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Abstract

The problem of negative design of DNA languages is addressed, that is, properties and
construction methods of large sets of words that prevent undesired bonds when used in DNA
computations. We recall a few existing formalizations of the problem and then define the
property of sim-bond-freedom, where sim is a similarity relation between words. We show
that this property is decidable for context-free languages and polynomial-time decidable for
regular languages. The maximality of this property also turns out to be decidable for regular
languages and polynomial-time decidable for an important case of the Hamming similarity.
Then we consider various construction methods for Hamming bond-free languages, including
the recently introduced method of templates, and obtain a complete structural characterization
of all maximal Hamming bond-free languages. This result is applicable to the θ-k-code property
introduced by Jonoska and Mahalingam.

1 Introduction

The field of DNA computing is based on the fact that one can encode input data into a collection of
(single-stranded) DNA molecules and then apply on them a sequence of operations, which results in
a modified collection of molecules. This process can be interpreted as a computation for which the
output is obtained by decoding the data contained in some of the resulting molecules. In practice,
the collection of DNA molecules exists as a ‘soup’ inside a test tube under controlled physical
conditions.

1.1 Bonds between DNA molecules

Most of the operations involved in DNA computations rely on the capability of controlling the
bonds that can be formed between DNA molecules. Such bonds are created due to the well-known
Watson-Crick complementarity property of the four nucleotides A, C, G, T , which are the building
blocks of DNA molecules. More specifically, the nucleotide A is complementary to T , and C is
complementary to G. This property is important in conjunction with the fact that every molecule
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5’- A G T T C C -3’ 5’- v A G T T C C w -3’ 5’- v A G T T C C w

| | | | | | | | | | | | | | | | | | x

3’- T C A A G G -5’ 3’- z T C A A G G y -5’ 3’- z T C A A G G y

(a) (b) (c)

Figure 1: Vertical bars represent bonds between complementary nucleotides. In (b), the comple-
mentary parts 5′−AGTTCC−3′ and 5′−GGAACT−3′ of the DNA molecules 5′−vAGTTCCw−3′

and 5′ − yGGAACTz − 3′ bind together. In (c), the molecule 5′ − vAGTTCCwxyGGAACTz − 3′

is twisted at x and its complementary parts bind together.

5’- v A G A T T C C G T G w -3’ 5’- v A G A T T C C G T G w

| | | | | | | | | | | | | | | | x

3’- z T C T C A G G A A C y -5’ 3’- z T C T C A G G A A C y

(a) (b)

Figure 2: In (a), parts of two DNA molecules bind together although these parts are not perfect
complements of each other. In (b), the same parts appear in one molecule.

has a certain orientation, which is denoted by placing the symbols ‘5′−’ and ‘−3′’ at the two ends of
the sequence of nucleotides comprising the molecule. For example, the molecules 5′−ACCGT − 3′

and 3′ − ACCGT − 5′ are different – they have different chemical properties.
Under favorable physical tube conditions, if a molecule of the form 5′−X1X2 · · ·Xk − 3′, where

each Xi is a nucleotide, encounters the molecule 5′ − Yk · · ·Y2Y1 − 3′ in which each nucleotide Yi is
the complement of Xi, then the pairs (Xi, Yi) will form k chemical bonds and a double-stranded
structure will be created – see Figure 1(a).
It is important to note that bonds can be formed even between complementary parts of two
molecules, provided that these parts are sufficiently long – see Figure 1(b). Moreover, a molecule
containing two complementary parts can bind to itself, or to a copy of itself – see Figure 1(c).

The bonds shown in Figure 1 are formed between parts that are perfect complements of each
other. In practice, however, it is possible that two parts of molecules will bind together even if
some of their corresponding nucleotides are not complementary to each other – see Figure 2.

1.2 The problem of undesirable bonds

The success of a DNA operation relies on the assumption that no accidental bonds can be formed
between molecules in the tube before the operation is initiated, or even during the operation. With
this motivation, one of the foremost problems in DNA computing today is the following.

Problem 1 Define a large, potential collection of DNA molecules such that there can be no (suffi-
ciently long and possibly imperfect) complementary parts in any two molecules, and no (sufficiently
long and possibly imperfect) complementary parts in any one molecule.

In many cases in the literature, this problem is addressed in conjunction with the uniqueness
problem, which involves designing molecules whose parts are different between each other. The
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motivation here is that, usually, a DNA operation is intended only for molecules containing a
specific pattern (or specific patterns) of nucleotides. In this paper, however, we focus on Problem 1.

1.3 Notation for molecules and bonds

We proceed now with establishing the notation that would allow us to describe formalizations of
Problem 1. Specifically, we define the terms word, subword, language, involution, and codeword.

A given alphabet can be used to form sequences of symbols that are called words. For example,
01001 is a word over the alphabet {0, 1}. The length of a word w is denoted by |w|. For example,
|01001| = 5. The prime example of an alphabet will be the DNA alphabet {A, C, G, T}. In this
case, we agree that the left end of a DNA word represents the 5′−end of the corresponding DNA
molecule. For example, the word CCATGT represents the molecule 5′ −CCATGT − 3′. If a word
w can be written in the form xyz – this is the catenation of some words x, y and z – then we say
that y is a subword of w. A language is any set of words. We shall use the expression ‘x is a
subword of a language’ as a shorthand for x is a subword of some word in the language. One use
of a language L is to represent all the possible distinct copies of DNA molecules that might appear
in a tube. In this case, we refer to L as a tube language and we assume that every word in L is
of length at least k, for some parameter k. This parameter represents the smallest length of two
molecule parts for which it is possible to form a stable bond.

To represent the complementarity of nucleotides we use the concept of antimorphic involution
introduced in [17]. In general an involution of an alphabet Σ is a function θ : Σ → Σ such that
θ(θ(a)) = a, for all symbols a in Σ. The involution is called antimorphic if we extend it to words
such that θ(a1 · · · an) = θ(an) · · · θ(a1), where each ai is a symbol in Σ. The prime example of an
antimorphic involution will be the DNA involution τ such that

τ(A) = T, τ(T ) = A, τ(C) = G, τ(G) = C.

For example, τ(ACCGTT ) = AACGGT . In general, for two DNA words x and y of length k,
the identity τ(x) = y represents the fact that the molecules (or parts of molecules) 5′ − x − 3′ and
5′−y−3′ could bind to each other. According to the requirement in Problem 1, if k = 6, the words
ACCGTT and AACGGT should not be subwords of the tube language L.

In the literature on DNA encodings, the tube language L is usually equal to, or a subset of,
K+, where K is a finite language whose elements are called codewords. The language K+ consists
of all words that are obtained by concatenating one or more codewords from K. For a nonnegative
integer n, the notation Kn is used for the set of all words that are obtained by concatenating any
n codewords from K. In general, K might contain codewords of different lengths. In many cases,
however, the set K consists of words of a certain fixed length l. In this case, we shall refer to K as
a code of length l.

1.4 Formalizations of the problem of undesirable bonds

With the preceding terminology in mind, Problem 1 is called the negative word design problem in
[25]. Now we recall a few existing formalizations of Problem 1 and we propose a new one, which
appears to be closer to the intuition behind the problem. It should be noted, however, that all
formalizations are inter-related in some interesting ways.

One of the most recent attempts to address Problem 1 appears in [12]. In that paper, the
authors require that a tube language L must satisfy the following property.

P1[k]: If x and y are any subwords of L of length k then x 6= τ(y).
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A language satisfying this property is called a τ -k-code in [12]. An advantage of this formalization
is that the property is defined independently of the structure of L. This property is also considered
implicitly in [3] and [6]. In particular, reference [3] considers tube languages of the form (sZ)+

satisfying P1[k], where s is a fixed word of length k and Z is a code of length k – the notation sZ
represents the set of all words sz such that z is in Z.

In [11], the authors introduce the concept of a strictly τ -free code K, which is a generalization
of the notion of comma-free code, and show that the language K+ must be strictly τ -free as well.
Here we shall assume that K is of fixed length k. In this formalization the tube language L is equal
to K+. Using the tools of [11], it can be shown that L is a strictly τ -free language iff (if and only
if) L satisfies the following property

P2[k]: If x is a subword of L of length k and v is a codeword in K then x 6= τ(v).

We note that similar properties are considered also in [19] and [20].

As noted earlier, parts of DNA molecules can bind to each other even if they are not perfect
complements of each other. Hence, although sufficient, the condition τ(x) = y might not be
necessary for the DNA words x and y to stick together. The common approach to deal with this is
to modify the above condition by using the Hamming distance function H(·, ·). More specifically,
for two words x and y of length k, the relation H(x, τ(y)) ≤ d represents the fact that the molecules
(or parts of molecules) 5′ −x− 3′ and 5′ − y− 3′ could bind to each other. Here, d is a nonnegative
integer less than k.

In [23] and [31], the authors consider codes K of length k satisfying the following property

P3[d, k]: If u and v are any codewords in K then H(u, τ(v)) > d.

In fact the above property is studied in conjunction with the uniqueness property H(K) > d.
Reference [7] introduces the H-measure for two words x and y of length k and explains how

this measure can be used to encode instances of the Hamiltonian Path problem. A similar measure
is defined in [2] and is applied to codes of length k whose words can be concatenated in arbitrary
ways. Thus, the tube language here is L = K+. The code K satisfies certain uniqueness conditions
as well as conditions related to Problem 1. In particular, the tube language L = K+ satisfies the
following property.

P4[d, k]: If x is a subword of L of length k and v is a codeword in K then H(x, τ(v)) > d.

We note that also reference [27] considers this property for languages of the form K1K2 · · ·Km,
where each Ki is a certain code of length k.

With ‘H(x, τ(y)) ≤ d’ as the criterion for x and y to bind together, it appears that P4[d, k]
is the strictest property in the literature for addressing Problem 1. This property, however, is not
sufficient in general for avoiding undesirable bonds in the tube. To see this, consider the case where

d = 1, k = 5, K = {ACGAT, CCGAA}.

