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Abstract

The BACOL software package, which employs high order methods in
time and space to adaptively control spatial and temporal errors in a
method-of-lines approach, has been shown to be significantly more effi-
cient than existing codes for the accurate numerical solution of systems
of parabolic PDEs in one space dimension. In BACOL, the collocation
spatial discretization gives a system of differential-algebraic equations
(DAEs) which is treated using the DAE solver DASSL. Since DASSL em-
ploys backward differentiation formulas (BDFs), each spatial remeshing
requires an interpolation of previous solution values. In addition, for DAE
systems whose Jacobians have eigenvalues on the imaginary axis, such as
those arising from Schrödinger problems, DASSL performs inefficiently
since the higher order BDFs are not A-stable. In this paper, we describe
a new software package, BACOLR, which addresses these issues by using
RADAU5, a DAE solver based on an A-stable, (one-step) implicit Runge-
Kutta method. Numerical results show that BACOLR is generally more
efficient than BACOL on parabolic PDEs and substantially more efficient
on Schrödinger problems.
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1 Introduction

1.1 Overview

In [32], the recently developed BACOL code [31, 33], for the numerical solution
of systems of parabolic PDEs in one space dimension, is shown to be signifi-
cantly more efficient than similar available codes such as PDECOL/EPDCOL
[21, 19], PDECHEB [4], D03PPF [10], TOMS371 [6], MOVCOL [16], and HP-
NEW [24]. It is also able to solve problems to a higher accuracy than these
other packages. This better performance is especially evident when the solution
has narrow spikes or boundary layers. Based on the method-of-lines (MOL)
approach, BACOL uses collocation to discretize the PDEs, leading to a sys-
tem of ODEs which together with the boundary conditions form a system of
differential-algebraic equations (DAEs). This system is solved using DASSL
[25], a widely used DAE solver which is based on a family of multistep methods,
specifically backward differentiation formulas (BDFs), whose orders vary from
1 to 5.

Because DASSL employs BDFs, two issues arise when it is used within the
BACOL code. The first issue is related to the fact that a multistep method
requires solution approximations from several previous time steps, evaluated at
the points of the current spatial mesh. This can lead to a difficulty because
BACOL has the ability to refine and redistribute the spatial mesh. As long as
the spatial mesh stays fixed over a sufficient number of time steps, the previous
solution values are easily available to the multistep method but whenever there
is a spatial mesh redistribution or refinement, BACOL must compute solution
approximations for the new mesh, at the current time and up to five previ-
ous time steps, depending on what order of BDF formula is currently being
employed. The availability of these previous solution values allows DASSL to
perform what is referred to as a warm restart, i.e., after the spatial remeshing
DASSL can continue with the same order and stepsize. The alternative is for
DASSL to restart with a very small stepsize and a method of order one so that
no past values are required but such an approach, referred to in the literature
as a cold restart, has been shown to be very inefficient [3]. BACOL obtains
an estimate of the spatial error by computing two global solutions, of degree
p and p + 1, on the same spatial mesh. If the error is too large or is not ap-
proximately equidistributed over the subintervals of the mesh, it is necessary to
change the mesh and then the two global solutions must be interpolated from
the old mesh to the new one. This means that the back values computed by
DASSL must also be interpolated on the new mesh. Consequently as many as
twelve interpolations may be necessary. This results in considerable overhead.

A second issue with using DASSL as the time integrator in BACOL arises in
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the solution of DAEs in which eigenvalues of the Jacobian are purely imaginary
(such as those that arise from Schrödinger problems). In such a case it is usually
impossible for DASSL to obtain a solution unless the user restricts the code so
that it only uses BDFs of orders 1 or 2 because the stability regions of the higher
order BDFs do not contain the imaginary axis; this order restriction results in
significant inefficiency. (We note that these same issues arise with any adaptive
MOL solver that employs a DAE or IVP solver based on a multistep method.)

