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Abstract 

Web usage mining involves application of data mining techniques to discover usage 

patterns from the web data. Clustering is one of the important functions in web usage 

mining. The likelihood of bad or incomplete web usage data is higher than the 

conventional applications. The clusters and associations in web usage mining do not 

necessarily have crisp boundaries. Researchers have studied the possibility of using fuzzy 

sets in web mining clustering applications. Recent attempts have adapted the K-means 

clustering algorithm as well as genetic algorithms based on rough sets to find interval sets 

of clusters. The genetic algorithms based clustering may not be able to handle large 

amounts of data. The K-means algorithm does not lend itself well to adaptive clustering. 

This paper proposes an adaptation of Kohonen self-organizing maps based on the 

properties of rough sets, to find the interval sets of clusters. Experiments are used to 

create interval set representations of clusters of web visitors on three educational web 

sites. 

Keywords: Clustering, Interval Sets, Kohonen Self-organizing Maps, Web Usage 

Mining, Rough Sets, Unsupervised Learning.  
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1. Introduction 

Web mining can be broadly divided into three classes: content mining, usage mining, and 

structure mining [1]. Web usage mining applies data mining techniques to discover usage 

patterns from the Web data, in order to understand and better serve the needs of Web-

based applications. Web usage mining consists of three phases, namely preprocessing, 

pattern discovery, and pattern analysis. While content mining and structure mining utilize 

the real or primary data on the web, web usage mining uses secondary data generated by 

the users' interaction with the web. Web usage data includes data from web server access 

logs, proxy server logs, browser logs, user profiles, registration files, user sessions or 

transactions, user queries, bookmark folders, mouse clicks and scrolls, and any other data 

generated by the interaction between users and the web. Logs of web access available on 

most servers are good examples of the data sets used in web usage mining. Web usage 

mining includes creation of user profiles, user access patterns, and navigation paths. The 

results of web usage mining are used by e-commerce companies for tracking customer 

behavior on their sites.  

Clustering analysis is an important function in web usage mining, which groups together 

users or data items with similar characteristics. The clustering process is an important 

step in establishing user profiles. User profiling on the web consists of studying important 

characteristics of the web visitors. Due to the ease of movement from one portal to 

another, web users can be very mobile. If a particular web site doesn't satisfy the needs of 

a user in a relatively short period of time, the user will quickly move on to another web 

site. Therefore, it is very important to understand the needs and characteristics of web 

users. Clustering in web mining faces several additional challenges compared to 
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traditional applications [2], the clusters tend to have fuzzy or rough boundaries. The 

membership of an object in a cluster may not be precisely defined. There is likelihood 

that an object may be a candidate for more than one cluster. In addition, due to noise in 

the recording of data and incomplete logs, the possibility of the presence of outliers in the 

data set is high. Joshi and Krishnapuram [2] argued that the clustering operation in web 

mining involves modeling an unknown number of overlapping sets. They proposed the 

use of fuzzy clustering [3, 4, 5] for grouping the web users.  

Lingras [8] described how a rough set theoretic clustering scheme could be represented 

using a rough set genome. The resulting genetic algorithms (GAs) were used to evolve 

groupings of highway sections represented as interval or rough sets. Lingras [9] applied 

the unsupervised rough set clustering based on GAs for grouping web users of a first year 

University course. He hypothesized that there are three types of visitors: studious, 

crammers, and workers. Studious visitors download notes from the site regularly. 

Crammers download most of the notes before an exam. Workers come to the site to finish 

assigned work such as lab and class assignments. Generally, the boundaries of these 

classes will not be precise. The preliminary experimentation by Lingras [9] illustrated the 

feasibility of rough set clustering for developing user profiles on the web. However, the 

clustering process based on GAs seemed computationally expensive for scaling to a 

larger data set. Lingras and West [11] provided a theoretical and experimental analysis of 

a modified K-means clustering based on the properties of rough sets. It was used to 

classify the visitors to an academic web site into upper and lower bounds of the three 

classes mentioned above. The modified K-means approach is suitable for large data sets. 