One can verify that K+ satisfies P4[d, k] and that the DNA words

ACGATACGATCCGAA ACGATCCGAACCGAA

are in K+ and contain the subwords GATCC and CGATC such that

H(GATCC, τ(CGATC)) ≤ 1.

Motivated by the above observation, we introduce the following property of a tube language L.

P5[d, k]: If x and y are any subwords of L of length k then H(x, τ(y)) > d.

Note that, as in the case of P1[k], the new property is defined independently of the structure of
L. Any tube language satisfying this property will be called a (τ, Hd,k)-bond-free language.
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5’- v A A G C G T T C G A w -3’

\ \ | | | | | |

3’-z T T G C A G G C T y -5’

Figure 3: Two DNA molecules in which the parts 5′ − AAGCGTTCGA − 3′ and 5′ −
TCGGACGTT − 3′ bind together although these parts have different lengths.

1.5 Connections

We list now a few interesting connections among the properties P1–P5. We note that the condition
x 6= τ(y) is equivalent to H(x, τ(y)) > 0.

P3 and P5: In Section 3 we introduce the subword closure operation ⊗ such that, for any code
S of length k, the language S⊗ consists of all words w of length at least k with the property
that every subword of length k of w is in S. Moreover we show how to construct S⊗ from S
in linear time. In Section 4.3, we show that if a code K satisfies P3[d, k] then the language
K⊗ satisfies P5[d, k]. Hence, any constructions of codes K for P3 are relevant to P5.

P4 and P2: It is evident that any language K+ satisfying P4[d, k] also satisfies P2[k]. Moreover,
P4[0, k] is identical to P2[k]. In Section 4.2, we show that, for every code Q of length q, if
the language Q+ satisfies P2[q] then the language (Qd+1)+ satisfies P4[d, q(d + 1)], for any
d > 0. Hence, any constructions of strictly τ -free codes K are relevant to P4.

P4 and P5: It is evident that any language K+ satisfying P5[d, k]also satisfies P4[d, k]. More-
over, it can be shown that if K+ satisfies P4[d, k] then (K2)+ satisfies P5[d, k]. Hence, any
constructions of codes K for P4 are relevant to P5.

P5 and P1: Obviously, any language satisfying P5[d, k] also satisfies P1[k]. Moreover, the
property P1[k] coincides with P5[0, k]. In Section 4.2, we show that every language satisfying
P1[q], for some positive integer q, also satisfies P5[d, q(d+1)] for every d > 0, and conversely,
if the language is of the form K+ and satisfies P5[d, k] then it satisfies P1[k − d] as well.
Hence, any constructions of languages satisfying P1 are relevant to P5.

1.6 A more general formalization: (θ, sim)-bond-freeness

The choice of the Hamming distance in the condition ‘H(x, τ(y))’ for similarity between words is
a very natural one and has attracted a lot of interest in the literature. One might argue, however,
that parts of two DNA molecules could form a stable bond even if they have different lengths.
In Figure 3, for example, the bound parts of the two molecules have lengths 10 and 9. Such
hybridizations (and even more complex ones) are addressed in [1]. Based on this observation, the
condition for two subwords x and y to bind together should be

|x|, |y| ≥ k and Lev(x, τ(y)) ≤ d.

The symbol |u| denotes the length of the word u and Lev(u, v) is the Levenshtein distance between
the words u and v – this is the smallest number of substitutions, insertions and deletions of symbols
required to transform u to v. With this formulation, the condition for similarity based on the
Hamming distance can be rephrased as follows

|x|, |y| ≥ k and H(x, τ(y)) ≤ d,
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where we assume that H(u, v) = ∞ if the words u and v have different lengths. In general, for
any similarity relation sim(·, ·) between words and for every involution θ, we define the following
property of a language L.

P[θ, sim]: If x and y are any nonempty subwords of L then sim(x, θ(y)) is false.

Any language satisfying P[θ, sim] is called a (θ, sim)-bond-free language.
The precise definition of a similarity relation is given in Section 2. There it is shown that the

relations ‘|u|, |v| ≥ k and H(u, v) ≤ d’ and ‘|u|, |v| ≥ k and Lev(u, v) ≤ d’ are indeed similarity
relations. For these relations we shall use the notation

Hd,k and Levd,k,

respectively.

1.7 Structure of the paper

In this paper we are interested in maximal bond-free languages. Let M be a fixed language and let
P be a property of languages. We say that a language L is a maximal P subset of M if there is no
word w in M −L such that L∪ {w} satisfies P. We note that maximality is a central theme in the
theory of variable-length codes [14].

In Section 2 we recall the general tools developed in [20] for proving decidability questions for
various language properties, and we show that one can decide in quadratic time whether a given
regular language is (θ, sim)-bond-free. We also address this problem for the special cases where sim
is equal to Hd,k or Levd,k. Moreover, we show that this problem is decidable even when the given
language is context-free. Then we recall the general tools developed in [18] and [20] for deciding
whether a given language is maximal with respect to a certain property, and we establish the
decidability of whether a given regular language is maximal with respect to the (θ, sim)-bond-free
property.

The decision method for maximality presented in Section 2 is not of polynomial time. In
Section 3, however, we are able to show a polynomial time algorithm for testing whether a given
regular langauge is (θ, Hd,k)-bond-free, for d = 0 or d = 1. In that section we also introduce the
subword closure operation, ⊗, which plays an important role in the paper.

In Section 4, we consider the problem of constructing tube languages satisfying the Hamming
bond-free property. Firstly, we describe a few direct methods, that is methods that do not rely
on other constructions, and then we show how to use languages satisfying P1[k] to construct new
languages satisfying P5[d, k], that is (τ, Hd,k)-bond-free languages. Moreover, we obtain a complete
structural characterization of all maximal (τ, Hd,k)-bond-free tube languages. In the case of d = 0,
the characterization is quite explicit and allows us to give the exact number of these languages.

In the last section, we conclude the paper with a summary of our results and a few directions
for future research.

2 Decidability Questions about (θ, sim)-bond-freedom

In this section, we recall the general tools developed in [20] for proving decidability questions for
various language properties, and we show that one can decide in quadratic time whether a given
regular language is (θ, sim)-bond-free. We also address this problem for the special cases where sim
is equal to Hd,k or Levd,k. Moreover, we show that this problem is decidable even when the given
language is context-free. Then, we recall the general tools developed in [18] and [20] for deciding
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whether a given language is maximal with respect to a certain property, and we establish the
decidability of whether a given regular language is maximal with respect to the (θ, sim)-bond-free
property.

2.1 Notation and basic tools

Here we introduce some notation about binary relations, automata and transducers, and binary
word operations. We assume the reader is familiar with the notation of Subsection 1.3.

We shall use a fixed non-singleton alphabet Σ and a fixed involution θ : Σ → Σ. The set of all
words (over Σ) is denoted by Σ∗ and includes the empty word λ. The involution θ can be extended
to Σ∗ as a morphic or antimorphic involution.

Recall that a language L is a set of words, or equivalently a subset of Σ∗. The notation Lc

represents the complement of the language L; that is, Lc = Σ∗ − L.
A binary relation γ, say, over Σ is a subset of Σ∗ × Σ∗. The expression ‘(u, v) is in γ’ can be

rephrased as ‘γ(u, v) is true’ when we view γ as a logic predicate. We are interested in binary
relations intended to define when two words are similar.

Definition 2.1 A binary relation sim is called a similarity relation with parameters (t, l), where t
and l are nonnegative integers, if the following conditions are satisfied.

(i) If sim(u, v) is true then abs(|u| − |v|) ≤ t.

(ii) If sim(u, v) is true and |u|, |v| > l then there are proper subwords x and y of u and v,
respectively, such that sim(x, y) is true.

We can interpret the above conditions as follows: (i) the lengths of two similar words cannot be
too different and (ii) if two words are similar and long enough, then they contain two similar proper
subwords. In the rest of the section we shall assume that sim is a fixed, but arbitrary, similarity
relation with parameters (t, l). It is evident that the relation Hd,k defined in Subsection 1.6 is an
example of a similarity relation with parameters (0, k). In the next subsection we show that Levd,k

is a similarity relation as well, with parameters (d, d + k).

Automata, Tries and Transducers

A nondeterministic finite automaton with λ productions (or transitions), a λ-NFA for short, is
a quintuple A = (S, Σ, s0, F, P ) such that S is the finite and nonempty set of states, s0 is the start
state, F is the set of final states, and P is the set of productions of the form sx → t, where s and t
are states in S, and x is either a symbol in Σ or the empty word. The automaton is called trim if
every state is reachable from the start state and can reach a final state. If there is no production
with x = λ, the automaton is called an NFA. If for every two productions of the form sx1 → t1
and sx2 → t2 of an NFA we have that x1 6= x2 then the automaton is called a DFA (deterministic
finite automaton). The language accepted by the automaton A is denoted by L(A). Any language
accepted by some λ-NFA is called regular. The size |A| of the automaton A is the number |S|+ |P |.

A trie is a DFA with the following structure

({[p] | p ∈ Pref(S)}, Σ, [λ], {[s] | s ∈ S}, P ) ,

where S is a finite language, Pref(S) is the set of all prefixes of S, and the set of productions is
equal to

P = {[p]a → [pa] | p ∈ Pref(S), a ∈ Σ, pa ∈ Pref(S)}.
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Note that each state [p] represents the prefix p of the input word that has been read so far by the
automaton. This implies that the trie accepts the language S.

A finite transducer (in standard form) is a sextuple T = (S, Σ, Σ′, s0, F, P ) such that Σ′ is the
output alphabet, the components S, s0, F are as in the case of λ-NFAs, and the set P consists of
productions of the form sx → yt where s and t are states in S, x ∈ Σ∪ {λ} and y ∈ Σ′ ∪ {λ}. The
relation realized by the transducer T is denoted by R(T ). A binary relation is called rational if it
can be realized by a finite transducer. For any word w, the symbol T (w) represents the set of all
outputs of T on input w, that is, T (w) = {z | (w, z) ∈ R(T )}. The size |T | of the transducer T (in
standard form) is |S| + |P |. For any λ-NFA A, one can construct the λ-NFA AT of size O(|T ||A|)
that accepts the language T (L(A)) = {z | (w, z) ∈ R(T ), w ∈ L(A)} [22].