The above two issues are addressed through the use of implicit Runge-Kutta
methods, e.g., [14]. These are one-step methods and thus no solution values
from previous steps are needed in the determination of the solution values for
the next step. As well there exist many methods which are high order and A-
stable (which implies that the stability region includes the imaginary axis). A
well-known DAE solver based on a particular fifth order implicit Runge-Kutta
method of Radau type is the RADAU5 package [14]. Due to the one-step na-
ture and the A-stability of the underlying Runge-Kutta formula employed within
this code, it appears to provide an attractive alternative to DASSL for use in
BACOL. A drawback, however, is that in order to obtain an efficient implemen-
tation of the fifth order Radau formula, RADAU5 employs complex arithmetic.
One must then consider the trade-off between this higher cost and the savings
associated with being able to avoid both interpolation after a remeshing and
order restrictions due to stability issues when one considers problems leading to
DAE systems having Jacobians with eigenvalues on the imaginary axis.

In this paper, we describe a new software package called BACOLR which
addresses the difficulties associated with the use of DASSL in BACOL. BACOLR
was developed from BACOL through a substantial modification process which
involved replacing DASSL with a significantly modified version of RADAU5.

This paper is organized as follows. We conclude this section with a brief
overview of method-of-lines software for 1-D parabolic PDEs and the general
forms of the problem classes to be considered in this paper. In section 2 we
describe the new package, providing a summary of the modifications undertaken
to develop BACOLR from the original BACOL code and the modifications to the
RADAU5 code, followed by a brief description of the interface for the BACOLR
package. Section 3 gives the main thrust of the paper which is the comparison of
BACOLR and BACOL on two 1-D parabolic problems and two 1-D Schrödinger
problems. Numerical results show that BACOLR is generally more efficient than
BACOL on standard 1-D parabolic PDEs and substantially more efficient on
1-D Schrödinger problems. We close with a summary, some conclusions, and a
discussion of future work.

1.2 Method-of-lines Software for 1-D Parabolic PDEs

In the numerical approximation to solutions of parabolic PDEs, the MOL is
one of the most popular approaches. In this technique, one begins with a mesh
which partitions the spatial domain. The spatial operators are then discretized
with a scheme based on, for example, finite difference methods or collocation,
leading to a system of initial value ordinary differential equations (IVODEs).
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The boundary conditions in space may be applied directly to the approximation
space, or differentiated to give IVODEs. In the latter case a system of IVODEs
results, while in the former case a system of DAEs of index 1 results. The system
of IVODEs or DAEs is then solved approximately using a suitable solver.

Over the last three decades several software packages have been developed
for the numerical solution of systems of parabolic PDEs in one space dimen-
sion, based on the standard MOL. Early codes (e.g., PDECOL, EPDCOL,
PDECHEB) made no attempt to control the spatial error or adapt the spa-
tial mesh; they employed a fixed (but possibly non-uniform) mesh. They did,
however, attempt to control the local time error through the IVODE or DAE
solver which would use error estimates and adaptive strategies, such as variable
stepsize and formula order.

More recent packages (e.g., D03PPF, TOMS731, MOVCOL), employ a fixed
number of mesh points and use redistribution or movement of these points to
try to reduce the spatial error. These are referred to as adaptive MOL (AMOL)
codes. In addition to employing temporal adaptivity and error control through a
high quality IVODE or DAE solver, these codes are able to adjust the locations
of the mesh points to focus points on regions of difficult solution behaviour,
typically based on a monitor function. Thus for a given discretization scheme
and a given number of mesh points one obtains about as much accuracy in space
as is possible. While better spatial accuracy is obtained through adaptivity,
there is no capability for actually controlling the spatial error.

Within the last few years a new generation of AMOL codes has been de-
veloped. One such code is HPNEW which is a modification of HPDASSL [23].
A related code is HPSIRK [23], which was shown to be generally less efficient
than HPDASSL. The HPSIRK, HPDASSL, and HPNEW codes employ both
mesh and spatial order adaptivity, and use finite-element Galerkin methods for
the spatial discretization. In HPNEW and HPDASSL the resultant DAEs are
treated using DASSL. HPSIRK solves the DAEs using singly-implicit Runge-
Kutta methods, e.g., [14]. Another code from this class is the BACOL code,
mentioned earlier, which we describe in more detail in the next section.