The Kohonen neural network or self-organizing map [14] is another popular clustering 
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technique. The Kohonen network is desirable in some applications due to its adaptive 

capabilities. This paper introduces the interval set clustering using a modification of the 

Kohonen self-organizing maps based on rough set theory. The proposed algorithm was 

used to find cluster intervals of web users. Three web sites that were used for the 

experimentation catered to two first year and one second year courses. The students used 

the web site for downloading class-notes and lab assignments; downloading, submitting 

and viewing class assignments; checking their current marks; as well as for accessing a 

discussion board. These web sites were accessed from a variety of locations. Only some 

of the web accesses were identifiable by student ID. Therefore, instead of analyzing 

individual students, it was decided to analyze each visit. This also made it possible to 

guarantee the required protection of privacy. This paper also provides a comparison of 

user behavior among first and second year students. The experiments show that the 

modified Kohonen network provides reasonable interval sets of clusters by adjusting to 

the changing user behaviour. 

2. Review Of Literature 

2.1 Rough Set Theory 

The notion of rough set was proposed by Pawlak [6]. This section provides a brief 

summary of the concepts from rough set theory essential for introducing the Kohonen 

rough set theoretic algorithm.  

Let U denote the universe (a finite ordinary set), and let UUR ×⊆  be an equivalence 

(indiscernibility) relation on U . The pair ),( RUA =  is called an approximation space.  
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The equivalence relation R  partitions the set U  into disjoint subsets. Such a partition of 

the universe is denoted by },..,,{/ 21 nEEERU = , where iE is an equivalence class of R . 

If two elements Uvu ∈,  belong to the same equivalence class RUE /⊆ , we say that u 

and v are indistinguishable. The equivalence classes of R are called the elementary or 

atomic sets in the approximation space ),( RUA = . The union of one or more elementary 

sets is called a composed set in A . The empty set ∅  is also considered a special 

composed set. )(ACom denotes the family of all composed sets. Since it is not possible to 

differentiate the elements within the same equivalence class, one may not be able to 

obtain a precise representation for an arbitrary set UX ⊆ in terms of elementary sets 

in A . Instead, its lower and upper bounds may represent the set X . The lower 

bound )(XA is the union of all the elementary sets, which are subsets of X . The upper 

bound )(XA  is the union of all the elementary sets that have a non-empty intersection 

with X .  

The pair ))(),(( XAXA is the representation of an ordinary set of X in the approximation 

space ),( RUA = , or simply the rough set of X . The elements in the lower bound of X  

definitely belong to X , while elements in the upper bound of X  may or may not belong 

to X . Fig.1 illustrates the lower and upper approximation. It can be verified, that for any 

subsets UYX ⊆, , the following lemmas hold [6]. 

),()()( YAXAYXA II =  (L1) 

),()()( YAXAYXA UU ⊇  (L2) 

),()()( YAXAYXA II ⊆  (L3) 
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),()()( YAXAYXA UU =  (L4) 

),()(),()( XAXAXAXA −=−−=−  (L5) 

)),()(),()(( YAXAYAXAYX ⊇⊇⇒⊇  (L6) 

,)()( UUAUA ==  (L7) 

,)()( ∅=∅=∅ AA  (L8) 

2.2. Kohonen Self-Organizing Maps 

Fig. 2 illustrates the conventional Kohonen network architecture for the one-dimensional 

case. The unsupervised learning using the Kohonen rule [14] uses competitive learning 

approach. In competitive learning, the output neurons compete with each other. The 

winner output neuron has the output of 1, the rest of the output neurons have outputs of 0. 

