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Abstract. Recognizable transductions constitute a well known, proper
subclass of rational transductions. To our knowledge, there has been no
characterization of recognizable transductions by a well-defined subclass
of transducers. In this work we observe that there is a connection between
recognizable transductions and languages consisting of edit strings. More
specifically, we define a saturated transducer to be a transducer with
the property that, for every pair of words it realizes, the transducer,
when viewed as an automaton over the edit alphabet, accepts all possible
edit strings transforming the first word of the pair into the second one.
Our main result is a constructive proof that the class of recognizable
transductions coincides with the class of saturated transductions. We also
revisit closure properties of recognizable transductions using saturated
transducers and discuss the natural role of these objects in edit distance
problems.
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1 Introduction

Recognizable transductions constitute a well known, proper subclass of rational
transductions, the latter being the class of all binary relations of words realized
by finite transducers. A well known characterization of recognizable transduc-
tions is given by Mezei’s theorem [Eilenberg, 1974, note at p. 75]. Until now,
however, there has been no characterization of recognizable transductions by a
well-defined, special subclass of transducers. In this work we observe that there is
an intimate connection between recognizable transductions and edit languages,
that is, languages consisting of edit strings. An edit string (or string alignment)
is a special word consisting of edit operations, and describes the sequence of
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changes (substitutions, insertions and deletions of symbols) that can transform
a word into another word. Edit strings can be used to define formally concepts
related to distances between words [Sankoff, Kruskal, 1999] and, in fact, recently
( [Kari, Konstantinidis, 2002], [Mohri, 2003],[Kari et al., 2003] ) there have been
systematic treatments of edit languages (also called e-systems) in the sense of
language theory. In the context of word and language distances, the main dif-
ference between a transduction and an edit language is that the latter describes
the exact changes that are permitted in transforming words to words, whereas
the former describes the result of these transformations.

This paper introduces the concept of saturated transducer and observes
that this concept constitutes a natural point of connection between recogniz-
able transductions and edit languages. More specifically, a saturated transducer
is a transducer with the property that, for every pair of words it realizes, the
transducer, when viewed as an automaton over the edit alphabet, accepts all
possible edit strings transforming the first word of the pair into the second one.
The main result of the paper is that the class of recognizable transductions coin-
cides with the class of transductions realized by saturated transducers. We also
provide other basic results on saturated transducers and discuss their use in edit
distance problems. In the next paragraph we give a short overview of our paper.

The paper is organized as follows. In the next section, we provide the formal
definitions about rational transducers, recognizable transductions and edit lan-
guages. Section 3 introduces saturated transducers and discusses several basic
operations on these objects. These operations can be used to provide constructive
proofs (by means of saturated transducers) of closure properties of recognizable
transductions, such as intersection, composition and concatenation. Moreover,
the descriptional complexity of these operations can be used to evaluate the time
complexity of algorithms utilizing them. Section 4 contains the main result of the
paper about the equivalence of saturated and recognizable transductions. The
proof is constructive in the following sense. Given a tuple consisting of an even
number of finite automata — according to Mezei’s theorem such a tuple specifies
a recognizable transduction — there is an effective construction of a saturated
transducer realizing the transduction specified by the tuple. Moreover, there is a
constructive proof for the converse problem. In Section 5 we elaborate on the use
of saturated transducers in problems related to the edit distance of words and
languages. The method here is not new, in the sense that certain examples of
saturated transducers have already been used for such problems, but we believe
that the method is better understood with our systematic study of saturated
transducers. Our observations in this context lead us to the question of whether
the transduction consisting of all pairs of distinct words of some regular lan-
guage is recognizable. We show that it is not recognizable in the case of infinite
languages. Finally, Section 6 contains a few concluding remarks.



2 Preliminary Notions and Notations

We assume known basic notions of finite automata: DFA (determinis-
tic finite automaton), NFA (nondeterministic finite automaton) and e-NFA
(NFA with e-transitions) — a review of these terms can be found in
[Hopcroft and Ullman, 1979], [Yu, 1997]. We also assume known the basic no-
tions of semigroup (monoid) theory [Howie, 1976] and of rational and recogniz-
able sets in arbitrary monoids ( [Berstel, 1979], [Eilenberg, 1974] ). We recall
that the class of monoids is closed under cartesian product.

Let (M,-,1)7) be a monoid which consists of a carrier set M equipped with
a binary associative operation “” and an unit “lp,”. By Rat(M) we denote
the family of rational subsets of M and by Rec(M) we denote the family of
recognizable subsets.

If X and Y are finite alphabets (nonempty sets of symbols), we denote by
X* and Y* their freely generated monoids. Any element of X* or Y* is called a
word, i.e., a finite string of symbols. We denote by e the word with no symbols,
i.e., the empty word. By X* X Y* we understand the direct product of the
monoids X* and Y™*, i.e., the monoid of word relations. We will use the terms
“word relation” and “transduction” interchangeably. Notice that this monoid is
finitely generated, in the sense that there exists a finite subset G, called a set of
generators, such that G* = X* x Y* (indeed, take G = (X x {A}) U ({A} xY)).
Notice also that X* x Y™* is not necessarily a free monoid, in the sense that it
may not exist a set of generators which generate each element of the monoid in
a unique way (for example, G — above — may generate an element in more than
one way: (z,y) = (z,A) - (A, y) = (A, y) - (z,A). As a consequence of McKnight’s
theorem ([McKnight, 1964]) we have that

Rec(X* xY*) C Rat(X* xY™) ,

inclusion which is strict in general. For example, the transduction {(a,b*)/i > 0}
can be proven to be rational without being recognizable.