1.3 Problem Classes

In this paper we consider the numerical solution of two classes of problems that
commonly appear in the literature.

The first class consists of systems of time-dependent parabolic PDEs in one
space dimension. Such problems arise in a great many applications including
chemical reaction and heat diffusion studies. We assume parabolic problems
with the general form

ut(x, t) = f (x, t,u(x, t),ux(x, t),uxx(x, t)), a ≤ x ≤ b, t ≥ t0, (1)

with initial conditions

u(x, t0) = u0(x), a ≤ x ≤ b,
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and separated boundary conditions

ga(t,u(a, t),ux(a, t)) = 0, gb(t,u(b, t),ux(b, t)) = 0, t ≥ t0.

We assume that u, f , u0, ga, and gb are vector functions with n components. We
consider two problems of this type; the first is Burger’s equation, which is a single
nonlinear PDE; the second problem is a system of four coupled nonlinear PDEs
arising from a catalytic surface reaction model. These problems are described
in sections 3.1 and 3.2.

The second class consists of time dependent Schrödinger problems in one
space variable. Application areas in which such problems arise include fibre
optics, plasma physics, laser pulses, seismology, and quantum mechanics. The
paper [12] provides an excellent survey of problems of this type and numerical
methods for their treatment. In this paper we consider problems of this type
that have the general form (1) with the restriction that

f (x, t,u(x, t),ux(x, t),uxx(x, t)) = i(S1ux(x, t) + S2uxx(x, t) + F(x, t,u(x, t))),
(2)

where i2 = −1, S1 and S2 are n by n matrices, and the function F is a vec-
tor function with n components. In this paper, we consider two problems of
this type, the cubic (nonlinear) Schrödinger equation and a coupled nonlinear
Schrödinger system consisting of two equations. These problems are described
in sections 3.3 and 3.4.

2 BACOLR

2.1 Overview

Here we provide a brief overview of the algorithms implemented in the BACOL
and BACOLR packages. We describe the algorithms assuming a single PDE
but the generalization to a system of PDEs is straightforward. The reader is
referred to [31] for further details.

The spatial discretization is based on a partitioning of the spatial domain by
a mesh of N + 1 points, a = x0 < x1 < · · · < xN = b. A piecewise polynomial
of degree p (where p is chosen by the user) is set up on this mesh, having
continuous first derivatives at the mesh points and having NC ≡ N (p− 1) + 2
free parameters. BACOL and BACOLR use B-splines [7] as a basis for these
piecewise polynomials. The solution u(x, t) is then approximated by U (x, t)
where

U (x, t) =
NC∑

i=1

Bi(x)yi(t), (3)

and where yi(t) represents the (unknown) coefficient of the i-th B-spline basis
function. These coefficients are then computed using collocation. That is, we
require the piecewise polynomial in (3) to satisfy the PDE at p − 1 Gaussian
points in each of the N subintervals, and to satisfy the two boundary conditions.
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This process results in a set of NC − 2 ODEs and two algebraic equations,
thereby giving a system of DAEs of index 1. (The DAE system has index 1
because a differentiation of the boundary conditions gives a pure ODE system.)
Due to the type of discretization scheme and basis, this DAE system has a
Jacobian which has a special structure known as almost block diagonal (ABD)
[2].

In BACOL, as mentioned earlier, the time integrator used is a modified
version of DASSL. The changes made are detailed in [33]. One of the major
changes to DASSL involved adding a module, COLROW, [11], for the solution
of the ABD linear systems which arise during the time integration. In BACOLR,
as indicated earlier, the time integration is handled by the RADAU5 code, which
was also modified in a number of ways, as described in the next subsection.
In each code the time tolerance provided to the DAE solver is the tolerance
provided by the user.