The competitive learning is suitable for classifying a given pattern into exactly one of the 

mutually exclusive clusters. The network is used to group patterns represented by m-

dimensional vectors into k groups. The network consists of two layers. The first layer is 

called the input layer and the second layer is called the Kohonen layer. The network 

receives the input vector for a given pattern. If the pattern belongs to the ith group, then 

ith neuron in the Kohonen layer has a output value of one and other Kohonen layer 

neurons have output values of zero. Each connection is assigned a weight wi. Weights of 

all the connections to a Kohonen layer neuron make up an m-dimensional weight vector 

w. The weight vector w for a Kohonen layer neuron is the vector representation of the 

group corresponding to that neuron. For any input vector v, the network compares the 

input with the weight vector for a group using the measure such as )( vw,d :  
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The pattern v belongs to the group with minimum value for )( vw,d . The Kohonen neural 

network generates the clusters through a learning process as follows: Initially, the 

network connections are assigned somewhat arbitrary weights. The training set of input 

vectors is presented to the network several times. For each iteration, the weight vector w 

for a group that is closest to the pattern v is modified using the equation: 

)()( oldoldnew t wvww −×+= α , (2) 

where α ( )t  is a learning factor which starts with a high value at the beginning of the 

training process and is gradually reduced as a function of time. 

3. Rough Set Based Kohonen Self Organizing Maps  

Rough sets were proposed using equivalence relations. However, it is possible to define a 

pair of upper and lower bounds ))(),(( XAXA  or a rough set for every set UX ⊆ as long 

as the properties specified by Pawlak [6] are satisfied. Yao et al. [12] described various 

generalizations of rough sets by relaxing the assumptions of an underlying equivalence 

relation. Skowron and Stepaniuk [13] discuss a similar generalization of rough set theory.  

If one adopts a more restrictive view of rough set theory, the rough sets developed in this 

paper may have to be looked upon as interval sets. Lingras [8] proposed the unsupervised 

rough set clustering based on genetic algorithms to create the interval sets of clusters for 

web users. Lingras and West [11] proposed an adaptation of the K-means algorithm 

based on rough set theory for interval set clustering of web users. This paper uses some 

of the concepts from Lingras and West [11] to create intervals of clusters using the 
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Kohonen self-organizing maps. Let us consider a hypothetical classification scheme 

{ }kXXXPU ,...,,/ 21= , which partitions the set U based on certain criteria. The actual 

values of iX  are not known. The classification of web users is an example of such a 

hypothetical classification scheme. Depending on the predominant usage, a set of web 

visitors can be classified as crammers, workers, or studious. However, the actual sets 

corresponding to each one of these classes are not known. Let us assume that due to 

insufficient knowledge it is not possible to precisely describe the sets kiX i ≤≤1, , in the 

partition. However, it is possible to define each set RUXi /∈  using its lower and upper 

bounds ( )(XA , )(XA ) based on the available information. In this study, the available 

information consists of web access logs. Since vectors represent the objects and clusters 

in the Kohonen rough set clustering algorithm, we will use vector representations, v for 

an object and ix  for cluster iX . We are considering the upper and lower bounds of only a 

few subsets of U . Therefore, it is not possible to verify all the properties of rough sets 

[6]. However, the family of upper and lower bounds of RUi /∈x  are required to follow 

some of the basic rough set properties such as:  

• An object v can be part of at most one lower bound  (P1) 

• )()( ii AA xvxv ∈⇒∈  (P2) 
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• An object v is not part of any lower bound                                                        (P3) 

c  

       v belongs to two or more upper bounds.  

Properties (P1)-(P3) can be obtained from (L1)-(L8) and the fact that ., jiXX ji ≠∅=I  

It is important to note that, (P1)-(P3) are not necessarily independent or complete. 

However, enumerating them will be helpful in understanding the rough set adaptation of 

the Kohonen neural networks. 