In X* x Y*, recognizable and rational sets may be specified by finite state
machines. For example, each rational transduction 7 is represented by some finite
transducer T' = (@, X, Y, 4, qo, F'), where

1. Q is a finite set of states;

2. ACQ X X*XxY*xQ is a finite set of transitions;
3. qo is an initial state, F' C @ is a set of final states;
4. a successful computation of T is a sequence

c= (qO,xlaylaql)a H) (anla Tn, yn7Qn) )

where (¢;—1,%;,9i,¢;) € A for all i € {1,...,n}, and ¢, € F. The label of ¢,
denoted by | ¢ | is the pair of words (z1...Zn, Y1.--Yn);
5. 7=|T |={(u,v)/(u,v) =| ¢|, for some successful computation c}.

The alphabet X is sometime called the input alphabet and Y the output al-
phabet. It has been shown (for example in [Berstel, 1979, §II1.6, p. 79]) that a



transducer with labels in X* x Y* is equivalent with a transducer having labels
only in (X U {e}) x (Y U{e}). We bring this observation further, by noticing
that one can eliminate all “null” transitions, i.e., transitions of the form (,¢).
However, for the sake of formalism, it is useful to consider all states having null
loops, i.e., we have a transition (p, €, €, p) for each state p of the transducer. Then
we give the following definition:

Definition 1. A transducer is in standard form if it has transitions with labels
in (X U{e}) x (Y U{e}) and each state has an (e, ¢€)-loop to itself.

Then each rational transduction is realized by a transducer in standard form.

We define the size of a finite state machine M in general (hence of a trans-
ducer, in particular), as being the number of all its states together with all its
transitions, and we denote it by size(M).

In the case of recognizable transductions, one can use Mezei’s characteriza-
tion (as in [Eilenberg, 1974, §3.12, Prop. 12.2 & note at p. 75]) to represent a
transduction 7 € Rec(X* xY*) by a tuple of finite automata (A;, By, ..., An, By)
such that

n
r=J L) x L(B;) ,
i=1

where by £(A) we understand the language accepted by the automaton A (au-
tomata A; are over X and automata B; are over Y). We say that any recognizable
transduction is a finite union of blocks (a block is a direct product of two regular
languages) - see for example [Sakarovitch, 2003, §I1.2, p.272, Corollary 2.20].

As a general observation, not much effort has been spent on the study of finite
machines designed to precisely accept recognizable sets. Our paper addresses
this issue and reveals the close connection between recognizable sets and edit
languages — defined in the following.

Let E be the set consisting of all elements of the form (a/¢), (¢/b) and (a/
b), where a € X and b € Y. We treat the elements of E as symbols which
denote the so-called edit operations: deletion, insertion and substitution (for
example, the meaning of operation “(a/€)” is “deletion of a”). Then, by E*
we denote the language of edit strings, i.e., the language of words over the
alphabet E. The empty edit string over E will be denoted by (e/¢).

Edit strings can implement transductions as the following example shows: if
X =Y = {a,b} then each of the following edit strings define the transduction
{(aba, bab)}:

e = (a/b)(b/a)(a/b)
f = (a/e)(b/b)(a/a)(A/b)
g = (a/e)(b/€)(a/e)(e/b)(e/a)(e/b)

We say that each of the edit strings e, f and g “transforms the word aba



into the word bab”. Notation wise, we use the lowercase letters e, f, g to denote
edit strings.

In this paper we are interested in sets of edit strings, i.e., in edit languages.
Such languages are simply subsets of E*.

3 Saturated Transducers: Definition and Basic Results

The notion of saturated transducer originates in the simple idea that a compu-
tation of a finite transducer in standard form defines both a pair of words and
an unique edit string which transforms a word into another one.

Let X and Y be input and output alphabets and E be the alphabet of
edit operations over X and Y. Across this paper we will frequently refer to the
following monoid homomorphism:

h:E*— X*xY* |
given by: h(e/e) = (e,€), h(a/e) = (a,€), h(e/b) = (e,b), h(a/b) = (a,b), for all
a € X and b € Y. Due to its importance to our matter, we name this morphism
the edit morphism over X and Y. It should be clear that for any pair of words
(u,v), 1 ({(u,v)}) consists of all edit strings that transform u into v.

Let T be a transducer over X and Y, in standard form. By A=*(7") we denote
the finite automaton over E, obtained from T by replacing each transition label
(z,y) with the symbol (z/y) € EU{(¢/¢)}. Then h=(T) will be an e-NFA over
E.

Conversely, given a finite automaton A over E, by h(A) we understand the
transducer over X and Y obtained from A by replacing each transition label
(z/y) with the pair (z,y) € X* x Y*. Then h(A) is in standard form, up to
the missing (¢, €)-loops for each state. For easing the formalism we assume that
these loops are present and that h(A) is readily in standard form.

In the previous section we have defined what is meant by a successful com-
putation (and its label) of a transducer T' = (Q, X,Y, A, qo, F'). Let

c= (QO,Z]_, y17q1)7 seeey (qnflv TnyYn, qn)

be a successful computation in T'. If the transducer 7' is in standard form, then
all pairs (z;,y;) can be viewed as edit operations, or null operations, and we can
define the edit string corresponding to ¢ as ||¢|| := (z1/y1)...(zn/Yn)-

Notice that we have h(]|c||) = |c|, where h is the edit morphism from X to
Y. Then the transducer T" defines a transduction

| T |= {(u,v)/(u,v) = |c|, where ¢ is a successful computation in T} ,
and an edit language
I|IT|| = {e € E*/e =||c||, where c is a successful computation in T} |

in other words ||T'|| = £(h~1(T)). In the next definition we use the meaning of
h as a monoid morphism.