BACOL and BACOLR each compute two approximate solutions, one with
degree p and one with degree p + 1. The difference between these two solution
approximations is used to obtain an estimate of the error. We require Es < 1
where Es is the error estimate associated with the sth solution component; Es

has the form

Es =

√∫ b

a

(
Us(x, t)− Ūs(x, t)

ATOLs +RTOLs|Us(x, t)|

)2

dx, (4)

where t is the current time, ATOLs and RTOLs denote the absolute and relative
tolerances for the s-th component of the PDE system, respectively, Us(x, t) is
the degree p solution approximation and Ūs(x, t) is the degree p + 1 solution
approximation, for the s-th PDE component. When the error at the current
step fails to satisfy a given tolerance, the spatial remeshing algorithm in BACOL
uses an equidistribution principle to obtain a new mesh. The new mesh may
consist of the same number of points, redistributed, or a redistributed mesh
with either more or fewer points. The details of the error control algorithm are
discussed in [31].

Once a remeshing has been performed, as indicated earlier in this paper, BA-
COL performs a warm restart requiring up to 5 interpolations of past solutions
values on the new mesh, for each of the two solution approximations. BACOLR,
since it uses a one-step method does not need to perform these interpolations.

Further software development aspects of the BACOL project are discussed
in [33], where the user interface is also explained. See also section 2.3 below for
some discussion of the user interface for BACOLR.

2.2 Software Modifications

The BACOL package is based on the ODE solver DASSL, a BDF code. In
section 1.1 we have discussed the motivation for creating a modified version of
BACOL which replaces DASSL by the Runge-Kutta solver RADAU5 for the
solution of the DAEs. This of course necessitated substantial modification of
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BACOL as well as significant modification of RADAU5. We now discuss the
changes made to these two packages.

• Since RADAU5 uses a (one-step) Runge-Kutta method, we do not need
to save solution information for up to five previous time steps and after a
remeshing we do not need to use interpolation of these past values to get
new solution approximations on the new mesh. We were therefore able
to simplify BACOLR by removing the code in BACOL that handled this
task.

• At the end of each successful time step, both BACOL and BACOLR
compute an error estimate based on the comparison of two global solutions,
one of spatial order p and the other of spatial order p+ 1. BACOLR has
a different structure than BACOL in that the spatial error estimation
and control calculations are not carried out within a module called from
BACOL, but rather in a sub-module of RADAU5. The reason for this is
as follows. Since the interface to DASSL allows for a return after a fixed
number of steps, in BACOL we ask DASSL to return to the main BACOL
subroutine after every successful time step and then we estimate the spatial
error within BACOL. RADAU5 does not provide the option to return after
a fixed number of time steps; it returns only after reaching a specified
output time, or on a signal from one of its subroutines, SOLOUT, which
it calls after every successful time step. SOLOUT was originally intended
to allow the user to output the numerical solution during the integration,
rather than only at the output time, or to allow the user to interrupt the
computation after a successful step, should a special condition arise. We
have written a SOLOUT routine which employs the solution returned by
RADAU5 to compute an estimate of the spatial error and decide whether
or not to do a remeshing. Since RADAU5 calls this routine after every
successful time step we therefore get the same functionality for this task
as is available in BACOL.

• After the spatial discretization, the resultant ODEs together with the
boundary conditions give an index-1 DAE system. RADAU5 is able to
handle a DAE system whose index is less than or equal to 2. However,
RADAU5 requires the ODEs to be given first, followed by the algebraic
equations. In our case, the algebraic constraints are generated from the
boundary conditions. In order to preserve the ABD structure of the lin-
ear systems, the equations must be ordered so that those associated with
the left boundary come first, followed by the equations resulting from the
discretization of the PDEs, followed by the boundary conditions associ-
ated with the right boundary. From an inspection of the RADAU5 code
we observed that the ordering of the equations is not fundamental to the
implementation. The difference in the way RADAU5 treats the variables
corresponding to the ODEs and those corresponding to the index-1 alge-
braic equations is that the estimates of the error for the latter variables
are multiplied by the time stepsize, htime. We therefore provide the ODEs
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and algebraic equations to RADAU5 in the order specified above which
preserves the structure of the linear systems, rather than in the order
expected by RADAU5, and have modified RADAU5 to perform the ap-
propriate scaling on the algebraic constraints, which appear as the first
and last groups of equations.