Incorporating rough sets into the Kohonen algorithm requires an addition of the concept 

of lower and upper bounds in the equations, which are used for updating the weights of 

the winners. The Kohonen rough set architecture is similar to the conventional Kohonen 

architecture. It consists of two layers, an input layer and the Kohonen rough set layer 

(rough set output layer). These two layers are fully connected. Each input layer neuron 

has a feed forward connection to each output layer neuron. Fig.3 illustrates the Kohonen 

rough set neural network architecture for one-dimensional case. A neuron in the Kohonen 

layer consists of two parts, a lower neuron and an upper neuron. The lower neuron has an 

output of 1, if an object belongs to the lower bound of the cluster. Similarly, a 

membership in the upper bound of the cluster will result in an output of 1 from the upper 

neuron. Since an object belonging to the lower bound of a cluster also belongs to its 

upper bound, when lower neuron has an output of 1, the upper neuron also has an out of 

1. However, membership in the upper bound of a cluster does not necessarily imply the 

membership in its lower bound. Therefore, the upper neuron contains the lower neuron.  

Figs. 4 and 5 provide some cases to explains outputs from the Kohonen rough set neural 
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network works based on properties (P1), (P2), and (P3). Fig. 4 shows some of the 

possible outputs, while Fig. 5 shows some of the invalid outputs from the network. 

Fig. 4(a) shows a case where an object belongs to lower bound of cluster 2x . Based on 

the property (P2), it also belongs to the upper bound of 2x . Fig. 4(b) shows a situation 

where an object belongs to the upper bounds of clusters 1x  and 2x . The object in Fig. 

4(c) belongs to the upper bounds of clusters 1x , 2x  and 3x . Fig. 5(a) shows an invalid 

situation where an object belongs only to the upper bound of the cluster 3x . This is a 

violation of the property (P3). Fig. 5(b) shows a violation of property (P1), where an 

object belongs to lower bound of 1x  as well as the upper bound of 2x . Similarly, a 

violation of property (P2) can be seen in an invalid case shown in Fig. 5(c). Here the 

object only belongs to the lower bound of cluster 3x  and not its upper bound. The 

modification of the Kohonen algorithm must make sure that the properties (P1)-(P3) are 

obeyed by avoiding cases such as the ones shown in Fig. 5.  The interval clustering 

provides good results, if initial weights are obtained by running the conventional 

Kohonen learning. The next step in the modification of the Kohonen algorithm for 

obtaining rough sets is to design criteria to determine whether an object belongs to the 

upper or lower bounds of a cluster. For each object vector, v, let )  , d( ixv be the distance 

between itself and the weight vector i x  of cluster  iX . The ratios kji,1 , 
)  , d(
)  , d(

j

i ≤≤
xv
xv , 

were used to determine the membership of v as follows: 

1. If )  , d( ixv  is the minimum for ki1 ≤≤ and threshold≥ 
)  , d(
)  , d(

j

i

xv
xv

for any pair ),( ji , 
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then )( iA xv ∈  and )( jA xv ∈ . Furthermore, v is not part of any lower bound. The 

above criterion guarantees that property (P3) is satisfied. The weight vectors  ix  and 

 jx are modified as:  

)()( old
iupper

old
i

new
i t xvxx −×+= α , and 

)()( old
jupper

old
j

new
j t xvxx −×+= α . 

2. Otherwise, )( iA xv ∈  such that )  , d( ixv  is the minimum for ki ≤≤1 . In addition, 

by property (P2), )( iA xv ∈ . The weight vector  ix is modified as: 

)()( old
ilower

old
i

new
i t xvxx −×+= α . 

Usually, )()( tt upperlower αα > . It can be easily verified that the above algorithm preserves 

properties (P1)-(P3). The following section describes experiments with web logs on three 

web sites, which suggest that the proposed modification of the Kohonen neural networks 

provide reasonable interval set representations of clusters. 

