \cdots a_{i+r-1}^n$ results in a prefix of $w a_i^n \cdots a_{i+r-1}^n$, where v is the suffix of length $d_2 + d_3$ of v_1, that is, $|v| = d_2 + d_3$. Hence, if $i \geq 3$, there are at least $\min\{i - 2, 2n - (d_2 + d_3)\}$ errors in the suffix $a_i^n \cdots a_{i+r-1}^n$ of z.

If $i \leq 2$ then $k - 1 \geq \min\{r - 2, 2n - 1\}$ which implies that $k \geq 2n$; a contradiction. If $i \geq 3$ and $i - 2 \geq 2n - (d_2 + d_3)$ then $k \geq (d_2 + d_3) + 2n - (d_2 + d_3)$ which is a contradiction. Finally, if $i \geq 3$ and $i - 2 < 2n - (d_2 + d_3)$ then $k - 1 \geq \min\{r - i, 2n + 1\} + (i - 2)$ which implies that $k \geq 2n$; a contradiction. □

Proposition 12 Let m be a positive integer, let $n = [m/2] + 1$, and assume $X = \{0, 1\}$. For any (r, n)-alternating word $a_1^n \cdots a_m^n$,

1. If $r \geq m + 1$ then $(\lambda, a_1^n \cdots a_m^n)$ is a uniform error-detector for $\mathcal{mS}(\sigma \odot \iota)$ with delay 1 and offset $2n^2$.

15
2. If \(r \geq 2n + 1 \) then \((\lambda, a_1^n \cdots a_r^n)\) is a uniform error-detector for \(m_{\sigma}(\sigma \oplus \iota) \) with delay 1 and offset 0.

Proof. We consider the case where \(m \geq 2 \), and, therefore, \(n \geq 2 \). One can verify that the claim also holds for \(m = 1 \). Let \(C \) be any code in \(U_{m{\sigma}} \), let \(s = a_1^n \cdots a_r^n \), and let \(\gamma = (\sigma \oplus \iota)_s(m, \ell_C + |s| + t) \), where \(t = 2n^2 \) if \(r = 2n \), and \(t = 0 \) if \(r \geq 2n + 1 \). Suppose

\[
(v_1, sv_2 sy \leftarrow w_1, w_2, w_1, w_2 \in C \text{ and } y \in \mathcal{X}^* \text{ and } u \in (\mathcal{C})^* \).
\]

We need to show that \(v_1 = w_1 \) and \((v_2 sy \leftarrow w_2 su) \in \gamma\). If there are no errors in \(w_1 \) then we are done. If there are only substitution errors in \(w_1 \) then they all occur in \(w_1 \), which implies that \(D_{\sigma}(v_1, w_1) \leq m \). This contradicts the fact that \(C \in U_{m{\sigma}} \).

Now assume there is at least one insertion in \(w_1 \). In particular, let \(i_1 \) be the number of insertions in \(w_1 \), let \(i_2 \) be the number of insertions in the first \(s \) of \(w_1 sw_2 \), and let \(i_3 \) be the number of insertions in \(w_2 \). Then \(i_1 + i_2 \geq 1 \).

If \(i_1 \geq 1 \), then \(w_1 \) results in \(v_1 x \), where \(x \) is a prefix of \(s \) of length \(i_1 \), and \(s \) results in a suffix of \(s \) of length \(|s| - i_1 \) followed by a prefix of \(v_2 \) of length \(i_1 + i_2 \). Thus, there is a prefix of \(s \) that results in a proper and nonempty suffix of \(s \) using \(ks(\sigma \oplus \iota) \), for some nonnegative integer \(k \). Then, by Proposition 9, \(k \geq \min\{r - 1, 2n - i_1\} \) which implies \(i_1 + k \geq \min\{r + i_1 - 2n\} \geq m + 1 \). So there are at least \(m + 1 \) errors in \(w_1 \). But \(w_1 \) is of length \(\ell_C + |s| \). This is a contradiction.

Therefore, \(i_1 = 0 \), which implies \(v_1 = w_1 \). Also, \(1 \leq i_2 \leq i_2 + i_3 \leq m < 2n \), and the first error to occur in \(s \) is an insertion.