Definition 2. A transducer T in standard form is saturated if and only if
(T ) =Tl -

In other words, T 1is saturated if and only if for any accepted pair of words
(u,v) € X*xY™*, and for any edit string e € E* which transforms u into v there
exists a successful computation ¢ in T such that ||c|| = e.

Notice that the property of saturation can be generalized to arbitrary trans-
ducers. Indeed, let T be an arbitrary transducer. A successful computation
of T is said to be admissible if and only if its transitions have labels in
(X U{e}) x (Y U{e}). Then we can define the edit language of T" as being

[IT|| = {e € E*/e =||c||, where ¢ is an admissible computation in T} .

From here the definition of a saturated transducer is extended naturally to ar-
bitrary transducers. Remark that any saturated transducer is equivalent to a
saturated transducer in standard form. Indeed, let 7" be an arbitrary saturated
transducer. It suffices to observe that one can discard all transitions with labels
not in (X U {e}) x (Y U{e}) without changing the transduction realized by T'.

We say that a transduction over X and Y is saturated if and only if there
exists a saturated transducer T such that 7 =| T |. We denote by

Sat(X* x Y*)

the family of saturated transductions. Then clearly Sat(X* x Y*) C Rat(X* x
Y™*).

In this section we are interested in basic operations on saturated transduc-
ers with the aim of providing constructive proofs for the closure properties of
saturated transductions. As it turns out, many known operations on ordinary au-
tomata and transducers result in saturated transducers with no extra effort when
applied on saturated transducers. For example, the standard product construc-
tions on finite automata, possibly with e transitions, for union and intersection
would result in saturated transducers when applied on saturated transducers.
The same happens in the case of the product construction for the composition
of transducers.

In the following operations, the operands A; and A, are arbitrary finite au-
tomata, possibly with e transitions (unless specified otherwise), and the operands
T, and T, are arbitrary finite transducers in standard form.

det(A;): is the automaton obtained by determinization and completion of A;.
A, , where A; is a DFA: the DFA that results when we complete A; and change
its non-final states to final, and viceversa. It is well known that A; accepts the
complement of the language accepted by A; and that size(A;) = O(size(4;)).
A x Ag: is a saturated transducer of size O(size(A;) - size(Az)) such that

|A1 X A2| = L(Al) X ﬁ(Az)



The transducer A; X A, consists of the transitions ((p1,p2), 21, 2, (¢1,92)) for
all transitions (p1, z1,q1) of Ay and (p2, 2, q2) of Ay, where we assume that
there is always an € transition from each state to itself — see [Kari et al., 2003]
for more details, where the notation “A; Ng As” is used instead of A; X As.
Ty N Ts: is the transducer in standard form that is obtained when we apply the
standard product construction on automata for language intersection on the
automata h~1(71) and h~1(T3) over the edit alphabet E. The size of 71 NT%
is O(size(11) - size(13)). Obviously, |71 N Ta| = [T1| N |T3].
T7 Ue Ty: is the transducer in standard form that is obtained when we use a new
start state s and two (e, €)-transitions form s to the start states of 77 and
T5. Then
T3 Ue To| = [T1| U |12

and size(Ty U To) = O(size(11) + size(1»)).

Ty UT5s: is the transducer in standard form that is obtained when we apply
the standard product construction on automata for language union on the
automata h~1(11) and h=1(13) over the edit alphabet E. The size of T} UT5
is O(size(T}) - size(T2)). Obviously, |Ty U Ts| = |T1| U |Ts|. The advantage of
this construction over Tj U, T% is that the automaton h=1(Ty UT3) is a DFA
when both of A~(T1) and h~!(T3) are DFAs.

Ty o Ty: is the transducer in standard form that is obtained when we apply the
standard product construction on transducers for transduction composition
(see [Mohri, 2003]), hence,

|T2 OT1| - |T2‘ e} |T1‘ .

Again, the size of Ty o Ty is O(size(T}) - size(T2)). The transducer Tz o Ty
consists of the transitions ((p1,p2),2, 2, (¢1,42)), for all pairs of transitions
(p1,z,y,q1) in Ty and (p2,y, 2,¢2) in T» and y in Y U {€}.

T;: is the transducer h(det(h=1(T%))) such that

Ty =|T1] .

If h=1(T}) is an NFA then the size of T} could be exponential with respect
to the size of Tj. On the other hand, if h=1(T}) is a DFA then the size of T}
is O(size(T1)).

Ezxample 1. In Fig.1 we are given two automata A; and As, A; accepting all
words which in binary have an odd value and As accepting all words which
have an even length. Following the above construction we obtain a saturated
transducer for A; x As.

Lemma 1. if T1 and Ty are saturated transducers then Ty NTy, Ty UTs, T1 U T5,
T5 0Ty and T'1 are saturated.

Proof. We prove only that T5 o T} is saturated. The rest is left to the reader.



(0,z), (e, z)
(0,€)

(0,z), (e, )

(0,¢€) (0,¢€)

(1,€)
(1, z), (e, )

A]_ X A2
Fig. 1. The saturated transducer A; x Aa.