4. Study Data and Design of the Experiment 

4. 1 Data Description 

The study data was obtained from web access logs of three courses. These courses 

represent a sequence of required courses for computing science programme at Saint 

Mary's University. Two courses were for the first year students. The third course was for 

the second year students. The first course is “Introduction to Computing Science and 

Programming” offered in the first term of first year. The initial number of students in the 

course was 180. The number reduced over the course of the semester to 130 to 140 
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students. The students in the course come from a wide variety of backgrounds, such as 

Computing Science major hopefuls, students taking the course as a required science 

course, and students taking the course as a science or general elective. As is common in a 

first year course, students' attitudes towards the course also vary a great deal. The second 

course is “Intermediate Programming and Problem Solving” offered in the second term of 

the first year. The initial number of students in the course was around 100. The number 

reduced over the course of the semester to 90 students. The students have similar 

backgrounds and motivations as the first course. However, the student population is less 

susceptible to attrition. It was hoped that these subtle changes between the two courses 

would be reflected in the interval set clustering. These results were also compared with 

the third course (data structures) offered in the second year. This course consisted of core 

computing science students. The number of students in this course was around 23 

students. It was hoped that the profile of visits would reflect some of the distinctions 

between the students. Lingras [8] and Lingras and West [11] showed that visits from 

students attending first course could fall into one of the following three categories: 

1. Studious: These visitors download the current set of notes. Since they download a 

limited/current set of notes, they probably study class-notes on a regular basis.  

2. Crammers: These visitors download a large set of notes. This indicates that they have 

stayed away from the class-notes for a long period of time. They are planning for 

pretest cramming.  

3. Workers: These visitors are mostly working on class or lab assignments or accessing 

the discussion board.  
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The modified Kohonen algorithm was expected to specify the interval set clustering  

(lower and upper bounds for these classes).  

4.2 Data Preparation 

Data quality is one of the fundamental issues in data mining. Poor quality of data always 

leads to poor quality of results. Data preparation is an important step before applying data 

mining algorithms. The data preparation in this paper consisted of two phases: data 

cleaning and data transformation.  

Data Cleaning involved removing hits from various search engines and other robots. This 

reduced the first data set by 5%. The second and third data sets were reduced by 3.5% 

and 10%, respectively. The details about the data can be found in Table 1. 

The data transformation required the identification of web visits. Certain areas of the web 

site were protected, and the users could only access them using their IDs and passwords. 

The activities in the restricted parts of the web site consisted of submitting a user profile, 

changing a password, submission of assignments, viewing the submissions, accessing the 

discussion board, and viewing current class marks. The rest of the web site was public. 

The public portion consisted of viewing course information, a lab manual, class-notes, 

class assignments, and lab assignments. If the users only accessed the public web site, 

their IDs would be unknown. Therefore, the web users were identified based on their IP 

address. This also made sure that the user privacy was protected. A visit from an IP 

address started when the first request was made from the IP address. The visit continued 

as long as the consecutive requests from the IP address had sufficiently small delay. 



 

 

14

The web logs were preprocessed to create an appropriate representation of each user 

corresponding to a visit. The abstract representation of a web user is a critical step that 

requires a good knowledge of the application domain. Previous personal experience with 

the students in the course suggested that some of the students print preliminary notes 

before a class and an updated copy after the class. Some students view the notes on-line 

on a regular basis. Some students print all the notes around important days such as 

midterm and final examinations. In addition, there are many accesses on Tuesdays and 

Thursdays, when the in-laboratory assignments are due. On and Off-campus points of 

access can also provide some indication of a user's objectives for the visit. Based on some 

of these observations, it was decided to use the following attributes for representing each 

visitor:  

1. On campus/Off campus access.  

2. Day time/Night time access: 8 a.m. to 8 p.m. were considered to be the daytime.  

3. Access during lab/class days or non-lab/class days: All the labs and classes were held 

on Tuesdays and Thursdays. The visitors on these days are more likely to be workers.  

4. Number of hits.  

5. Number of class-notes downloads.  

The first three attributes had binary values of 0 or 1. The last two values were 

normalized. The distribution of the number of hits and the number of class-notes was 

analyzed for determining appropriate weight factors. The numbers of hits were set to be 

in the range [0,10]. Since the class-notes were the focus of the clustering, the last variable 

was assigned higher importance, where the values ranged from 0 to 20. Even though the 
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weight for class-notes seems high, the study of actual distributions showed that 99% of 

visits had values of less than 5 for the first data set, less than 3 for the second data set, 

and less than 10 for the third data set.  