• RADAU5 employs a 3-stage Radau-type implicit Runge-Kutta method
and is designed for DAEs of the form M y′ = f(t, y). As discussed in [14],
the Newton systems which arise in the treatment of the DAE system have
the form




γ M − G 0 0
0 αM − G −β M
0 β M αM −G







w
u
v


 =




ρ
δ
ψ


 ,

where γ = γ̂/htime, α = α̂/htime, β = β̂/htime, γ̂, α̂ and β̂ are posi-
tive constants, and G = ∂f/∂y. One can clearly split the above system
into two smaller systems. The first is (γ M − G)w = ρ. For the sec-
ond, one can transform the real system into a complex system of the form
((α + i β)M − G)(u + iv) = δ + i ψ. The matrices M and G have the
same ABD matrix structure. The matrix γM − G is therefore also of
ABD form, as is the matrix (α+ i β)M − G. RADAU5 offers several op-
tions for the solution of the linear system, including a full matrix solver
and a banded matrix solver (both in real and complex form). However,
the linear system solver, COLROW [11] is significantly more efficient in
treating the ABD systems than a band solver and also does not introduce
fill-in of the matrix structure, which implies that no extra storage is re-
quired. We have therefore introduced a new linear system solver option
within RADAU5 to allow it to employ COLROW and its complex ver-
sion, COMPLEXCOLROW [18], for the efficient treatment of the Newton
systems.

• It is well known that the condition number of the iteration matrix for a
DAE system with index 1 is O((htime)−1); see, e.g., [9]. A poorly condi-
tioned Jacobian may lead to failure of the associated Newton iteration [33].
A scaling technique is suggested in [26] to overcome this difficulty. This
technique is implemented in BACOL and we also employ it in BACOLR.
We scale the subblock of the real matrix γ M − G and the correspond-
ing right hand side elements associated with the boundary conditions by
γ and scale the subblock of the complex matrix (α + i β)M − G and the
corresponding right hand side elements associated with the boundary con-
ditions by α+i β. We have verified numerically that this scaling technique
significantly reduces the condition number of the Jacobian matrix.

• Unlike DASSL, RADAU5 is unable to automatically select an initial step-
size. RADAU5 does allow the user to specify an initial stepsize however,
and we provide this option in the BACOLR parameter list, consistent with
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a similar option in the BACOL parameter list. If the user does not provide
an initial stepsize, BACOLR sets the default value to be the maximum of
the relative and absolute tolerances values.

• In RADAU5, one of the input parameters is used to decide how often the
Jacobian matrix should be recomputed. The default value is appropriate
for small DAE systems. However, as recommended in [14], we reset this
parameter to a larger value which is more appropriate when RADAU5 is
applied to large systems, such as those that arise in the MOL.

2.3 The BACOLR Interface

The interface of BACOLR is similar to that of BACOL, i.e., BACOLR has
the same user supplied subroutines and essentially the same parameter list as
BACOL, and we therefore refer the reader to [33] for the details of the BA-
COL interface. In this subsection we discuss the minor differences between the
interfaces of the two codes.

• If the user wishes, BACOL can return after a certain number of accepted
time steps. RADAU5 does not provide this capability directly, although
it could be implemented using the SOLOUT subroutine. This option has
not been implemented in the current version of BACOLR.

• DASSL will normally integrate past the output time, Tout, and then inter-
polate within the final step to obtain a solution approximation at Tout. For
some problems, it is not possible to integrate beyond some point, Tstop,
because the equation changes at that point or is not defined beyond that
point. Thus DASSL has an option which allows the user to provide the
code with the point Tstop. RADAU5 (and thus BACOLR) does not have
this option.