We need to show that for any pair (z,z) in |T o T1| and for any edit string
e with h(e) = (z, 2), it is the case that e is in ||7% o T1]|. Suppose that

e=(x1/z1) - (Tn/2n),

where each (z;/z;) is an edit operation. There is a computation ¢’ of Ty o T}
such that ||¢|| is some edit string (z}/z})---(x},/7.,) and h(||c]]) = (z,=2).
By the definition of T3 o Ty, there are successful computations ¢} and ¢, of T}
and Ty, respectively, such that the edit strings ||c}|| and ||ch|| are of the form
(2} /yy) - (20, /yh,) and (y1/z1)--- (yh,/%h,), respectively. Let y be the word
Y} -+ -yl,. We continue by distinguishing two cases.

Firstly, suppose that m < n. Let y; = y; for j < m, and y; = € for j =
m+1,...,n. Consider the edit strings

e1 = (z1/y1) -+ (Tn/yn) and ez = (y1/21) -+ (Yn/2n)-

As Ty and T, are saturated, and h(e;) = (z,y) and h(ez) = (y,z), there are
successful computations ¢; and ¢y of 77 and Ty, respectively, such that ||c;|| =
e1 and ||ca|| = ez. Then, by definition of the transducer T o T, there is a
computation c of this transducer such that ||c|| = e, as required.

Secondly, suppose that m > n. The proof of this case is similar to the first
one and is left to the reader. O

Ezample 2. Let m 1 be transductions given by



71 = {(u,v)/tau is odd ,v € {a}*};
T2 = {(u,v)/u € {a}*, #av is even}

where by fou we understand the value of u as a binary number. The first two
saturated transducers in Fig.2 realize them. Then, using the above construction
we obtain a saturated transducer(shown also in Figure 2) which realizes the
transduction

{(u,v)/42u is odd, and #2v is even} ,

which is their composition.

T Ty :
(0,a), (0,€), (e, a) (1,a),(1,€), (e, a) (a,0), (e 0), (a, 1), (e 1), (a,€)
(0,a), (0, €) To O Tq: ), (¢,0)
0,6 5 (070)7(67 0) (0,1)7
(0.0 o)
(e,0) . ,1), (6,1 (1,€)

(0, €),

(0,¢), (0,1)

(0,0)

(1,0), 0.0
€6 RACE (e1)

Fig. 2. Composition of saturated transducers.

A natural question that arises here is whether saturated transductions are
closed under the Kleene-star operation and concatenation. The first operation is
discussed in the next section. For the second one consider two transducers 77 and
T and the standard construction that connects each final state of T; with the
start state of T using an (e, €)-transition, such that the new transducer realizes
|T1| - |T2|. Unfortunately, however, this transducer is not necessarily saturated
when both 77 and T, are saturated. For example, if we connect a saturated
transducer for {(a,ab)} with a saturated transducer for {(ab,b)}, we obtain a
transducer 7' such that h(T") does not accept the edit string (a/a)(a/b)(b/b) —



hence T is not saturated. A new construction for saturated transducers for the
concatenation operation is presented in the following.
For any two edit strings f and g of the form

f=(z1/€)---(xn/€) and g = (e/y1) - (¢/yn),

where each x; is in X U {e} and each y; is in Y U {e¢}, we define the left and
right merge operations ‘<’ and ‘>’ such that

fag=g>f=(z1/y1) - (Tn/yn)-

Lemma 2. 1. For any edit strings f and g of the form shown above, we have
that h(f <g) = h(g®> f) = h(fg). Also, (¢/€) = (¢/€) < (e/€) = (e/€) > (€/€).

2. If my and 1 are transductions and e is any edit string with h(e) € Ty - T2,
then e can be written as ejezes such that es is of the form fa < ga, or fo > go,
and h(e1f2) € 1 and h(gaze3) € T2.

Proof. The first statement follows easily from the definition of the operations
< and >. For the second statement, first note that there are (x1,y;) in 7 and
(22,y2) in 72 such that h(e) = (z122,y1y2). Notation wise, if o = (u,v) is a pair
of words, then we denote 71 (a) = u and 72 () = v. We distinguish the following
factors of e:

- Let e; be the shortest prefix of e such that either 1 = m(h(ey)), or y3 =
7T2(h(61)).

- Let e2 be the edit string such that ejes is the shortest prefix of e such that
either y; = ma(h(erea)), or 1 = m1(h(e1)), respectively.

- Finally, let e3 be such that e = ejeqes.

By looking in detail at the edit operations comprising e, one can verify that there
are edit strings f; and g2 such that es = fa > go, or e2 = f2 < go, respectively,
and h(e;f2) € 1 and h(goes) € T2, as required. O

Construction of Tj - Th:

input: Two saturated transducers T3 = (Q1,X1,Y1,44,51,F1) and Tp =
(Q2, X2,Y2, Ay, 9, F») in standard form. We shall assume that T3 is already

trim, that is, each state can be reached from s; and can reach a final state in
Fy.

step 1: Let Ujp be the set of states p; in @1 such that there is a successful
computation of T3, from p;, with label (e,v), for some v in Y7*. Let Up; be the
set of states ¢; in Q1 such that there is a successful computation of Ty, from ¢,
with label (u, €), for some w in X7.

step 2: Define the set @) consisting of the following states.

e All states r; in @Q;. Such an 7, means that the automaton h~1(7} - T%)
corresponding to the intended transducer 73 - T» has read an edit string e

10



which is also the label of some computation of h=1(7}) from s; to 7;. This
implies that, at state ry, the machine T} - T» has read some label (z},y;) for
which there is (z1,y1) in |T1| with 2} and y{ being prefixes of z; and y1,
respectively.