We refer the reader to [29] or [33] for further details on automata and formal languages.

Binary word operations

Binary word operations are extensively used in this section as an important tool for representing
interaction of DNA molecules. A binary (word) operation is a mapping ♦ : Σ∗ × Σ∗ → 2Σ∗

, where
2Σ∗

is the set of all subsets of Σ∗. Hence the result of the operation ♦ with operands u, v ∈ Σ∗

is generally a language (u♦ v) ⊆ Σ∗. In some important particular cases we have |u♦ v| = 1 for
u, v ∈ Σ∗. If there is no risk of misunderstanding, we then may assume u♦ v = w, w ∈ Σ∗, instead
of the singleton language {w} ⊆ Σ∗. A typical example is the catenation operation u · v.

We extend a binary operation ♦ to any languages X and Y as follows:

X ♦Y =
⋃

u∈X,v∈Y

u♦ v. (1)

Let ♦ be a binary operation. The left inverse ♦l of ♦ is defined as [16]

w ∈ (x♦ v) iff x ∈ (w♦l v), for all v, x, w ∈ Σ∗,

and the right inverse ♦r of ♦ is defined as

w ∈ (u♦ y) iff y ∈ (u♦r w), for all u, y, w ∈ Σ∗.

The reversed ♦′ of ♦ is defined by u♦′ v = v♦u.
Several basic binary operations, together with their inverses, can be found in [24, 15, 18]. Here

we shall use binary operations involving trajectories [4, 21, 24]. Consider a trajectory alphabet
V = {0, 1} and assume V ∩ Σ = ∅. We call trajectory any string t ∈ V ∗. A trajectory is essentially
a syntactical condition which specifies how a binary word operation ♦ is applied to the letters of
its two operands. Let t ∈ V ∗ be a trajectory and let α, β be two words over Σ. The shuffle of α
with β on the trajectory t, denoted by α⊔⊔t β, is defined as follows:

α⊔⊔t β = {α1β1 . . . αkβk |α = α1 . . . αk, β = β1 . . . βk, t = 0i11j1 . . . 0ik1jk , where
|αm| = im and |βm| = jm for all m, 1 ≤ m ≤ k}.

Example 2.2 Let α = a1a2 . . . a8, β = b1b2 . . . b5 and assume that t = 03120310101. The shuffle of
α and β on the trajectory t is: α⊔⊔t β = {a1a2a3b1b2a4a5a6b3a7b4a8b5}.

The deletion of β from α on the trajectory t is the following binary word operation:

α ❀t β = {α1 . . . αk |α = α1β1 . . . αkβk, β = β1 . . . βk, t = 0i11j1 . . . 0ik1jk , where
|αm| = im and |βm| = jm for all m, 1 ≤ m ≤ k}.

Example 2.3 Let α = babaab, β = bb and assume that t = 001001. The deletion of β from α on
the trajectory t is: α ❀t β = {baaa}.
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Notice also that for given α, β, t we have always |α⊔⊔t β| ≤ 1, |α ❀t β| ≤ 1.
A set of trajectories is any set T ⊆ V ∗. The shuffle (deletion) of α with β on the set T, denoted

by α⊔⊔T β (α ❀T β), is:

α♦T β =
⋃

t∈T

α♦t β, (2)

where ♦ stands for ⊔⊔ or ❀, respectively. The operations ⊔⊔T and ❀T generalize to languages due
to the general principle (1).

The following results are proven in [4, 21, 24] or follow directly by proof techniques used ibidem.

Lemma 2.4 Let T be a set of trajectories, then

(i) ⊔⊔l
T = ❀T and ⊔⊔r

T = ❀
′
T̃
,

(ii) ❀
l
T = ⊔⊔T and ❀

r
T = ❀

T̃
,

where T̃ is the set of trajectories obtained by replacing all 0’s for 1’s and vice versa in all the
trajectories of T.

Lemma 2.5 Let L1, L2 and T be regular languages accepted by the NFA’s A1, A2 and AT , respec-
tively.

(i) There exists a NFA A accepting L1 ⊔⊔T L2 of the size |A| = O(|A1| · |A2| · |AT |), constructible
in time |A|.

(ii) There exists a λ-NFA A′ accepting L1 ❀T L2 of the size |A′| = O(|A1| · |A2| · |AT |), con-
structible in time |A′|.

2.2 Decidability for regular and context-free languages

Reference [19] defines several classes of languages (language properties) for avoiding undesired
bonds. In [20], it is observed that many of these properties can be expressed using a predicate that
involves two binary word operations as parameters.

Definition 2.6 [20] A mapping P : 2Σ∗

−→ {true, false} is called a strictly bond-free property
(of degree 2), if there are binary word operations ♦lo, ♦up and an involution θ such that for an
arbitrary L ⊆ Σ∗, P(L) = true iff

∀w, x, y ∈ Σ∗ (w♦lo x ∩ L 6= ∅, w♦up y ∩ θ(L) 6= ∅) ⇒ w = λ. (3)

Theorem 2.7 (θ, sim)-bond-freedom is a strictly bond-free property.

Proof. We define the mappings simL and simR as follows:

simL(y) = {x ∈ Σ∗ | sim(x, y)}, (4)

simR(x) = {y ∈ Σ∗ | sim(x, y)}. (5)
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Recall that a language L is (θ, sim)-bond-free iff

∀x1, y1, x2, y2 ∈ Σ∗, w1, w2 ∈ Σ+,

x1w1y1, x2w2y2 ∈ L ⇒ not sim(w1, θ(w2)) iff

∀x1, y1, x2, y2 ∈ Σ∗, w1, w2 ∈ Σ+,

x1w1y1, x2θ(w2)y2 ∈ L ⇒ not sim(w1, w2) iff

∀x1, w1, y1, x2, w2, y2 ∈ Σ∗,

x1w1y1, x2θ(w2)y2 ∈ L, sim(w1, w2) ⇒ (w1 = λ or w2 = λ) iff

∀x1, w1, y1, x2, w2, y2 ∈ Σ∗,

x1w1y1 ∈ L, x2w2y2 ∈ θ(L), w2 ∈ simR(w1) ⇒ (w1 = λ or w2 = λ) iff

∀x1, y1, x2, y2, w ∈ Σ∗,

({x1wy1} ∩ L 6= ∅, {x2} · (simR(w) ∩ Σ+) · {y2} ∩ θ(L) 6= ∅) ⇒ w = λ iff

∀x, y, w ∈ Σ∗,

(w⊔⊔T x ∩ L 6= ∅, (simR(w)⊔⊔T y) ∩ θ(L) 6= ∅) ⇒ w = λ,

where T = 1∗0+1∗. ✷

We note that the above theorem, as well as Corollary 2.9 and Theorem 2.10 (see further be-
low) remain valid even if sim is an arbitrary binary relation that does not necessarily satisfy the
conditions in Definition 2.1. The following result has been shown in [20]:

Theorem 2.8 Let P be a strictly bond-free property associated with operations ♦lo, ♦up . For a
language L ⊆ Σ∗, P(L) = true iff

(L♦l
lo Σ∗) ❀1+ (θ(L)♦l

up Σ∗) = ∅. (6)

Corollary 2.9 A language L ⊆ Σ∗ is (θ, sim)-bond-free, iff

(L ❀T Σ∗) ❀1+ simL(θ(L) ❀T Σ∗) = ∅,

where T = 1∗0+1∗.

Proof. Comparing Definition 2.6 and the proof of Theorem 2.7, we obtain

x♦lo y = x⊔⊔T y, x♦up y = simR(x)⊔⊔T y.

Observe that for a binary operation ♦,

z ∈ simR(x)♦ y iff ∃w ∈ simR(x), z ∈ w♦ y iff

∃w ∈ simR(x), w ∈ z ♦l y iff ∃w ∈ z ♦l y, x ∈ simL(w), iff

x ∈ simL(z ♦l y),

as x ∈ simL(w) iff w ∈ simR(x) due to (4), (5). Hence we have

x♦l
lo y = x ❀T y, x♦l

up y = simL(x ❀T y)

by Lemma 2.4. The statement now follows by Theorem 2.8. ✷

The above result allows us to construct an effective algorithm deciding whether a given regular
language is (θ, sim)-bond-free.
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Theorem 2.10 Assume that sim is a rational relation. The following problem is decidable in
quadratic time.

Input: NFA A.

Output: Y/N, depending on whether L(A) is a (θ, sim)-bond-free language.

Proof. Let T be a (fixed) transducer realizing the similarity relation sim. Recall from the previous
subsection that given a λ-NFA A, the λ-NFA AT accepts the language T (L(A)) and is of size
O(|T ||A|). Moreover, given a λ-NFA A, we can construct a λ-NFA of size O(|A|) accepting the
language θ(L(A)). Using these facts and Lemma 2.5, we can construct a λ-NFA A′ accepting the
language

(L ❀T Σ∗) ❀1+ simL(θ(L) ❀T Σ∗)

in time O(|A|2|T |), and so is its size. Then the result follows by Corollary 2.9. ✷

For the case where sim is one of the similarity relations Hd,k or Levd,k defined in Subsection 1.6,
we have the following result.

Corollary 2.11 The following problem is decidable in time O(dk|A|2) (or O(dk2|A|2), respec-
tively):

Input: NFA A, integers d ≥ 0 and k ≥ 1.

Output: Y/N, depending on whether L(A) is a (θ, Hd,k)-bond-free (or (θ, Levd,k)-bond-free, re-
spectively) language.