• The parameter IDID is the exit status flag for both BACOL and BACOLR.
A negative value of IDID indicates an unsuccessful return and an error
message is output. However, the meaning of a positive value of IDID is
different for each code. In BACOL, IDID can have values of 1, 2, or 3,
while for BACOLR, IDID can have only one positive value, namely 1,
which indicates that the integration to Tout was successfully completed.

• In order to continue time stepping for the current problem after a success-
ful return, for BACOL, the user should set MFLAG(1) and IDID, while
for BACOLR, the user need only set MFLAG(1) = 1.

The BACOLR software is currently available for download from the website
of one of the authors; see www.mscs.dal.ca/∼keast/research/pubs.html. The
source code for BACOLR contains further detailed documentation in support
of the package. The webpage also includes an example driver program that can
be downloaded.
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3 Numerical Comparison of BACOL and BA-
COLR

In this section we compare BACOL and BACOLR on a series of test problems
chosen from the literature. These tests were performed on a 480 MHz. SPARC
CPU, using SUNWspro/bin/f77 as the FORTRAN compiler. Compilation is
done using the -O switch, which provides a basic level of optimization.
The notation used and the statistics collected include:

• N : the number of subintervals;

• p: the degree of the piecewise polynomial for the primary solution approx-
imation (3 ≤ p ≤ 11);

• Tout: the time at which the numerical solution is requested;

• TOL: the user supplied tolerance (we set ATOLs = RTOLs = TOL);

• CPU : the execution time in seconds.

We use p = 3, p = 6 and p = 9 in our numerical experiments. The initial mesh
is chosen to be uniform with N = 10.
At the output time, Tout, we calculate the absolute L2-norm error; i.e., the
difference between the approximate solution and the exact solution:

‖Us(x, t)− us(x, t)‖2 =

√∫ b

a

(Us(x, t)− us(x, t))2 dx, (5)

where s = 1, . . . , NPDE, us(x, t) represents the s-th component of the exact so-
lution, and Us(x, t) represents the s-th component of the approximate solution.
While both BACOL and BACOLR control a blended absolute/relative estimate
of the error (4), for the problems we consider in this paper, the solution compo-
nents are O(1) and therefore the error estimate, (4), controlled by the codes is
comparable to the error we measure, (5). (For the problems considered in this
paper, (4) implies that the absolute error estimate will be required to be less
than about 2 · TOL.)

We now present our test problems and computational results. We plot the
exact L2-norm error, (5), at Tout against the CPU time for each code. There is
one data set for each of the three p values, for each code. For each data set we
plot a curve marked with a unique symbol, as indicated by the legend included
in the figure; for example, the ∗ represents BACOLR, p = 9. The nine symbols
appearing along each curve correspond to the nine tolerance values considered
for each code and p value; the tolerance values we employ are {10−q}10

q=2. Thus,
for example, the third symbol from the left appearing on each plotted curve
represents the error and CPU time we observed when the given tolerance was
10−4. Using this information, we can then also observe from the figures how
close each code comes to meeting the prescribed tolerance.
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3.1 Burgers’ Equation

This parabolic equation has the form

ut = −uux + εuxx, 0 < x < 1, t > 0, ε > 0.

The initial condition and boundary conditions are chosen so that the exact
solution is given by

u(x, t) =
0.1e−A + 0.5e−B + e−C

e−A + e−B + e−C
,

where

A =
0.05
ε

(x− 0.5 + 4.95t), B =
0.25
ε

(x− 0.5 + 0.75t), C =
0.5
ε

(x− 0.375).

This problem is taken from [1, 5]. The exact solution is plotted in Figure 1 for
ε = 10−4, 0 ≤ t ≤ 1, 0 ≤ x ≤ 1.
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Figure 1: u(x, t) for Burgers’ equation, ε = 10−4.