All states (g1, g2,01) with ¢ € Upy and g2 € Q2. Such a state means that
h=1(Ty - T,) has read an edit string ejes such that e; is of the form f» < gy
and there is a computation of h=1(T}) from s; to q; with label e f2, and a
computation of h=1(T3) from s to g2 with label go. This implies that, at
state (g1, q2,01), T1 - T has read some label of the form (2}, y1y%) for which
x} is a prefix of some zy with (z1,y1) € |T1| and v} is a prefix of some ys,
with (z2,y2) in T3] for some z5. The “flag” 01 above reminds us that 77 - T
has completed reading only the second component of (z1,y;) and that no
part of x5 can be read before completing x;.

All states (p1,p2,10) with p; € Uyg and p2 € Q2. Such a state means that
h~Y(Ty - T») has read an edit string ejes such that es is of the form fo > go
and there is a computation of h~(1}) from s; to p; with label e; f2, and a
computation of h=1(Ty) from s, to py with label go. This implies that, at
state (p1,p2,10), T} - T» has read some label of the form (x5, y]) for which
¥} is a prefix of some y; with (z1,y1) € |T1| and @} is a prefix of some x2,
with (z2,ys2) in |T3| for some ys.

All states 73 in Q. Such an 7, means that h~!(7} - T%) has read an edit
string ejeses such that ey is of the form fy > go, or fo < g2, and there is a
computation of h~1(T}) from s; to F; with label e; fo, and a computation of
h=1(Ty) from sy to 72 with label gaes. This implies that, at state 7o, 71 - Tb
has read some label of the form (zyzh,y1y5) for which (z1,y1) is in |7T}|
and there is (z3,y2) in |T2| such that =i, and y) are prefixes of z and ys,
respectively.

step 3: Define the set A consisting of the transitions of 73 - T3 in such a way
that the meaning of the states in @ is preserved. More specifically we have that
A consists of the following transitions.

o All transitions in A;.

All transitions of the forms (pi,e€, ¢, (p1,s2,10)), with p; in Uy, and
(g1, €€, (q1, 82,01)), with g1 in Un

All transitions of the form ((p1,p2,10),a,b, (p},p5,10)), with py,p} € Ui,
p27pl2 € Q27 and (plaea bapll) in Ala and (p27a7€7p12) € AQ'

All transitions of the form {((¢1,g2,01),a,b, (q],q5,01)), with ¢1,¢] € Ups,
q2aq/2 € Q27 and (QIaaaeaqll) in Al’ and (q2767 ba q/2) € A2‘

All transitions of the forms ((p1, p2, 10), €, €, p2), with p; in F; and ps € Qa,
and ((q1, ¢2,01),¢€,€,q2), with ¢; in F} and go in Qo.

All transitions in As.

output: The transducer 77 - To = (@, X1 U X2, Y1 UYa, A, 51, F5).

Theorem 1. For any saturated transducers T, and Ts, the transducer Ty - T
is saturated and realizes the transduction |T1| - |Tz|. Moreover, size(T} - Ty) =
O (size(11) - size(1%)).

11



Proof. The statement about the size of T} -T» follows easily from its construction.
For the first statement, it is sufficient to prove that |T - To| C |T4]| - |T>| and
that, for any edit string e with h(e) € |T1| - [T»|, we have that e € h=1(T1 - T3).
Let (z,y) be any element in [T} - T3|. There is a computation of T} - T, with
label (z,y) and a corresponding computation of h~*(T} - T) with some label e,
with h(e) = (z,y). By the definition of the final states of T} - T5, e is of the form
ejezes with ey = fo < go — the case ea = fo > go is symmetric — and h=(T})
accepts e f2, and h~1(T3) accepts gaes. This implies that

(z,y) = h(e1)h(f292)h(e3) = h(e1f2)h(g2e3) € T3] - [T2].

Now consider any edit string e such that h(e) € |T1| - |I%|. We shall use the
notation in the preceding construction. The string e can be written as ejeses such
that ey is of the form f2 <gs — the case fa 1> go is symmetric — and h(ey f2) € |T1]
and h(gse3) € |Tz|. This implies that there is a computation of h~1(7}) from
51 to some q; € Uy, with label e;, and a computation of h~1(T}) from ¢; to
some state ¢} € Uy, with label f. Moreover there is a computation of h~1(13)
from sy to some go € @2 with label g2, and a computation of h=!(T%) from gy
to some state ¢4 € Fy with label e;. Using the transitions of 77 - T, one can
verify that there is a successful computation of h’l(Tl - Ty) with label ejeqes,
as required. a

We close this section by noting that the construction of 77 - T5 can be carried
out in time O(size(T}) - size(T3)). This is clear in steps 2 and 3. In Step 3, the
computation of Uy can be done in time O(size(T1)) as follows. Let G be the
(directed) graph obtained by adding in the graph of T} a new state NV and (e, €)-
transitions from all final states of 77 to N. Consider the graph G, obtained if
we keep only the transitions of G of the form (e, a) and reverse the direction of
these transitions. Then the set Uy; consists of all the states in G2, other than
N, that can be reached from the state IN. This traversal can be performed in
time linear with respect to the size of G3. The computation of Uy; is analogous.

4 Saturation and Recognizability

Let us recall a few facts mentioned in the preliminaries of this paper. We know
that a recognizable subset of X™* x Y* is rational, therefore there exists a finite
transducer which realizes it. The opposite does not hold: there exist quite sim-
ple rational transductions which are not recognizable, for example the identity
over X*. We also know a characterization of recognizable transductions as finite
unions of blocks. There exist another two definitions of recognizable sets in arbi-
trary monoids: a morphism based definition (see for example [Pin, 1997]) and a
definition based on monoid actions on finite sets(for an extensive discussion on
the topic, consult [Sakarovitch, 2003, §II1.2]). We recall here the later one.