Now, \(w_1 sw_2 \) results in \(v_1 sv_2 \) followed by a prefix of \(s \) of length \(i_2 + i_3 \), and the second \(s \) results in a suffix of \(s \) of length \(|s| - (i_2 + i_3) \) followed by a prefix of \(y \) of length at least \(i_2 + i_3 \). Therefore a prefix of \(s \) results in a proper and nonempty suffix of \(s \) using \(ks(\sigma \oplus \iota) \), for some nonnegative integer \(k \). So \(k \geq \min\{r - 1, 2n - (i_2 + i_3)\} \), which implies that \(k + i_2 + i_3 \geq \min\{r + (i_2 + i_3) - 2n\} \geq m + 1 \). So there are at least \(m + 1 \) errors in \(sw_2 \), which is of length \(\ell_C + 2|s| \). A contradiction arises whenever \(r \geq m + 1 \) implying \(|s| = 2n^2 = t \), and the first statement is proved.

For the remainder of the proof, we assume \(t = 0 \) and \(r \geq 2n + 1 \).

Consider the run \(s(j) = a_j^n \) of \(s \) that contains the first of the \(i_2 \) insertions. Let \(b \) be the inserted symbol. Suppose \(b \neq a_j \). Then there is a \(c \) such that \(n - c > 0 \) and \(ba_j^n \cdots a_{j+1}^n \cdots a_r^n \) results in a word starting with the prefix \(a_j^n \cdots a_{j+1}^n \cdots a_r^n \) using \((k-1)s(\sigma \oplus \iota)\) after the \(b \). Since there can be no more errors in \(b \), and \(b \neq a_j \), this is a contradiction. So \(b \) must equal \(a_j \).

Let \(w = a_j^n a_{j+1}^n \cdots a_r^n w_2 a_1^n \cdots a_{j-1}^n \); then \(|w| = \ell_C + |s| \) and \(w \) results in \(a_j^n \cdots a_r^n v_2 a_1^n \cdots a_{j-1}^n x \) where \(x \) is a prefix of \(a_j^n \cdots a_r^n y \), using \(ks(\sigma \oplus \iota) \), for some integer \(k \) with \(i_2 + i_3 \leq k < 2n \). Note that there is a \(z = a_j^{n+1} a_{j+1}^n \cdots a_r^n w_2 a_1^n \cdots a_{j-1}^n \) that obtains from \(w \) using the first insertion error. Then \(a_j^n \cdots a_r^n v_2 a_1^n \cdots a_{j-1}^n x \) obtains from \(z \) using \((k-1)s(\sigma \oplus \iota)\).

Let \(u = a_j^n \cdots a_r^n \). So \(u \) obtains from a prefix of \(a_j u \) using \(ts(\sigma \oplus \iota) \), where \(t \) is an integer such that \(t \leq k \).

If \(j \leq r - 1 \), then \(u \) is an \((r - j + 1, n)\)-alternating word. Applying Proposition 10, we have \(k - 1 \geq t \geq \min\{r - j, 2n - 1\} \).

Now let \(u' = a_1^n \cdots a_{j-1}^n \). So \(u' \) results in a suffix of \(u' x \) using \(t's(\sigma \oplus \iota) \), where \(t' \) is an integer with \(t' \leq k - (i_2 + i_3) \). Therefore there exists a prefix of \(u' \) which results in a suffix of \(u' \). Also, \(k - 1 \geq t + t' \).
If \(j \geq 3 \), then \(u' \) is a \((j - 1, n)\)-alternating word and \(|u'| - (i_2 + i_3) > 0\). Applying Proposition 9, we have \(k - (i_2 + i_3) \geq l' \geq \min\{j - 2, 2n - (i_2 + i_3)\} \).

Suppose \(j \leq 2 \). Then \(k - 1 \geq \min\{r - 2, 2n - 1\} \) which implies \(k \geq 2n \). This is a contradiction.

Suppose \(j \geq 3 \) and \(j < r \). If \(j - 2 \geq 2n - (i_2 + i_3) \) then \(k - (i_2 + i_3) \geq 2n - (i_2 + i_3) \), implying \(k \geq 2n \). This is a contradiction. If \(j - 2 < 2n - (i_2 + i_3) \), then \(k - 1 \geq \min\{r - j, 2n - 1\} + (j - 2) = \min\{r - 2, 2n - 3 + j\} \) and since \(j \geq 3 \), this implies \(k \geq \min\{r - 1, 2n + 1\} \geq 2n \), another contradiction.

Finally, if \(j = r \), then \(j - 2 \geq 2n - 1 \) and thus \(k \geq 2n \). This is a contradiction. \(\square \)

7 Discussion

We have presented an analysis of the method of separators for detecting synchronization (and substitution) errors in the messages of a coded language. For the case of burst errors, we were able to obtain a simple necessary and sufficient condition on the structure of the separators. It would be interesting to find such a condition on separators that detect scattered errors as well. This would allow us to evaluate the various separators for scattered errors designed in the paper.