Proof. We only show the case where the similarity relation is Levd,k. We explain how to construct
a transducer T of size O(dk2) realizing this relation. Then, the claim will follow from Theorem 2.10.
One can easily construct a transducer T1 of size O(d) such that (x, y) ∈ R(T1) iff Lev(x, y) ≤ d.
Let B be a DFA of size O(k) accepting all words of length at least k. The required transducer
T is equal to (T1 ↑ B) ↓ B. Here we use the fact that, for each transducer S and λ-NFA C, one
can construct the transducers S ↑ C and S ↓ C, each of size O(|S||C|), realizing the relations
{(x, y) ∈ R(S) | x ∈ L(C)} and {(x, y) ∈ R(S) | y ∈ L(C)}, respectively – see [22]. The case of
Hd,k is analogous. ✷

As shown above, there exists an effective algorithm for testing whether a particular regular
language is (θ, sim)-bond-free, for any rational similarity relation sim. Now we address the same
problem for the case of context-free languages. We note first that for most of the DNA language
properties considered in [11, 19, 20] the problem is undecidable. As the (θ,sim)-bond-free property
seems to be rather general, it might be surprising that the same problem is decidable. This is
shown in Theorem 2.13 using the next lemma.

Lemma 2.12 For all words u and v, if sim(u, v) is true then there are subwords x and y of u and
v, respectively, such that sim(x, y) is true and |x|, |y| ≤ t + l.

Proof. By inductive use of the condition (ii) in Definition 2.1, there must be subwords x and y
of u and v, respectively, such that sim(x, y) and either |x| ≤ l or |y| ≤ l. Then the condition (i) in
that definition implies that |x|, |y| ≤ t + l. ✷

Theorem 2.13 Suppose that the similarity relation sim is computable. Then, it is decidable
whether a given context-free language is (θ, sim)-bond-free.
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Proof. Let L be the given language (by means of a context-free grammar, for instance). Observe
that the language L ❀T Σ∗, where T = 1∗0+1∗, is the set of all subwords of L. This set is a
context-free language, as T and Σ∗ are regular languages [21]. Also, by definition, L is not (θ,
sim)-bond-free iff there are nonempty subwords u, v of L such that sim(u, θ(v)) holds. In this
case, Lemma 2.12 implies that there are subwords x and y of u and v, respectively, such that
|x|, |y| ≤ t + l. Hence, to decide whether L is (θ, sim)-bond-free or not, it is enough to test for all
such subwords x, y of L whether sim(x, θ(y)) holds. ✷

Recall that the relation Hd,k defined in Subsection 1.6 is a similarity relation. Next we show
that Levd,k is a similarity relation as well, which implies that the above theorem applies when sim
is one of these two relations – see Corollary 2.15.

Lemma 2.14 The binary relation Levd,k is a similarity relation with parameters (d, d + k).

Proof. An alignment of two words u and v is a sequence of pairs

((u1, v1), . . . , (un, vn))

such that u = u1 · · ·un and v = v1 · · · vn and, for each index i, ui and vi are in Σ∪{λ} with at least
one of them being nonempty. Assume that Levd,k(u, v) is true. Then Lev(u, v) ≤ d and, therefore,
there exists an alignment α as above such that there are at most d pairs (ui, vi) in α with ui 6= vi.
Obviously, abs(|u| − |v|) ≤ d. Now suppose that |u|, |v| > k + d. There is a prefix

α1 = ((u1, v1), . . . , (uj , vj))

of α such that the word x = u1 · · ·uj is of length k + d. This implies that the word y = v1 · · · vj

is of length at least k. If |y| ≤ k + d then the proper subwords x and y satisfy Levd,k, as required.
If |y| > k + d then, as before, there is a prefix ((u1, v1), . . . , (ur, vr)) of α1 such that the word
y1 = v1 · · · vr is of length k + d, which implies that the word x1 = u1 · · ·ur is of length at least k.
Hence, again, the proper subwords x1 and y1 satisfy Levd,k, as required. ✷

Corollary 2.15 Let d and k be nonnegative integers with k ≥ 1. It is decidable whether a given
context-free language is (θ, Hd,k)-bond-free (or (θ, Levd,k)-bond-free).

2.3 Decidability of maximality for regular languages

In this subsection we use the tools developed in [18, 20] to decide whether a given regular language
is a maximal (θ, sim)-bond-free subset of some given regular language. These tools involve the
concept of a language inequation.

Let L and M be two languages and let ♦ be a binary word operation. Consider an inequation
of the form

X ♦L ⊆ Xc, X ⊆ M. (7)

In [18], it is shown that this inequation is equivalent to

X ♦r X ⊆ Lc, X ⊆ M. (8)

A language Smax is a maximal solution of (7), or equivalently of (8), if Smax is a solution (i.e.
(7) holds true for X = Smax) and for each x in M −Smax, the language Smax∪{x} is not a solution.

Let S be a solution of (7), or equivalently of (8). We call the language

R = M − (S ∪ S ♦L ∪ S ♦l L)

the residue of S.
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Theorem 2.16 [20] Let S be a solution of (7), let R be the residue of S, and let Q = {z ∈ Σ∗ | z ∈
z ♦L}. Then S is maximal iff R − Q = ∅.

Lemma 2.17 For each strictly bond-free property P there is a binary word operation ⊡P such that
for a language L ⊆ Σ∗, P(L) = true iff

L ⊡P L = ∅. (9)

Proof. By Theorem 2.8, for x, y ∈ Σ∗ we have

x ⊡P y = (x♦l
lo Σ∗) ❀1+ (θ(y)♦l

up Σ∗). (10)

✷

In the case where P is the (θ, sim)-bond-free property, we shall use the symbol ⊡ for ⊡P .

Lemma 2.18 The left and right inverses of ⊡ are as follows.

(i) z ⊡l y = (z ⊔⊔1+ simL(θ(y) ❀T Σ∗))⊔⊔T Σ∗,

(ii) x ⊡r z = θ(simR((x ❀T Σ∗) ❀0+ z)⊔⊔T Σ∗).

Proof. In [20] it is shown that

(i) z ⊡l
P y = (z ⊔⊔1+(θ(y)♦l

up Σ∗))♦lo Σ∗,

(ii) x ⊡r
P z = θ(((x♦l

lo Σ∗) ❀0+ z)♦up Σ∗).

From the proof of Corollary 2.9, recall that

x♦lo y = x⊔⊔T y, x♦up y = simR(x)⊔⊔T y

and
x♦l

lo y = x ❀T y, x♦l
up y = simL(x ❀T y)

The above observations imply that the first claim is correct. For the second claim note that a word
w is in x♦l

up y = simL(x ❀T y) iff there is a word u such that u ∈ simR(w) and y ∈ (u ❀
l
T v), iff

y ∈ (simR(w)⊔⊔T v) iff y ∈ w♦up v. ✷

Theorem 2.19 Assume that the similarity relation sim is rational. Then the following problem is
decidable.

Input: NFAs A and B such that L(A) is a (θ, sim)-bond-free subset of L(B).

Output: Y/N, depending on whether L(A) is a maximal (θ, sim)-bond-free subset of L(B).

Proof. Let L = L(A) and M = L(B) and D be a transducer realizing sim. Lemma 2.17 implies
that L ⊡ L = ∅, and (8) implies that L ⊡r Σ∗ ⊆ Lc. By Theorem 2.16, we have that L is maximal
iff

M ∩ (L ∪ L ⊡r Σ∗ ∪ Σ∗ ⊡l L)c ∩ Qc = ∅,

where we have used the fact that ⊡rl = ⊡l′ [18]. The language (L ∪ L ⊡r Σ∗ ∪ Σ∗ ⊡l L)c can be
computed from A, B and D using the following facts for arbitrary λ-NFAs C, C ′ and transducer F
and regular trajectory set S: (i) one can compute λ-NFAs accepting L(C)⊔⊔S L(C ′) and L(C) ❀S
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L(C ′) – see Lemma 2.5; (ii) one can compute a λ-NFA CF accepting the language {w | w ∈ F (u),
for some u ∈ L(C)} [22]; (iii) one can compute a transducer F−1 such that w ∈ F (u) iff u ∈ F−1(w)
[33]; and (iv) one can compute λ-NFAs accepting the languages L(C)c and θ(L(C)).

We need now to compute the set Qc. For this, observe first that

u ⊡ v =





λ, if u and v contain subwords x and y, respectively,
such that sim(x, θ(y)) holds;

∅, otherwise.

Then, by Lemma 2.12, we see that u ⊡ v = λ iff u and v contain subwords x and y of length at
most t+ l such that sim(x, θ(y)) holds. As Q consists of all words w such that w ⊡w 6= ∅, it follows
that each such w must be of the form x1w1y1 = x2w2y2 with |x1| ≤ |x2| and |w1|, |w2| ≤ t + l and
sim(w1, θ(w2)). Equivalently, w is in Q iff one of the following holds.

• w = xw1yw2z with |w1|, |w2| ≤ t + l and sim(w1, θ(w2));

• w = x1svpy2 with |v| > 0 and |w1|, |w2| ≤ t + l and sim(w1, θ(w2)), where w1 = sv and
w2 = vp;

• w = x1svpy1 with |v| > 0 and |w1|, |w2| ≤ t + l and sim(w1, θ(w2)), where w1 = svp and
w2 = v.

Note that, for every word u, the set D(u) is finite and computable. Thus, Q can be computed as
the union Q1 ∪ Q2 ∪ Q3, where

Q1 = Σ∗
( ⋃

|w1|≤t+l

⋃

u∈D(w1)

(w1Σ
∗θ(u))

)
Σ∗,

Q2 = Σ∗
( ⋃

(s,v,p)∈P2

svp
)
Σ∗,

Q3 = Σ∗
( ⋃

(s,v,p)∈P3

svp
)
Σ∗,

where P2 is the set of all triples (s, v, p) with |sv| ≤ t + l, |v| > 0, θ(vp) ∈ D(sv), and P1 is the set
of all triples (s, v, p) with |svp| ≤ t + l, |v| > 0, θ(vp) ∈ D(svp). As P1 and P2 are computable, the
set Q is computable as well. ✷

3 Decidability of Maximality in the Hamming Case

The decision method for maximality presented in Subsection 2.3 is not of polynomial time. In this
section, however, we are able to show a polynomial time algorithm for testing whether a given
regular langauge is (θ, Hd,k)-bond-free, for d = 0 or d = 1. Moreover, we introduce the subword
closure operation, ⊗, which plays an important role in the sequel.