Let @ be a finite set and (M, -, 13s) an arbitrary monoid. An action of M
on @ is a function f : M x Q — @ which satisfy the following two properties:
£(@,1ar) = g and f(f(g,m),m') = f(g,mm), for all ¢ € Q and m,m’ € M. A
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subset D of M is recognizable if there exists such finite set ) and action f, and
there exists F C @ and ¢q € Q such that D = {m € M/f(q,m) € F}.

In this section we give a fourth characterization of recognizable transductions
by proving that the appropriate machines which realize them are saturated
transducers. We start by giving two useful constructions.

Construction #1

input: We are given a saturated transducer 7', which we put in standard
form, if it is not already.

step 1: We construct the finite automaton h~1(T) by interpreting the
labels of transitions of 7" as edit operation symbols. The automaton h~*(T")
is over the alphabet E (and has been described in details at the beginning
of Section 3).

step 2: We determinize and minimize the automaton h~!(T’), obtaining a
minimal, complete DFA B. Denote B = (Q, E, §, qo, F).

step 3: For each state ¢ of B we construct a corresponding automaton C,

as following:

(a) C, has the same set of states as B, the same initial state, and it has {q}
as the set of final states;

(b) for each transition in B of type (p,(a/€),p’) with a € X we assign a
transition (p,a,p’) in Cy.

step 4: For each state ¢ of B we construct a corresponding automaton D,

as following:

(a) D, has the same set of states as B, the same set of final states, and it
has ¢ as initial state;

(b) for each transition in B of type (p,(e/b),p’) with b € Y we assign a
transition (p, b,p’) in D,.

output: Let Q' := {q € Q/L(C,) # 0 and L(D,) # 0}. The algorithm ends
by delivering {Cy, Dg}qeq-

Lemma 3. The above construction ensures the following properties:
(1) | T |= Ugeqr £(Cq) X L(Dy) -
(it) The languages {L(Cyq)}qeq: are disjoint. The languages {L(Dq)}qcq are
distinct.
(iii) The transition function of the automaton h(B) can be extended to a monoid
action of X* XY™ on Q.
(iv) If h=Y(T) is deterministic then

D (size(Cy) + size(Dy)) = O(size(T)?) .

q€Q’
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Proof. We analyze each step of the above construction. The automaton h~1(T)
found in step 1 has the following property:

Ve € L(h 1(T)), V' € E*: h(e') = h(e) =€ € L(h 1(T)) , (1)

given by the saturation of 7. In other words, if h=!(T) accepts some edit string
e, it will necessarily accept all edit strings which express the same word trans-
formation as e. In algebraic terms, we say that the congruence induced by h —
let us call it =5, — saturates L(h~1(T)) .

Since B found at step 2 is the minimization of h=!(T’), it will preserve the
above property. The automaton B has the following additional property:

Ve,e' € E*: h(e) = h(e') = d(qo,e) = 6(qo, €’) ,

in other words:
=n C =£B) (2)

where by =,(p) we denoted the Myhill-Nerode equivalence of £(B). We justify
this property as following:
Let h(e) = h(e') and denote p = d(qo, €) and g = §(qo, €’). Assume by contradic-
tion that p # ¢. Then, since B is minimal, it follows that there exists ¢ € E*
such that §(p,e”) is a final state in B and (g, €”) is not. But then, ee” € L and
is easy to see that h(ee””) = h(e’e’’). By the property expressed in relation (1)
we infer that €’e¢” must be accepted - a contradiction.

Let a pair of words (u,v) € X* x Y* be accepted by the given transducer 7.
Consider that v = ujus...Um, v = v1v3...Uy,, With uy, ..., uy, € X and vy, ..., v, €
Y. An edit string which transforms u into v is

e = (uy/e)...(um/€)(e/v1)...(e/vn) ,

and denote e = ejeq, with e; = (uy/e€)...(um/€). Since (u,v) €] T |, we have that
e € L(B), hence §(qgo,e1e2) € F in B. Denote g = §(qo,e1) and observe that
u € L(Cy) and v € L(D,). Since the reciprocal also holds, we have that

(u,v) €| T |[< u € Cy and v € D, for some g € Q ,

which proves Property (7) of the lemma.

By the fact that B is deterministic, it follows that {C,}4cq are disjoint. For
the second part of Property (ii), we use yet another property of the automaton
B, that is,

Vg € Q,Ve,e' € E* such that h(e) = h(e'): d(q,e) € F = d(q,e') € F , (3)

which can easily be verified (invoking the saturation of T'). Since B is minimal,
and by the above property, we conclude that £(D,) # £(D,) for any two distinct
states p,q € @, as long as either £(D,) or £(D,) is not empty. This completes
the proof of Property (i).

Let us consider the transducer h(B), which is obtained from B by replacing
the transition labels(symbols) of the form z/y with the corresponding pairs
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(z,y). Clearly, | T |=| h(B) |. If we denote f to be the transition function
of h(B) (it is a partial function due to the determinism of B) it is enough to
show that we can extend f to X* x Y* such that it verifies the properties of
an action. For any (u,v) € X* x Y*, let e, , be a chosen edit string such that
h(eu,v) = (u,v). We set f(p,(u,v)) = é(p, eu,v) and f(p, (¢,€)) = p, for all
states in @. It can readily be checked that the definition is independent of the
choice of e, ,, that is, f is a function

(X" xY")xQ—-Q,
and that

1. f(pa (676)) :pan € Q y
2. f(f(p1, (u1,v1)), (uz,v2)) = f(p, (w1uz, v1v2)) .