Regarding separators for error-correction [10], it is straightforward to define the parameters of redundancy and offset as in this paper. On the other hand, the parameter of delay should be defined with some care as the definition of “error-correction with finite delay” given in [10] involves automata with output (finite state machines). If we ignore that parameter for now, the results of [10] on “error-correctors” (separators for error-correction) can be rephrased as follows:

1. The pair \((0^m, 1^m)\) is a uniform error-detector for \(m\delta \) with redundancy \(2m \) and offset 1.
2. The pair \((\lambda, 1^m0^m)\) is a uniform error-detector for \(m\iota \) with redundancy \(2m \) and offset 2m.
3. The pair \((\lambda, (1^{m+1}0^{m+1})^{m+1}1^{m+1})\) is a uniform error-detector for \(m\iota\sigma \) \((\sigma \circ \iota \circ \delta)\) and for \(m\iota\sigma \) \((\sigma \circ \iota \circ \delta)\) with redundancy \(2(m + 1)^2 + m \) and offset \(2(m + 1)^2 + m \).

If we ignore lower order terms, it follows that, for the same error specification, Levenshtein’s error-correctors are twice as long as the error-detectors designed here. Intuitively, this observation is consistent with the view that the amount of redundancy for error-correction is (roughly) twice the amount for error-detection.

8 Appendix

This appendix contains the proofs of several lemmata used in the paper.

Proof of Lemma 1. The ‘only if’ part is obvious. For the ‘if’ part, first assume that \(\tau \in \{(\iota \circ \iota), (\sigma \circ \iota \circ \delta)\} \). Then the statement follows easily when we note that, if \(v' \) obtains from \(v \) using at most \(m\iota\tau \), only substitution errors can occur in \(v \). Now assume that \(\tau \in \{(\iota \circ \delta), (\sigma \circ \iota \circ \delta)\} \); then \(x = b \) and \(v = m\iota \sigma\delta\) such that \(\iota \circ \delta \) is in \(B_m(\tau) \). As \(|v| = |v'| \), one has that \(|u| = |u'| \) which implies that \(D_{\sigma}(v, v') \leq m \) and, therefore, \(\iota \circ \delta \) is in \(B_m(\sigma) \). Hence, \(v' \) obtains from \(v \) using at most \(m\iota\tau \). \(\square \)
Proof of Lemma 2. If \(v = v' \) then the statement is obvious. So assume \(v \neq v' \); then \(\tau \notin \{i, \delta\} \) and, therefore, \(\tau \) contains \(\sigma \). If \(m\tau \sigma \) is other than \(m\sigma(i \circ \delta) \) and \(m\sigma(\sigma \circ i \circ \delta) \), then the statement follows easily from Lemma 1. Finally, if \(m\tau \sigma \) is either of \(m\sigma(i \circ \delta) \) and \(m\sigma(\sigma \circ i \circ \delta) \), then the statement follows from the fact that \(D_\tau(v, v') = D_\tau(p(v), p(v')) \) [10]. □

Proof of Lemma 3. For the first claim, we write \(u \) in the form \(xzy \) for some words \(x \) and \(y \) with \(|x| = |u'| \). Then the claim follows when we note that \(u' \) obtains from \(u \) by deleting \(y \) and substituting \(D_\sigma(u', x) \) symbols in \(x \). For the second claim, if no deletions are used to obtain \(u' \) from \(u \) then we are done. If at least one deletion is used then there must be at least two insertions in \(u \) so that \(|u'| > |u| - \) and, therefore, \(|u'| - |u| \leq m - 2 \). Then the claim follows when we note that \(u' \) obtains from \(u \) by substituting \(D_\sigma(u, x) \) symbols in \(u \) and then inserting \(y \) at the end.

For the last claim, let \(X = \{0, 1\} \) and let \(k \leq m \) be such that \(u' \) obtains from \(u \) using \(k\sigma(\sigma \circ i \circ \delta) \). Without loss of generality, suppose \(u[1] = 0 \). First assume that, for all \(i = 1, \ldots, |u| \), \(u'[i] \neq u[i] \) and \(u'[i+1] \neq u[i] \). Then it follows that \(u = 0^{|u|} \) and \(u' = 1^{|u|+1} \). In this case, to obtain \(u' \) from \(u \), all symbols of \(u \) must be deleted or substituted and at least a 1 must be inserted. Hence, \(k \geq |u|+1 \) which implies \(|u| < u \). Then, \(u' \) obtains from \(u \) by substituting \(u \) with \(1^{|u|} \) and inserting a 1 at the end. Therefore, \(u' \) obtains from \(u \) using at most \(m\sigma(\sigma \circ i \circ \delta) \).