3.1 Some notation

We assume that the reader is familiar with the notation of Subsection 1.3 as well as the terminology
about automata and transducers in Subsection 2.1. In particular, we assume that θ is an arbitrary
antimorphic involution and τ is the DNA involution.
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Let k be a positive integer and let L be a language. We use the notation

Subk(L)

to represent the set of all subwords of length k of L. Let d be a nonnegative integer and let S be
a language containing only words of the same length. The Hamming ball Hd(S) of S is the set
{v | H(v, z) ≤ d, for some z ∈ S}. Note that Hd(S) = S when d = 0.

Lemma 3.1 Let k and d be integers with k ≥ 1 and d ≥ 0 and let L be a language. The following
statements hold true.

1. θ(Lc) = θ(L)c.

2. Subk(θ(L)) = θ(Subk(L)).

3. H(θ(u), θ(v)) = H(u, v), for all words u and v.

4. Hd(θ(L)) = θ(Hd(L)).

Proof. The proof is based on the definitions of the concepts involved and is left to the reader. ✷

Lemma 3.2 Let d ≥ 0 and k ≥ 1 be integers. A language L is (θ, Hd,k)-bond-free if and only if

θ(Subk(L)) ∩ Hd(Subk(L)) = ∅. (11)

Proof. We prove the ‘if’ part and we leave to the reader the proof of the ‘only if’ part. Let w1

and w2 be subwords of L of length ≥ k. We show that H(w1, θ(w2)) > d. The words w1 and
w2 can be written as u1z1 and z2u2, respectively, with |u1| = |u2| = k. As u1 is in Subk(L) and
θ(u2) is in θ(Subk(L)), the assumption of the ‘if’ part implies that θ(u2) /∈ Hd(u1) and, therefore,
H(θ(u2), u1) > d. Hence, also H(θ(w2), w1) > d holds. ✷

In the literature on DNA encodings, and in coding theory in general, the set of words that
are involved in the application of interest are usually formed by concatenating shorter words of a
certain fixed length. Following this practice, we consider languages that are subsets of (Σk)+, for
some positive integer k. We call such languages k-block languages. Naturally, any regular k-block
language can be represented by a special type of lazy DFA [32], which we call k-block DFA. This
is a trim deterministic finite automaton such that, for every production pu → q, the word u is of
length k and there is no other production of the form pu → q′ – this ensures that the automaton
is deterministic. The size |A| of a k-block DFA A is the quantity kn, where n is the number
of productions in A. As an example, consider the 2-state k-block DFA with the following set of
productions, P , where s is the start state, f is the only final state, and K is a finite code whose
words are of length k.

P = {su → f | u ∈ K} ∪ {fu → f | u ∈ K}.

Clearly, the language accepted by this k-block DFA is K+.
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3.2 The subword closure operation and the algorithm

Here we consider the problem of deciding in polynomial time whether a given regular k-block
language that is (θ, Hd,k)-bond-free is maximal with this property. If the language is given in terms
of an ordinary DFA the problem appears to be intractable. On the other hand, we are able to solve
this problem affirmatively in the cases of d = 0 and d = 1, and when the language in question is
given in terms of a k-block DFA – see Theorem 3.8. We remind the reader that, in the case of
d = 0, the property coincides with P1[k] – see Subsection 1.4. Next we illustrate the concept of
maximality with an example.

Example 3.3 Consider the code K1 = {AA, AC, CA, CC} over the DNA alphabet and the 2-block
language K+

1 . Let S1 = Sub2(K
+
1 ). Then, S1 is equal to K1 and S1 ∩ τ(S1) is empty. Hence, the

language K+
1 is a (τ, H0,2)-bond-free subset of (Σ2)+. Moreover, there is no word v in Σ2 − K1

such that the language (K1∪{v})+ is H0,2-bond-free. For example, if v = AG then GC would be a
subword of length 2 of (K1∪{v})+ such that GC = τ(GC). On the other hand, it is possible to add
AG as a subword with the constraint that AG cannot be followed by CA or CC. In fact we can add
also GA as a subword, provided that GA cannot be preceded by AC, CC, or AG. More specifically,
consider the language L2 accepted by the 2-block DFA A2 = (Σ, {1, 2, 3, 4}, 1, {2, 3, 4}, P2), where
the set of productions P2 is equal to

{1u → 2, 1v → 3, 1(AG) → 4 | u = AA, CA, GA and v = AC, CC} ∪
{2u → 2, 2v → 3, 2(AG) → 4 | u = AA, CA, GA and v = AC, CC} ∪
{3u → 2, 3v → 3, 3(AG) → 4 | u = AA, CA and v = AC, CC} ∪
{4(AG) → 4, 4(AC) → 3, 4(AA) → 2}.

The language L2 is a proper superset of K+
1 and is a (τ, H0,2)-bond-free subset of (Σ2)+. In fact

in the next example we show that L2 is maximal using Lemma 3.6.

The operation of subword closure plays an important role in the sequel. Next we give the formal
definition and provide a few basic properties of this operation.

Definition 3.4 Let S be a language containing only words of the same length k, for some positive
integer k. The subword closure S⊗ of S is the set

{w ∈ Σ∗ | |w| ≥ k, Subk(w) ⊆ S}

.

Lemma 3.5 Let S be a language containing only words of the same length k, for some positive
integer k. The following statements hold true.

1. S = Subk(S
⊗).

2. Let S1 be a language containing only words of the same length k. Then S1 ⊆ S iff S1
⊗ ⊆ S⊗.

This implies that, if S1 6= S then S1
⊗ 6= S⊗

3. If S = Subk(L), for some language L, then L ⊆ S⊗.

Proof. The proof is based on the definition of S⊗ and is left to the reader. ✷

Lemma 3.6 Let M be a language satisfying the condition Subk(M) ⊆ M ⊆ ΣkΣ∗ and let L be a
(θ, Hd,k)-bond-free subset of M , for some integers k ≥ 1 and d ≥ 0. The following statements hold
true.
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1. If the language L is not a maximal (θ, Hd,k)-bond-free subset of M then the following set is
nonempty:

(M − L)
⋂ (

Subk(L)⊗
⋃ (

θ(Hd(Subk(L))c) ∩ {w ∈ Σk | H(w, θ(w)) > d}
))

.

2. Conversely, if a word w belongs to the above set then the language L ∪ {w} is a (θ, Hd,k)-
bond-free subset of M and, therefore, L is not a maximal (θ, Hd,k)-bond-free subset of M .

Proof. Let S = Subk(L) and let D = {w ∈ Σk | H(w, θ(w)) > d}. By (11), the assumption that
L is (θ, Hd,k)-bond-free is equivalent to the condition

θ(S) ∩ Hd(S) = ∅.

We begin with the first statement. The assumption that L is not maximal implies that there is a
word w of minimum length with the property that w ∈ M − L and

θ(S ∪ Subk(w)) ∩ Hd(S ∪ Subk(w)) = ∅.

We need to show that the set (M − L) ∩ (S⊗ ∪ (θ(Hd(S)c) ∩ D)) is not empty. We distinguish
two cases. Firstly, assume that w is of length k. Then, Subk(w) = {w} and θ(w) /∈ Hd(w) and
θ(w) /∈ Hd(S). This implies that w ∈ D ∩ θ(Hd(S)c). Now consider the case where |w| > k. We
show that v ∈ S, for all words v in Subk(w). Let v ∈ Subk(w) and suppose that v is not in S. Then
|v| = k and v /∈ L. Moreover, the assumption about M implies that the word v must be in M . As
S ∪ {v} is a subset of S ∪ Subk(w), one has that θ(S ∪ {v}) ∩ Hd(S ∪ {v}) = ∅, which contradicts
the assumption about the choice of w. Hence, it is the case that Subk(w) ⊆ S, which implies that
w must be in S⊗.

Now we prove the second statement. Let w be a word in (M − L) ∩ θ(Hd(S)c) ∩ D. Then
|w| = k and H(w, θ(w)) > d and w /∈ Hd(θ(S)) and, therefore, H(θ(w), z) > d for all words z in S.
We claim that

θ(Subk(L1)) ∩ Hd(Subk(L1)) = ∅,

where L1 = L ∪ {w}. Indeed the claim follows easily when we note that Subk(L1) = S ∪ {w}.
Hence, L1 is a (θ, Hd,k)-bond-free subset of M . Now let u be a word in (M − L) ∩ S⊗ and let
L2 = L ∪ {u}. As Subk(u) is a subset of S, we have that Subk(L2) = S, which implies that
θ(Subk(L2)) ∩ Hd(Subk(L2)) is empty. Hence, L2 is a (θ, Hd,k)-bond-free subset of M . ✷

In this paper we shall apply the above lemma for the cases where M is equal to (Σk)+ or ΣkΣ∗.

Example 3.7 We show that the language L2 defined in the previous example is a maximal
(τ, H0,2)-bond-free subset of (Σ2)+. Assume that L2 is not maximal. Let S2 = Sub2(L2) and
let D = {w ∈ Σ2 | H(w, τ(w)) > 0}. Then S2 consists of the words AA, AC, AG, CA, CC, GA. As

((Σ2)+ − L) ∩ D = τ(S2) and τ(H0(S2)
c) = τ(S2)

c,

the first statement of Lemma 3.6 implies that there is a word w in the set ((Σ2)+ −L)∩S2
⊗. Then

the second statement of the lemma implies that L2 ∪ {w} is (τ, H0,2)-bond-free and, therefore, no
subword of w can be in τ(S2). In particular, none of CG, GC, and GG can be subwords of w.
This leads to a contradiction as follows. Let w = w1 · · ·wm with each subword wi being of length
2. As w is not in L there is a prefix u = w1 · · ·wi−1 of w, for some i > 1, such that u takes the
automaton A2 to a state q in {3, 4} and there is no production of the form qwi → p. In particular,
this is possible when q = 3 and wi = GA, or q = 4 and wi ∈ {CA, CC, GA}. In the first case u
must end with C and in the second one u must end with G, which implies that one of CG, GC,
and GG must be a subword of w.
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For the sake of simplicity, in the next theorem we assume that θ is the DNA involution. The
theorem will remain valid, however, even for an arbitrary antimorphic involution if we adjust the
time complexity estimates.