Finally we have that (u,v) €| T |< f(po, (u,v)) is a final state in h(B) (where
po is the initial state of h(B)). O

Remark 1. Notice that Property (i) of the above lemma does not depend on the
minimality and completeness of B. Indeed, if we eliminate step 2 of the above
construction, and we consider h~1(T') instead of B in the subsequent steps, we
would still obtain Property (i) of the lemma.

Corollary 1.
Sat(X* xY*) C Ree(X* xY™) .

Proof. By Mezei’s characterization of recognizable transductions, we observe
that the transduction realized by a saturated transducer is a finite union of
blocks, hence it is recognizable. O

We now turn our attention to a possible reciprocal of the above corollary,
and we are aiming, as usual, at a constructive proof.

Construction #2

input: We have a transduction 7 € Rec(X™* x Y™*) effectively given as a
tuple (A4, B1, ..., Apn, By,) of finite automata. That is, we know that

n

r=J L) x L(B;) .

i=1

step 1: For each ¢ € {1,...,n} we construct a saturated transducer T; such
that | T; |= L(A;) x L(B;) (the construction has been presented in
Section 3).

step2: Since all T; are saturated, we construct in n — 1 iterations the trans-

ducer TV = T} U, ... U. T,, which realizes the transduction | T} | U...U | T, |
(this construction has also been presented in Section 3).
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output: The algorithm delivers 7.

Lemma 4. The above construction ensures that
| T |=7 .
Moreover, TV is saturated and size(T”) = ;| (size(A;) - size(B;)).

Proof. The correctness and finiteness of each step has been proven in Lemma
1. O

Remark 2. The saturation of T is not a trivial property, since there may ex-
ist non-saturated transducers which realize recognizable transductions, as the
following example shows.

Ezample 3. Consider the transduction 7, over {0,1} and {a}, which contains all
pairs (u,v) with the value of u, as a binary word, being odd and v an arbitrary
word over {a}*. Both transducers in Fig.3 are in standard form and realize T;
however, only the transducer in Fig.3 (b) is saturated.

(0,¢€),(0,a), (e.a) (1,a),(1,€), (e.a)

(0,a), (0,¢)

(0,9
(a) (b)

Fig. 3. Equivalent non-saturated and saturated transducers.

Corollary 2.
Rec(X* xY™) C Sat(X* xY™) .

Proof. 1t is a consequence of the previous lemma. a

Remark 3. This corollary can also be proven, non-constructively, by using the
closure properties of recognizable sets, as following.

Proof. Let T be a recognizable transduction and consider the edit morphism over
X and,
h:E*— X*"xY™* .
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Since h is a morphism and 7 is recognizable in X* x Y* we have that h=1(7)
is recognizable in E* (by the fact that recognizable sets are closed under in-
verse morphism). Then, by Kleene’s theorem we have that h=!(7) is a regular
language, hence there exists a finite automaton A over E which accepts h (7).
Assume that A is a complete DFA. It now suffices to observe that the transducer
h(A) is saturated, in standard form, and it realizes 7. O

Summing up, we have the following characterization of recognizable trans-
ductions.

Theorem 2. A transduction is recognizable if and only if it is realized by a
saturated transducer.

Proof. Tt is a direct consequence of Corollary 1 and Corollary 2. Notice that the
previous two constructions give a constructive proof of this theorem. a

Remark 4. There is an elegant proof for Lemma 2 using Mezei’s theorem. Indeed,
if 71 and T5 are saturated transducers, then by the theorem we have that | T |
and | T | are recognizable, hence by Mezei’s theorem we have that

m n
|T1|:UAi><Biand\T2|:UCJ'><D]-,
i=1 j=1
where we expressed the transductions as union of blocks. Then it suffices to
observe that

@, if B,’ﬂCjZQ;

A; x Dj, otherwise.

| T1 | o | T2 |: U Gi,j ,With Gi,j = {

1<is<m, 1<j<n

Consequently, | T | o | T» | is recognizable, therefore realizable by a saturated
transducer T3 ¢ T», which can effectively be constructed. Notice that 77 ¢ T5 may
have a structure different than that of 75 o T; which was proposed in Lemma 1.

Remark 5. We have seen in Theorem 1 that given two saturated transducers T}
and T3, one can construct a size O(size(T7) - size(T3)) transducer T; - T> which
realizes | Ty | - | T» |. That construction can stand as an alternative proof
that recognizable transductions are closed under concatenation (the other proof
makes use of Mezei’s theorem).

Remark 6. We can now explain why in Section 3 we have not mentioned any-
thing about the “star” operation on a saturated transducer. The reason is that
saturated transductions are not closed under iteration, as the following clas-
sical example shows: {(a,b)} is a saturated transduction, being finite; however,
{(a, b)}* is not recognizable, hence can not be realized by a saturated transducer.

Remark 7. It is worth noticing that, given a finite transducer T over alpha-
bets with at least two letters, it is undecidable whether there exists a saturated
transducer equivalent with T'. Indeed, this follows from the known fact that is
undecidable whether a finite transducer over alphabets with at least two letters
realizes a recognizable transduction.
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5 Edit Distance and the non-Recognizability of (L X L)

Edit strings and edit languages constitute natural tools for dealing with problems
related to the edit distance between words and languages. In this context, the
weight weight(e) of an edit string

e=(z1/y1) (Zn/yn)

is the number of edit operations (z;/y;) in e with z; # y;. For example, the
weight of the edit string f in Section 2 is 2. Then the edit distance between two
words u and v is the minimum of the weights of the edit strings transforming u
into v, that is,

dist(u, v) = min{weight(e)/e € A~ ({(u,v)})}.