Total visits were 23,754 for the first data set, 16,255 for the second data set, and 4,248 for 

the third data set. The visits that didn't download any class-notes were eliminated, since 

these visits correspond to either casual visitors or workers. The modified Kohonen 

clustering was applied to the remaining visits: 7,673 for the first data set, 6,056 for the 

second data set, and 1,287 for the third data set as shown in Table 1.  

After experimenting with a range of values, the threshold was set at 0.7, )(tlowerα was 

chosen to be 0.01, 0.005 was used as the value of )(tupperα , and 1000 iterations were used 

for the training phase of each data set.  

5. Results and Discussion 

Table 3 shows the results for the first data set. Tables 4 and 5, show the results for the 

second and third data sets, respectively. It was possible to classify the three clusters as 

studious, workers, and crammers, from the results obtained using the modified Kohonen 

self-organizing maps. The crammers had the highest number of hits and class-notes in 

every data set. The average numbers of notes downloaded by crammers varied from one 

set to another. The significantly large number of class-notes downloaded by crammers in 

the third data set can be explained by further analysis. The third course had only 11 

visitors in the crammers cluster. In addition, the distribution of notes downloaded in the 

third data set was more uniform than the two first year courses. As mentioned before, 

99% of visitors in the first data set had values of less than 5, and less than 3 for the 
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second data set. However, the same number was 10 for the third data set. Because of a 

more uniform distribution, the number of class-notes was a good distinguishing attribute 

for the third data set. The studious visitors downloaded the second highest number of 

notes. The workers in the third data set downloaded the smallest number of notes. The 

distinctions between workers and studious visitors for the two first year courses were 

based on other attributes. For example, in the first data set, the on/off campus access was 

the most distinguishable attribute, followed by the lab day. Studious visitors exclusively 

came from off campus, while the workers exclusively came from campus locations. 

Workers were more prone to come on lab days than studious visitors. The distinguishable 

attributes for the second data set were again day and place of the visit. However, in 

contrast to the first data set, the day was the most distinguishable attribute. The workers 

exclusively came on lab days, and studious visitors always avoided the lab days. The 

workers were more prone to work from campus than the studious visitors. The profiles of 

upper bounds of workers and studious clusters were closer to each other than their lower 

bounds. It is interesting to note the similarity of the boundary regions of studious and 

workers for all the three data sets. The last two observations about the upper bounds and 

boundary regions suggest that there is a large overlap between upper bounds of studious 

and workers clusters. Fig. 6 gives a complete picture of the memberships from the 

interval clustering for the three data sets. For all the three data sets, there is more overlap 

between the upper bounds of studious and workers clusters than any other pair. The 

actual numbers in each cluster vary based on the characteristics of each course. For 

example, the first term course had more workers than studious visitors, while the second 

term course had more studious visitors than workers. The increase in the percentage of 
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studious visitors in the second term seems to be a natural progression. Interestingly, the 

second year course had significantly large number of workers than studious visitors. This 

seems counter-intuitive. However, it should be noted that the lower bounds of studious 

and crammers were significantly smaller than the workers. That means most visitors in 

the third data set (second year course) had more uniform profiles. Moreover, unlike the 

two first year courses, the second year course did not post the class-notes on the web. The 

notes downloaded by these students were usually sample programs that were essential 

during their laboratory work. 

The experiments used exactly the same setup for all the three web sites. The 

characteristics of the first two sites were similar. The third web site was somewhat 

different in terms of the site contents, course size, and types of students. The results 

discussed in this section show many similarities between the interval set clustering for the 

three sites. The differences between the results can be easily explained based on further 

analysis of the web sites. It is interesting to see that the proposed adaptation of the 

Kohonen networks captured the subtle differences between the web sites into the 

resulting clustering schemes. The clustering process can be individually fine-tuned for 

each web site to obtain even more meaningful interval set clustering scheme.  