Theorem 3.8 Let d be a fixed value in {0, 1}. The following problem is computable in polynomial
time.

Input: k-block DFA A such that L(A) is a (θ, Hd,k)-bond-free subset of (Σk)+.

Output: Y/N, depending on whether L(A) is maximal with that property. Moreover, if L(A) is
not maximal, output a minimal-length word w ∈ (Σk)+ − L(A) such that L(A) ∪ {w} is a
(θ, Hd,k)-bond-free subset of (Σk)+.

In particular, the time complexity t(|A|) is bounded as follows:

t(|A|) =





O(k|A|3), if k is odd and d = 0;
O(|A|6), if k is even and d = 0;
O(k3|A|6), if d = 1.

The proof of the above theorem is based on several intermediate lemmata, some of which might
be of interest in their own right. In the proofs we use the following facts and notation.

• Every NFA A can be converted to an equivalent trim NFA of size O(|A|) in time O(|A|).
Moreover, if A accepts only words of the same length, we can convert it to an equivalent NFA
of size O(|A|) with a single final state in time O(|A|).

• Given two NFA’s A and B we can use the standard product construction to obtain the NFA
A∩B of size O(|A||B|) accepting the language L(A)∩L(B). If A is a DFA we can construct
a DFA Ac of size O(|A|) accepting the language L(A)c.

• If A is an NFA and p and q are states of A then Ap,q denotes the NFA which is identical
to A except that p is the start state and q is the final state of Ap,q. If A is trim with start
state s and a single final state f then θ(A) is the trim NFA of size O(|A|) accepting the
language θ(L(A)) such that θ(A) results from Af,s by replacing each production qa → r with
rθ(a) → q.

• If a trim NFA A accepts only words of the same length k, for some positive integer k, then
the state set of A can be partitioned into k + 1 levels (sets of states) such that the start
state is the only state in level 0, level k consists of the final states of A, and if qa → r is a
production of A with q being at level l < k then the state r is in level l + 1. If A is a DFA
then there is a DFA A−k of size O(|A|) accepting the language Σk − L(A). Moreover, A−k

can be constructed from A in time O(|A|).

Lemma 3.9 For every k-block DFA A, there is an (ordinary) DFA Â of size O(|A|) such that
L(Â) = L(A). Moreover, Â can be constructed from A in time O(|A|).

Proof. For each state q of A, let Pq be the set of productions of A of the form qu → r. The set
of productions of Â consists of all the productions computed by the following procedure: For each
state q of A compute a special type of trie Tq, called quasi-trie here, as follows. The start state of
Tq is q. For each production qu → r in Pq, insert into Tq the word u as one would do in an ordinary
trie – this will add into Tq all necessary productions – with the following modification: if u is of
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the form u1a with a in Σ, then instead of the production [u1]q a → [u]q insert into the quasi-trie
Tq the production [u1]q a → r. It is evident that this procedure requires time linear with respect
to |A|. Obviously the state set of Â consists of the states of A plus all the states [w]q appearing in
some quasi-trie Tq. The start and final states of Â are exactly those of A. Moreover, for each pair
of states (q, r) of A, the set of words accepted by Âq,r is exactly the set of words {u | qu → r is a
production of A}. This implies that L(Â) = L(A). ✷

Lemma 3.10 Let T be a trie accepting only words of the same length. There is a DFA T⊗ of size
O(|T |) accepting the language L(T )⊗. Moreover, T⊗ can be constructed from T in time O(|T |).

Proof. For a word w of the form aw1, with a ∈ Σ, we denote by ẇ the word w1. The states of
T⊗ are exactly those of T and the start and final states of T⊗ are exactly those of T as well. The
DFA T⊗ contains all the productions of T plus, for each final state [w] of T – note that there are
no productions in T of the form [w]a → [u] – and for each a in Σ, the production [w]a → [ẇa] iff
[ẇa] is a final state of T . It is evident that this process can be performed in time O(|T |). We show
next that L(T )⊗ ⊆ L(T⊗) and we leave the proof of the converse inclusion to the reader.

First note that every word w in L(T )⊗ is of the form ua1 · · · am with |u| = k, m ≥ 0, and each
ai is in Σ. Let u0 = u and ui = u̇i−1ai for all i = 1, . . . , m. Then, for each index i, the word ui is in
Subk(w), which implies that ui is in L(T ). Thus, on input w the DFA T⊗ will behave as follows:
the prefix u of w will take T⊗ to the final state [u] and, in general, if ua1 · · · ai−1 takes T⊗ to the
final state [ui−1] then, as u̇i−1a is in L(T ), the prefix ua1 · · · ai of w would take T⊗ to the final
state [ui]. Thus, w will be accepted by T⊗ and, therefore, w is also in L(T⊗). ✷

Lemma 3.11 Let A be a k-block DFA. There is a trie Tk(A) of size O(|A|2) accepting the language
of all subwords of length k of L(A). Moreover, Tk(A) can be constructed from A in time O(|A|2).

Proof. Let Q be the set of states and let n be the number of transitions of A. Then n = |A|/k.
For each state q in Q, let Pq be the set of transitions of the form pu → q and let Nq be the set of
transitions of the form qv → r. Clearly, Subk(L(A)) is the union of Subk(uv), for all pairs of words
u and v appearing in the sets Pq and Nq, respectively, of some state q. Using this observation,
the trie Tk(A) is constructed as follows. For each state q in Q and for every transitions pu → q
in Pq and qv → r in Nq, add all subwords of length k of uv into the trie. Note that each pair
(u, v) contributes at most k + 1 different subwords in Subk(L(A)), and there are

∑
q∈Q |Pq||Nq|

such pairs (u, v). Hence, the number of words inserted into the trie is (k + 1)
∑

q∈Q |Pq||Nq|. As∑
q∈Q |Nq| = n and |Pq| ≤ n, for all q, it follows that there are at most (k + 1)n2 words of length

k inserted into the trie Tk(A). Hence, |Tk(A)| = O(|A|2). ✷

Lemma 3.12 Consider the following problem.

Input: Integers d ≥ 0 and k ≥ 1, and NFA A accepting only words of length k.

Output: Y/N, depending on whether there is a word w in L(A) such that H(w, θ(w)) > d. More-
over, output a word with this property (if it exists).

There is an algorithm that computes the problem such that the time complexity t(|A|, d) of the
algorithm is bounded as follows:

t(|A|, d) =

{
O(|A|), if k is odd and d = 0;

O(|A|3 + d
2 |A|3), otherwise.
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Proof. Let s be the start state of A. We can assume that A is a trim NFA with a single final state
f – if not, we can convert A to an equivalent such NFA. First note that w 6= θ(w) for any word
of odd length and, therefore, if d = 0 and k is odd then H(w, θ(w)) > d for all words w in L(A).
In this case the algorithm consists of picking any path from state s to state f and outputting the
word corresponding to this path. In the sequel we assume that k is even or d > 0. Let

t =

{
⌊d/2⌋, if k is even;
⌊(d − 1)/2⌋, if k is odd.

One can verify that for any word w, H(w, θ(w)) > d iff there are words u and u′ of the same length
such that w = uu′ (if |w| is even) or w ∈ uΣu′ (if |w| is odd), and H(u, θ(u′)) > t. Now let Tt be a
transducer of size O(t + 2) with the property that, for all words x and y, x ∈ Tt(y) iff H(x, y) > t.
Based on the above observations one can verify that there is a word w in L(A) with H(w, θ(w)) > d
iff there is a state q at level ⌊k/2⌋ and a state r at level ⌈k/2⌉ that is adjacent to q – in fact r = q
if k is even – such that

Tt(L(As,q)) ∩ θ(L(Ar,f )) 6= ∅.

For the sake of simplicity we describe the algorithm only for the case where k is odd – if k is even
then the loop at Step 2 iterates for each state q in Q1 and assumes that r = q and a = λ.

1. Let Q1 be the set of states at level ⌊k/2⌋ and let P be the set of productions of the form qa → r
with q ∈ Q1;

2. For each production qa → r in P repeat steps (A)–(B):

(A) Construct the NFA B = (As,q)Tt ∩ θ(Ar,f );

(B) If there is a path from the start to the final state of B do the following:

B1 output YES;

B2 Let v be the word corresponding to the path and let Dv be a DFA of size O(|v|)
accepting {v};

B3 Let C be the NFA (Dv)Tt ∩ As,q;

B4 Let u be the word corresponding to any path from the start to the final state of C;

B5 output the word uaθ(v) and quit;

3. Output NO.

Suppose that for some production qa → r there is a path in Step 2(B), then the word v
corresponding to this path belongs to L((As,q)Tt) ∩ θ(L(Ar,f )). In this case, θ(v) is in L(Ar,f )
and there is a word u ∈ L(As,q) such that v ∈ Tt(u). This implies that H(u, v) > t and u ∈
Tt(v) and, therefore, the language accepted by the NFA C in Step B3 is nonempty. Moreover, as
H(u, θ(θ(v))) > t, one has that H(uaθ(v), θ(uaθ(v))) > d. This establishes the correctness of steps
B2–B5. Regarding the time complexity, first note that Step 1 can be performed in time O(|A|) and
that the loop in Step 2 iterates at most O(|A|) times. In each iteration, the algorithm computes the
NFA B in time O((t+2)|A|2). If L(B) is nonempty the NFA C is computed in time O(k(t+2)|A|)
and then the algorithm terminates. Hence the algorithm operates in time O(|A|3 + t|A|3) in the
worst case. ✷

Proof of Theorem 3.8.
The algorithm is as follows. We use S as a shorthand notation for Subk(L(A)).
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1. If d = 0 let A1 be the trie Tk(A). If d = 1 let A1 be the trie obtained by modifying the
construction of Tk(A) as follows: For each word x in S, insert into Tk(A) the word x as well
as all words y that differ from x in exactly one position – there are exactly k(|Σ| − 1) such
words. Note that L(A1) = Hd(S) and |A1| = O(|A|2) if d = 0, or |A1| = O(k|A|2) if d = 1.