Now assume that there is \(i \in \{1, \ldots, |u|\} \) such that \(u'[i] = u[i] \) or \(u'[i+1] = u[i] \). In the former case suppose \(i \) is the smallest with this property. Then \(u' \) can be written as \(u'_1u_iu_i' \) and \(u \) as \(u_1u_iu_2 \) such that \(|u'_1| = |u_1| \) and \(D_\sigma(u'_1, u_1) = u_i \). In the latter case, suppose \(i \) is the largest with the property \(u'_i = u[i] \). Then, \(u' \) can be written as \(u'_1u_iu_2 \) and \(u \) as \(u_1u_iu_2 \) such that \(|u'_1| = |u_2| \) and \(D_\sigma(u'_1, u_2) = u_i \). In either case, \(u' \) obtains from \(u \) using at most \((|u_1|+|u_2|)\sigma \) and then \(1\sigma \), which proves the claim. □

Proof of Lemma 6. Let \(q = \lfloor |w|/(\ell - 1 + m) \rfloor \). Then \(w \) can be written as \(w_1 \cdots w_qx \) with \(|x| = |w|\ell/(\ell - 1 + m) \) and \(|w_1| = \ell - 1 + m \). Also \(z \) can be written as \(w'_1 \cdots w'_px' \) such that \(x' \leftarrow x \) and every \(w'_i \leftarrow w_i \) are in the channel. As \(|w_1| = \ell - 1 + m \) and \(\ell > m \), in each \(w_i \) either there are at most two bursts of errors, or three bursts of errors that involve only insertions – the latter case is possible only when \(\ell = m + 1 \). It follows then that the number of deleted symbols in the burst is at most \(m \) and, therefore, \(|w'| - |w'| \leq m \). Now for the word \(x \) we have two cases. If \(|x| \leq m \) then at most \(|x| \) symbols can be deleted in \(x \) and, therefore, \(|x| - |x'| \leq |x| \). If \(|x| > m \) then, as \(|x| < \ell - 1 + m \), one can use the same argument as above to infer that \(|x| - |x'| \leq m \). In either case, \(|x| - |x'| \leq \min\{|x|, m\} \). Hence, \(|w| - |z| \leq q\mu + \min\{|x|, m\} \) as required. □

Proof of Lemma 7. For the first statement, note first that there is a word \(y \) such that \(y \) obtains from \(w \) using \(k_2\sigma \) and \(p \) obtains from \(y \) using \(k_1\sigma \). Then, \(y \) is of the form \(a_{1}^{n-s_1}a_{2}^{n-s_2} \cdots a_{s}^{n-s_s} \), where each \(s_i \) is a nonnegative integer with \(s_i < n \) and \(n - s_1 \leq n - t \). Then, to get \(p \) from \(y \) using \(k_1\sigma \), consider the fact that at least one symbol from each run of \(p \) will appear in \(p \) with no error. It follows then that at least the first symbol of each run \(y(i) \), with \(i \in \{2, \ldots, r\} \), will be substituted. Hence, \(k_1 \geq r - 1 \).

For the second statement, there is a word \(y \) such that \(y \) obtains from \(w \) using \(|w(i)| \) errors in \(w(i) \) and \(p \) obtains from \(y \) using \((k_1 + k_2 - |w(i)|)\sigma \). If \(i = 1 \) then \(w(i) = a_{1}^{n-t} \) results in \(a_2^{s_2} \), for some \(s \in \{0, \ldots, n-t\} \); therefore, \(y \) begins with a prefix of the form \(a_2^{s_2}a_{2}^{s} \). As \(a_1 \neq a_2 \), obtaining \(p \) from \(y \) requires at least \(n \) errors in \(a_2^{s_2}a_{2}^{s} \). Hence, \(k_1 + k_2 \geq (n-t) + n = 2n - t \). If
\(i \geq 2 \) then \(w(i) = a_i^p \) and \(y \) will contain a factor of the form \(a_{i-1}^{n-t} a_i^{q-1} a_{i-1}^{n-1} \), where \(a_{i-1} \) results from \(w(i) \) and \(s \in \{0, \ldots, n\} \). Thus, to get \(p \) from \(y \) at least \(n - t + s \) errors are needed in the factor \(a_{i-1}^{2n-t+s} \) of \(y \). Hence, \(k_1 + k_2 \geq 2n - t \). □

References