6. Summary and Conclusions 

This paper proposed an adaptation of the Kohonen self-organizing maps to develop 

interval clusters using rough set theory. The paper also described an experiment for 

clustering web users including data collection, data cleaning, data preparation and the 

clustering process. Web visitors for three courses were used in the experiments to test the 

feasibility of the proposed adaptation. It was expected that, the visitors would be 
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classified as studious, crammers, or workers. Since some of the visitors may not precisely 

belong to one of the classes, the clusters were represented using interval sets. In order to 

develop interval clusters the Kohonen algorithm was modified based on the concept of 

lower and upper bounds, and tested with the three data sets. The experiments produced 

meaningful clustering of web visitors. The study of variables used for clustering made it 

possible to clearly identify the three clusters as studious, workers, and crammers. There 

were many similarities and a few differences between the characteristics of interval 

clusters for the three web sites. These similarities and differences indicate the ability of 

the proposed modification of Kohonen networks to incorporate subtle differences 

between the usages of different web sites.  
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Data Set Hits Hits after cleaning Visits Visits after cleaning 

First course 361609 343000 23754 7673 

Second course 265365 256012 16255 6056 

Third course 40152 36005 4248 1287 

 

TABLE 1. Description of the data sets 
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Group Name Campus Time  Lab Hits Req. Cardinality 

A  (Studious) 0.000 0.596 0.224 0.379 0.408 1704 

A  (Studious) 0.475 0.680 0.406 0.530 0.489 4542 

BND (Studious) 0.760 0.731 0.515 0.621 0.539 2838 

A (Worker) 1.000 0.862 0.594 0.872 0.921 2633 

A  (Worker) 0.876 0.792 0.551 0.758 0.757 5566 

BND (Worker) 0.764 0.730 0.512 0.655 0.609 2933 

A  (Crammers) 0.598 0.732 0.305 2.109 5.030 403 

A  (Crammers) 0.595 0.712 0.329 2.106 4.306 563 

BND (Crammers) 0.588 0.663 0.388 2.098 2.482 160 

 

TABLE 2. Results of interval clustering for the first data set 
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Group Name Campus Time Lab Hits Req. Cardinality 

A  (Studious) 0.62 0.73 0.00 0.33 0.32 3490 

A  (Studious) 0.62 0.72 0.02 0.38 0.38 3662 

BND (Studious) 0.55  0.66 0.34 1.42 1.63 172 

A (Worker) 0.78 0.84 1.00 0.33 0.29 2317 

A  (Worker) 0.77 0.83 0.96 0.40 0.38 2489 

BND (Worker) 0.55 0.67 0.35 1.41 1.63 172 

A  (Crammers) 0.53 0.69 0.27 2.32 4.86 75 

A  (Crammers) 0.57 0.69 0.32 2.07 4.04 111 

BND (Crammers) 0.64 0.69 0.42 1.54 2.32 36 

 

TABLE 3 Results of interval clustering for the second data set 
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TABLE 4. Results of interval clustering for the third data set 

 

 

 

 

 

 

 

 

Group Name Campus Time  Lab Hits Req. Cardinality 

A  (Studious) 0.54 0.74 0.44 2.45 4.14 143 

A  (Studious) 0.54 0.70 0.42 2.40 4.84 182 

BND (Studious) 0.57 0.55 0.45 2.24 2.75 39 

A (Worker) 0.54 0.75 0.51 0.90 0.58 1094 

A  (Worker) 0.54 0.74 0.51 0.94 0.74 1130 

BND (Worker) 0.54 0.58 0.49 2.09 2.18 36 

A  (Crammers) 0.27 0.45 0.27 7.05 15.52 11 

A  (Crammers) 0.44 0.44 0.21 5.48 14.24 14 

BND (Crammers) 1.00  0.44 0.00 4.88 9.52 3 
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Fig. 2. Kohonen Neural Network 
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Fig. 4. Valid outputs from a Kohonen rough set layer 
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Fig. 5. Invalid outputs from a Kohonen rough set layer 
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