2. Let F be the set of words in L(A) of length k. This set can be computed in time O(|A|) and
is of cardinality O(|A|/k).

3. Let B0 be the trie that results if we insert into A1 the words of θ(F ). This process requires
time O(|F |k) and the resulting trie is of size O(|F |k + |A1|), which is simply O(|A1|). Note
that L(B0) = (Hd(S) ∪ θ(L(A))) ∩ Σk.

4. Let B1 be a trim DFA of size O(|A1|), with a single final state, that is equivalent to B0
−k.

5. Let A2 = θ(B1). Note that L(A2) = Σk ∩ θ(Hd(S)c) ∩ L(A)c and |A2| = O(|A1|).

6. Run the algorithm of Lemma 3.12 on input (d, k, A2). If that algorithm returns YES and a
word w, then output NO and the word w, and quit.

7. Let B be a DFA of size O(k) accepting the language (Σk)+.

8. Let A3 = (B ∩ Âc) ∩ Tk(A)⊗. Note that L(A3) = ((Σk)+ − L(A)) ∩ S⊗ and |A3| = O(k|A|3).

9. Find a shortest path from the start to a final state of A3. If such a path exists then output
NO and the word corresponding to that path. Else output YES.

The correctness and time complexity of the algorithm follow from the preceding lemmata. In
particular, we note that if L(A) is not maximal then any minimal-length word that can be added
into L(A) must be of length at least k. In Step 6, the algorithm checks for candidate words of
length k in the set L(A2) ∩ {w ∈ Σ∗ | H(w, θ(w)) > d}. If none is found, it continues with steps 8
and 9 looking for the shortest word, if any, in the set L(A3). By Lemma 3.6, if no word is found in
steps 6 and 9 the algorithm correctly outputs that L(A) is maximal. ✷

4 Construction Methods for the Hamming Case

In this section we describe methods for constructing (τ, Hd,k)-bond-free languages. We focus on
languages that are subsets of (Σk)+ or ΣkΣ∗. We assume throughout that k and d are integers,
with k ≥ 1 and 0 ≤ d < k, and τ is the DNA involution.

4.1 Direct Methods

Here we consider analytical methods that do not rely on previously constructed languages. The
first method is based on the concept of a template introduced in [2]. The operation ‘·’ between two
bits in {0,1} is defined as follows

0 · 0 = C, 0 · 1 = G, 1 · 0 = T, 1 · 1 = A.

This operation is extended to binary words of the same length in a natural manner. For example,
0101 · 0110 = CAGT . It can be shown that b1 · b2 = b3 · b4 iff b1 = b3 and b2 = b4, for all bits
b1, b2, b3, b4. A k-template is any binary word of length k. If x is a k-template and E is subset of
{0, 1}k then x ·E = {x · v | v ∈ E}. The construction method of [2] involves choosing a k-template

21



x and a code E such that x · E satisfies a desired property. In our case, we are interested in
k-templates x such that

H(x2x1, (x4x3)
R) > d, (12)

for all prefixes x1 and x3 of x and suffixes x2 and x4 of x.

Theorem 4.1 Let x be a k-template satisfying (12). Then the language (x · {0, 1}k)+ is (τ, Hd,k)-
bond-free.

Proof. Let β be the binary antimorphic involution such that β(0) = 1 and β(1) = 0. The proof
is based on the facts that τ(x1 · g1) = xR

1 · β(g1) and H(x1 · g1, x2 · g2) ≥ H(x1, x2), for all binary
words x1, g1, x2, g2 of the same length. ✷

Observe that the cardinality of the code x · {0, 1}k is 2k. The advantage of the method of
templates is that properties of the template x, which is a simple object, are passed gracefully to
the code x · E, where E is any subset of {0, 1}k. This is evident, for instance, in Theorem 4.1.
Moreover, by choosing a template x with the same number of 0’s and 1’s, all the words of the code
x · E have a 50% GC-ratio. We note that many of the templates listed in [2] satisfy (12).

We introduce now another direct construction method. In this method, the bond-free language
is again of the form K+, where K is a code of fixed-length. Moreover there is a set I of positions
in which the codeword symbols are always in {A, C}. The method is described more formally in
the next theorem. The notation k % 2 stands for the remainder of the integer division k/2, and v[i]
stands for the symbol of the word v at position i.

Theorem 4.2 Let I be a nonempty subset of {1, . . . , k} of cardinality ⌊k/2⌋+ 1 + ⌊(d + k % 2)/2⌋.
Then the language K+ is (τ, Hd,k)-bond-free, where

K = {v ∈ Σk | if i ∈ I then v[i] ∈ {A, C}}.

Proof. Let r be the quantity ⌊(d+k % 2)/2⌋. One can verify that the condition d < k is equivalent
to ⌊k/2⌋ + 1 + r ≤ k. Now note that every word of length k of the form sp, with s being a
suffix of K and p a prefix of K, contains at least ⌊k/2⌋ + 1 + r symbols in {A, C}. Hence, τ(sp)
contains at least ⌊k/2⌋ + 1 + r symbols in {G, T}. Assume that K+ is not (τ, Hd,k)-bond-free;
then H(s1p1, τ(s2p2)) ≤ d for some words s1p1 and s2p2 of the above form. This implies that s1p1

contains at least ⌊k/2⌋+ 1 + r− d symbols in {T, G}. At the same time this word contains at least
⌊k/2⌋ + 1 + r symbols in {A, C}. Hence,

|s1p1| ≥ ⌊k/2⌋ + 1 + r − d + ⌊k/2⌋ + 1 + r = 2r + 2 + 2⌊k/2⌋ − d.

Using the facts that k = 2⌊k/2⌋ + k % 2 and 2r + 2 > d + k % 2, it follows that |s1p1| > k; a
contradiction. Hence, K+ must be (τ, Hd,k)-bond-free. ✷

Let l be the quantity ⌊k/2⌋ + 1 + ⌊(d + k % 2)/2⌋ that appears in the above theorem – recall
from the proof of the theorem that l ≤ k. The size of the code K is 2l4k−l. On the other hand the
method of k-templates produces codes K of size 2k. Obviously, 2l4k−l ≥ 2k. Moreover, one can
verify that k = l iff d is in {k − 2, k − 3}. An advantage of the method of Theorem 4.2 is that we
can construct (τ, Hd,k)-bond-free languages with a large ratio d/k. On the other hand, in the case
of d = 0 we have that ⌊(d + k % 2)/2⌋ = 0 and, therefore,

|K| = 2⌊k/2⌋+14⌈k/2⌉−1. (13)
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Another advantage of some codes K defined in the previous theorem is that one can encode and
decode information in linear time. More specifically, consider the following instance of the code K

K = Σk−l{A, C}l

such that l is even – this holds, for instance, if d and k are even and k + d + 2 is a multiple of 4.
Let n be the quantity k− l/2. Every word a1 · · · an in Σn can be encoded with a codeword in K as
follows. Each symbol ai is encoded as ai, for i = 1, . . . , k − l, and each symbol aj is encoded as





AA, if aj = A;
AC, if aj = C;
CA, if aj = G;
CC, if aj = T ;

for j = k− l + 1, . . . , n. Clearly, this process can be done in time O(n). For example, if k = 12 and
d = 6 then l = 10 and n = 7 and the word AGTTCAG will be encoded as AGCCCCACAACA.
On the other hand it is easy to see that each codeword b1 · · · bk in K can be decoded in time O(k).

4.2 Methods Based on the Catenation Closure

The main idea here is that the catenation closure of Qd+1, that is the language (Qd+1)+, is (τ, Hd,k)-
bond-free if Q is of length q with the property that Q+ is (τ, H0,q)-bond-free. The correctness of
the method is based on the following theorem.

Theorem 4.3 Let j and q be positive integers and let L be a subset of ΣjqΣ∗. If L is (τ, Ht,q)-
bond-free, for some integer t ≥ 0, then it is also (τ, Hd,k)-bond-free, where d = j(t + 1) − 1 and
k = jq.

Proof. The claim is trivial for j = 1. So assume that j ≥ 2 and consider any subwords w and w′

of L of length k = jq. These can be written in the form v1 · · · vj and v′1 · · · v
′
j , respectively, where

each vi and v′i is of length q. For each index i, the words vi and v′j−i+1 are subwords of L, which
implies that H(vi, τ(v′j−i+1)) > t and, therefore,

H(w, τ(w′)) =

j∑

i=1

H(vi, τ(v′j−i+1)) ≥ j(t + 1).

Hence, L is (τ, Hd,k)-bond-free. ✷

Observe that for t = 0, the above theorem says that nearly every language that is (τ, H0,q)-
bond-free is inherently (τ, Hd,k)-bond-free for any d > 0 and any k ≥ q(d+1). This is a connection
between the properties P2 and P4 considered in Section 1.

With the notation of the above theorem, let Q be a code of length q such that the language
Q+ is (τ, Ht,q)-bond-free. Let K = Qj and let k = jq. The code Q could be defined by some
direct method, or by brute force for small values of q and t. In either case, the language K+ is
(τ, Hd,k)-bond-free.