If we construct automata A, and A, accepting {u} and {v}, respectively, then
the saturated transducer A, x A, accepts all edit strings e with e € h=1({(u,v)}).
Hence, the quantity dist(u,v) is the weight of the smallest-weight path (com-
putation) in the graph corresponding to A, x A, — here the weights on the
transitions are in {0,1} such that the weight of a transition (p,(z/y),q) is 1
if and only if z # y. This simple idea can be generalized for any pair of au-
tomata A; and A, and for more general types of distances — see [Mohri, 2003]
and [Kari et al., 2003] for details.

The problem of computing the (inner) edit distance of a language L is more
difficult, however. This quantity is the minimum edit distance between any pair
of distinct words of L. Suppose that A is an automaton accepting L. The dif-
ficulty here lies in the fact that the saturated transducer A x A accepts edit
strings e corresponding to pairs of equal words. Therefore, one would like to
have a saturated transducer for the transduction

(L x L)z ={(u,v)/u,v € Land u # v}.

Although one can construct an ordinary transducer for this transduction, we
show next that there is no saturated transducer for this transduction, that is,
(L x L) is not recognizable when L is infinite. For the sake of completeness
we mention that the problem of computing the inner edit distance is solved in
[Konstantinidis, 2005] by observing that (i) this quantity is always realized by
two words differing at some position bounded by j 4, for some index that depends
on the automaton A accepting L; and (ii) for any index j, there is a transducer
T; (which turns to be saturated, in our terminology) realizing all pairs of words
that differ at position j.

Given an arbitrary set P, by (P x P)» we understand the set of all pairs of
different elements of P. In other words, (P x P)x = (P X P) \ id(P).

Proposition 1. Let P be an arbitrary, infinite set. The set equation
(PxP); =) X xY
i=1
has no solution (n,{X4i,Y;}" ).

18



Proof. Assume, by contradiction, that there exists (n, {Xi,Y;}! ;) —a solution of
the above equation. Notice first that necessarily X; NY; = @ for all i € {1, ...,n}.
Since P is infinite, there exist 2! different elements in P. Denote by U; :=
{u1, ..., ugn+1} a set of such elements.

Consider the triplet Uy, X; and Y;. We we can write

Ur=UiNnX)UUinY) U (Ur\ (X1UuYr))

since X; and Y; are disjoint. Let us assume, without loss of generality that
| Uy N Xy |>| Uy NY: |, and let us denote U, := Uy \ ;.

We first prove that U, has at least 2" elements. We have that | Uy N Xy | + |
U1NY: |[< 27T and that | UyNX; |>| UrNY; |. This implies that | Uy NY; |< 27,
by the fact that Uy N X; and Uy NY; are disjoint. Then clearly | Uy \ Y7 |> 27,
hence | Uz |> 2™. We may also observe that the pairs of different elements in
U, can not appear in X; x Y;. Indeed, we can not have (u,v) € X; x Y7 and
u,v € Uy, since Uy = Uy \ V3.

We repeat the above argument for the triplet Uz, X5 and Y;. We obtain a
set U3 C Up with | Uz |> 2"! and no pair of elements in Uz can be found in
X2 X Yrg

Then, we repeat this argument till we obtain U,y; C Uy with | U,y |[> 2
and no pair of elements in U,, 1 can be found in X,, x Y,,.

Take two different elements u,v € Uy, 41. Since we have U, 11 C U, C ... C Uy,
we conclude that the pair (u,v) does not belong to any X; x Y;, for 1 < i <mn.

But this contradicts the fact that U; C P. O

Corollary 3. Let L € X* be an infinite regular language. The transduction
(L x L)% can not be realized by a saturated transducer over X.

Proof. In order to have a saturated transducer for (L x L), this set must be
recognizable, by Theorem 2. However, Proposition 1 shows that it can not be
written as a finite union of blocks, hence it is not recognizable, by Mezei’s char-
acterization. O

6 Final Comments and Future Work

In this paper we have achieved the following. We have revealed the relation
between edit languages, recognizable transductions and saturated transducers.
We have shown that operations with saturated transducers can efficiently be
implemented, and we outlined methods to construct and manipulate saturated
transducers. We have shown how one can use saturated transducers for com-
puting the edit distance between words and languages. Finally, we have studied
situations when our framework can not be used, due to the non-recognizability
of various rational relations.

It is worth noticing that our entire framework still holds when is restricted
to the use of only two edit operations: insertion and deletion (for this case,
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one defines “restricted saturated transducers”). This restriction may be of im-
portance in applications where only these two edit operations are of interest
([Levenshtein, 1966]).

Left for further analysis are a few matters which have not been tackled yet.
For example, it is worth investigating algorithms to efficiently compute saturated
transducers for given finite transductions; in particular, for finite identities.

It is interesting to notice that the notion of minimal saturated transducer
for a recognizable transduction makes sense, since it is given by the minimal
corresponding DFA over the edit alphabet. Size-complexity matters may be in-
vestigated in this aspect.

Finally, we have left for study the comparison of two representa-
tions(characterizations) of recognizable transductions: one using saturated trans-
ducers the other using tuples of automata.
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