The solution begins with two wavefronts. They move from left to right and
merge to form one wavefront. As mentioned in [22], the thickness of the wave-
fronts is O(ε). The codes will have to quickly adapt the initial uniform mesh
to the presence of the two distinct wavefronts and then as time advances, the
codes will have to adapt the meshes to track the movement of these wavefronts
as they merge. Figure 2 shows the performance of the codes (with various p val-
ues) for Burgers’ equation with ε = 10−4. The L2-norm error, (5), at Tout = 1,
is plotted against the CPU time, both in logarithmic scales.

We make the following observations.
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Figure 2: L2-norm error vs. CPU time for Burgers’ equation, ε = 10−4.

• When we choose p = 3, BACOL and BACOLR have almost identical
performance. However when we choose p = 6 or p = 9, BACOLR is about
twice as fast as BACOL. Our examination of the details of the computation
shows that this difference in performance is primarily attributable to the
time integrators.

• We observe that, for a given tolerance, both codes are able to obtain an
approximate solution whose error is consistent with the tolerance. For
example from Figure 2, we can see that when BACOL and BACOLR are
given a tolerance of 10−10 the observed error is approximately 10−10.

• While we were conducting this set of experiments we observed that both
BACOL and BACOLR employ spatial meshes that are quite similar in the
number of points employed and in the distribution of those points. The
meshes generated by the codes successfully track the moving wavefronts.

3.2 A Catalytic Surface Reaction Model

The second parabolic problem is taken from [23]; it represents a reaction-
diffusion-convection system for modelling a catalytic surface reaction. We in-
clude this problem because it allows us to investigate code performance on a
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system of PDEs exhibiting challenging solution behaviour. The system has the
form

(u1)t = −(u1)x + n(D1u3 −A1u1(1 − u3 − u4)) +
1
Pe1

(u1)xx,

(u2)t = −(u2)x + n(D2u4 −A2u2(1 − u3 − u4)) +
1
Pe1

(u2)xx,

(u3)t = A1u1(1 − u3 − u4) −D1u3 − Ru3u4(1 − u3 − u4)2 +
1
Pe2

(u3)xx,

(u4)t = A2u2(1 − u3 − u4) −D2u4 − Ru3u4(1 − u3 − u4)2 +
1
Pe2

(u4)xx,

where 0 < x < 1 and t > 0, with initial conditions

u1(x, 0) = 2 − r, u2(x, 0) = r, u3(x, 0) = u4(x, 0) = 0, 0 < x < 1,

and boundary conditions

1
Pe1

(u1)x(0, t) = −(2 − r − u1),
1
Pe1

(u2)x(0, t) = −(r − u2), t > 0,

(u3)x(0, t) = (u4)x(0, t) = 0, t > 0,

(u1)x(1, t) = (u2)x(1, t) = (u3)x(1, t) = (u4)x(1, t) = 0, t > 0,

where u1(x, t) and u2(x, t) are nondimensionalized concentrations, u3(x, t) and
u4(x, t) are coverage of adsorbed reactants on the catalytic wall, Pe1 and Pe2
are Peclet numbers, and D1, D2, R, A1 and A2 are Damkohler numbers. We
choose A1 = A2 = 30, D1 = 1.5, D2 = 1.2, R = 1000, r = 0.96, n = 1 and
Pe1 = Pe2 = 100.

The exact solution is unknown for this problem. We therefore solve this
problem with a very sharp tolerance (TOL = 10−13) using BACOL in order to
obtain a sufficiently accurate solution approximation which serves as the “exact”
solution for use in (5). High-precision numerical approximations for the solution
components are shown in Figures 3–4. (Note that in order to better display the
solution behavior, we have reversed the x and t axes orientation from that used
in Figure 1.)

While it is somewhat difficult to fully perceive detailed solution behavior
from these figures, one can observe that there is significant solution variability
in both time and space. The codes will need to immediately adapt the initial
mesh to respond to the boundary layers in the initial solution configuration, and
then will have to frequently adjust these meshes to react to changing solution
behaviour as time advances.