In the case of t = 0, we have that j = d + 1 and the cardinality of the code K is |Q|d+1, which
can be larger than the cardinality of the codes defined in Theorem 4.2 with the same parameters.
For example, consider the code

Q = {A, C}2Σ ∪ {A, C}{G, T}{A, C},
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which consists of 22 ·4+23 = 24 codewords of length 3. Then the language Q+ is (τ, H0,q)-bond-free,
where q = 3.1 Moreover, according to the above, for any integer d > 0, the language (Qd+1)+ is
(τ, Hd,k)-bond-free, where k = 3(d + 1), and the code K = Qd+1 consists of 24d+1 codewords. On
the other hand, if the code K is defined using Theorem 4.2 for k = 3(d + 1)) then the quantity
⌊k/2⌋+ 1 + ⌊(d + k % 2)/2⌋ is equal to (k + d + 1)/2 = 2(d + 1), which implies that the cardinality
of K is equal to 16d+1.

The following observation can be viewed as a converse type of Theorem 4.3.

Theorem 4.4 Let K be any set of words such that the language K+ is (τ, Hd,k)-bond-free, for
some integers d ≥ 0 and k ≥ 1. Then the language K+ is also (τ, H0,k−d)-bond-free.

Proof. Let x and y be any two subwords of K+ of length k−d. We need to show that x 6= τ(y). It
is easy to see that one can always find subwords of K+ of the form xu and vy whose length is equal
to k. The assumption about K+ implies that H(xu, τ(y)τ(v)) > d. Moreover, as H(u, τ(v) ≤ d, it
follows that H(x, τ(y)) > 0 as required. ✷

We close this section with a connection between the properties P2 and P4 considered in Sec-
tion 1, which is analogous to the connection between P1 and P5.

Theorem 4.5 Let Q be any code of fixed length q such that Q+ satisfies P2[q]. For any positive
integer j, the language (Qj)+ satisfies P4[j − 1, jq].

Proof. The proof is similar to that of Theorem 4.3, for t = 0, and is left to the reader. ✷

4.3 All Maximal (Hamming) Bond-free Languages

With the results of Section 3 in mind, we understand that the languages of the form K+ obtained
by the preceding methods are not necessarily maximal. In what follows we discuss methods of
obtaining new bond-free languages, possibly maximal, from old ones using the subword closure
operation ⊗. We need the following, slightly restricted, version of the subword closure of S, where
S is any code of fixed length k,

S⊕ , S⊗ ∩ (Σk)+.

We call S⊕ the block closure of S. Given a trie T accepting S, one can use a product construction
between the DFA T⊗ of Lemma 3.10 and a DFA accepting (Σk)+ to construct a DFA T⊕ of size
O(k|T |) accepting the block closure of S. Using Lemma 3.5, one can verify that

S1 ⊆ S iff S1
⊕ ⊆ S⊕,

for all subsets S and S1 of Σk. This implies that if S1 6= S then S1
⊕ 6= S⊕.

Theorem 4.6 Let S be a set of words of fixed length k. Then each of the languages S⊗ and S⊕ is
(τ, Hd,k)-bond-free iff

τ(S) ∩ Hd(S) = ∅. (14)

1To see this, represent with 0 any element in {A, C}, with 1 any element in {G, T}, and with ∗ any element in Σ,
and observe that (i) the representation of any subword of length 3 of Q+ either contains two 0’s or is equal to ∗01,
and (ii) the representation of any subword of length 3 of τ(Q+) either contains two 1’s or is equal to 01∗.
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Proof. The statement follows easily from (11) and the fact that S = Subk(S
⊗) = Subk(S

⊕) – see
Lemma 3.2. ✷

Using the above observation we can extend (τ, Hd,k)-bond-free languages of the form K+, such
as those constructed earlier, as follows – we assume the words of K are of fixed length k. Let
S = Subk(K

2) = Subk(K
+). Then S satisfies (14) and, therefore, the language S⊗ is a (τ, Hd,k)-

bond-free language that includes K+.
Next consider any code K of length k satisfying property P3[d, k] – recall from Section 1 that

such codes have been studied in [23] and [31]. Using again the above theorem it follows that K⊗ is
a (τ, Hd,k)-bond-free language.

The question that arises now is when the bond-free languages of Theorem 4.6 are maximal. The
following result addresses this question. In fact we show a complete characterization of all maximal
(τ, Hd,k)-bond-free subsets of (Σk)+ and ΣkΣ∗.

Theorem 4.7 The class of all maximal (τ, Hd,k)-bond-free subsets of (Σk)+ is finite and equal to

{S⊕ | S ⊆ Σk and S is maximal satisfying τ(S) ∩ Hd(S) = ∅}.

In particular, if d = 0 then this class is equal to

{S⊕ | S ∪ τ(S) = {v ∈ Σk | v 6= τ(v)}, τ(S) ∩ S = ∅}

and has cardinality {
24k/2, if k is odd;

2(4k−4k/2)/2, if k is even.

Proof. Let Dd,k be the set {v ∈ Σk | H(v, τ(v)) > d}. It is evident that if a subset S′ of Σk

satisfies (14) then S′ ⊆ Dd,k. The main tool of this proof is the following claim.

• For any subset S of Σk that satisfies (14) we have that S is maximal with this property iff S
satisfies

Dd,k ⊆ S ∪ τ(Hd(S)). (15)

For the ‘if’ part of the claim assume that S satisfies (14) and (15), but suppose that there is a
word v in Σk − S such that the set S ∪ {v} satisfies (14) as well. As v ∈ Dd,k and v /∈ S we have
that v ∈ τ(Hd(S)), or equivalently τ(v) ∈ Hd(S) which implies that S∪{v} does not satisfy (14); a
contradiction. For the ‘only if’ part assume that S is maximal with the property (14), but suppose
there is a word v in Dd,k such that v is not in S ∪ τ(Hd(S)). One can verify that the set S ∪ {v}
satisfies (14) as well, contradicting the maximality of S.

We now turn to the general statement of the theorem where d ≥ 0. We need to prove the
following two claims.

1. If a subset S of Σk satisfies (14) and (15) then S⊕ is a maximal (τ, Hd,k)-bond-free subset of
(Σk)+.

2. If L is any maximal (τ, Hd,k)-bond-free subset of (Σk)+ then L = S⊕, where S = Subk(L),
such that S satisfies (14) and (15).

For the first claim we note firstly that (14) and the fact S = Subk(S
⊕) imply that S⊕ is a (τ, Hd,k)-

bond-free subset of (Σk)+. Now consider the sets

X = ((Σk)+ − S⊕) ∩ Dd,k ∩ τ(Hd(S))c and Y = ((Σk)+ − S⊕) ∩ S⊗.
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It is easy to see that X = Dd,k − (S ∪ τ(Hd(S))). As both of X and Y are empty when (15) holds,
Lemma 3.6 implies that S⊕ is a maximal (τ, Hd,k)-bond-free subset of (Σk)+, as required.

For the second claim, let L be any maximal (τ, Hd,k)-bond-free subset of (Σk)+. Then S satisfies
(14) and, by Lemma 3.6, S satisfies (15) as well. Moreover, L is a subset of S⊕ – see Lemma 3.5.
It remains to show that S⊕ is a subset of L. For this, assume there is a word w in S⊕−L; then the
set ((Σk)+ − L) ∩ S⊗ is nonempty and Lemma 3.6 implies that L is not maximal. Hence, S⊕ = L
as required.

It is evident that the class of all maximal (τ, Hd,k)-bond-free subsets of (Σk)+ is a finite set.
The statement for the case of d = 0 follows when we note that, for any subset S of Σk, we have
that Hd(S) = S and, if S satisfies (14), then τ(S) ∪ S ⊆ D0,k. Moreover, the claim about the
cardinality of the class follows easily when we note that the partition {{v, τ(v)} | v ∈ D0,k} of D0,k

contains |D0,k|/2 different subsets and that exactly one of the two elements of each subset can be
included in a particular S. We also recall that the cardinality of D0,k is 4k if k is odd, or 4k − 4k/2

if k is even [3]. ✷

Note: The above theorem holds also for subsets of ΣkΣ∗ if we replace S⊕ with S⊗.

According to Theorem 4.7, if K is a maximal subset of Σk satisfying τ(K) ∩ Hd(K) then
the language K⊕ is a maximal (τ, Hd,k)-bond-free subset of (Σk)+. In the case of d = 0 the
characterization of the maximal bond-free languages is quite explicit: Define any partition {S, τ(S)}
of the set {v ∈ Σk | v 6= τ(v)} and then compute S⊕; this language will be maximal. Note that the
language L2 considered in Example 3.7 is a particular instance of this construction.

The above theorem implies that every k-block (τ, Hd,k)-bond-free language L is included in a
regular maximal such language. Statements of this type with L being regular have been obtained
for various code-related properties and are of particular interest in the theory of codes [5], [14]. In
our case it is also interesting to note that the language L is not necessarily regular.

Corollary 4.8 Let M be one of (Σk)+ or ΣkΣ∗. Every (τ, Hd,k)-bond-free subset of M is included
in a regular maximal (τ, Hd,k)-bond-free subset of M .

5 Discussion

We have considered the problem of undesirable bonds and proposed the property of (θ, sim)-bond-
freedom for DNA languages, which addresses this problem when bonds between imperfect com-
plements of DNA molecules are permitted. Using recent language theoretic tools, we were able
to establish various decidability results about (θ, sim)-bond-freedom. The case where sim is the
Hamming similarity has been considered by many authors. In this case, we have demonstrated in-
teresting connections between our property and those of other authors, and have identified general
construction methods. In particular, we have identified all DNA languages that are maximal with
respect to the new property. This result is also applicable to the case of the θ-k-code property of
[12].

Directions for future research include the following.

• Derive a methodology for defining properties of DNA languages that would be able to address
the uniqueness problem – called positive design problem in [25] – as independently of the
application as possible.

• Elaborate on the proposed construction methods to obtain concrete constructions of languages
that, in addition to being bond-free, they satisfy additional properties such as uniqueness and
fixed GC-ratio.
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• Explore further the subword closure operation from a theoretical at least point of view.
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