Figure 5 shows the performance of the codes for this problem. The L2-
norm error is computed at Tout = 18. We first calculate the L2-norm error
for each PDE component, and then the maximum L2-norm error over all PDE
components is plotted.

We make the following observations:
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Figure 3: u1(x, t), u2(x, t) for catalytic surface reaction model.

• For a given tolerance, the solutions returned by BACOL are not as accu-
rate as those returned by BACOLR. For example, when we consider p = 3
and TOL = 10−7, the maximum L2-norm error for BACOLR is about
4 × 10−7 while for BACOL it is about 2 × 10−5. Similarly, for all choices
of p, and a tolerance of 10−10, BACOL returns a solution whose error
is only about 10−7. The poorer performance by BACOL occurs because
DASSL does not compute a solution to the DAEs whose error satisfies
the requested time tolerance. We observed experimentally that by giving
DASSL a sharper time tolerance, which forces it to return a solution with
a smaller time error, we could get BACOL to return a solution that meets
the requested TOL value.

• For errors in the range from approximately 10−1 to 10−7, for p = 3,
BACOLR is a little more efficient than BACOL. For p = 6, the codes are
comparable, except for very coarse tolerances, where BACOL is faster.
For p = 9, BACOLR is slightly slower than BACOL.

• We again observed that BACOL and BACOLR employ similar spatial
meshes which quickly adapt to the boundary layers that are present at
the initial time and then are able to place points in appropriate places to
respond to significant changes in solution behaviour.

3.3 The 1-D Nonlinear Cubic Schrödinger Equation

The one-dimensional nonlinear cubic Schrödinger equation is given by

ut = i
(
uxx + q|u|2u

)
, −∞ < x < ∞, t > 0, (6)
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Figure 4: u3(x, t), u4(x, t) for catalytic surface reaction model.

with the initial condition

u(x, 0) = g(x), −∞ < x < ∞, (7)

where i2 = −1, q is a positive constant, g(x) is a complex function, and |g(x)| →
0 as |x| → ∞. This problem is taken from [27].

Since this problem is defined over the entire real line, in order to compute
the approximate solution numerically, we restrict x to a finite interval [a, b]
with a and b chosen so that u(x, t) is negligible for x outside [a, b]. By imposing
Dirichlet boundary conditions at x = a and x = b, we convert the initial value
problem (6) into an initial-boundary value problem of the form

ut = i (uxx + q|u|2u), a ≤ x ≤ b, t ≥ 0, (8)

u(x, 0) = g(x), a ≤ x ≤ b, (9)

u(a, t) = u(b, t) = 0, t > 0. (10)

In our numerical experiments we choose q = 8. The function g(x) appearing in
the initial condition is chosen so that the exact solution is given by

u(x, t) = eitsech(x)

[
1 + 3

4sech2(x)(e8it − 1)
1 − 3

4
sech4(x) sin2(4t)

]
.

The spatial interval used is [−40, 40]. The exact solution is plotted in Figure 6
for −40 ≤ x ≤ 40, 0 ≤ t ≤ 2.5. (Note that in order to better display the
solution behavior, we have reversed the x and t axes orientation from that used
in Figure 1.)
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Figure 5: Maximum L2-norm error vs. CPU time for catalytic surface reaction
model.

We observe for this problem that the codes will have to quickly adapt the
uniform initial mesh to focus points near the origin. However, after this is
accomplished, no further adaptation of the mesh for later times will be necessary.

Standard numerical approaches for the spatial discretization of the 1-D non-
linear cubic Schrödinger equation include finite difference, finite element, and
orthogonal spline collocation methods; see, e.g., [28, 27, 30]. These spatial dis-
cretizations have been reasonably successful, particularly when coupled with
user-provided graded meshes which focus points near the origin. However,
despite many studies of the time integration schemes in the literature (e.g.,
[15, 29]), none of these schemes have proven to be entirely satisfactory. While
there have been a plethora of methods proposed for the numerical solution of
Schrödinger problems - see, e.g., [12] - to our knowledge this research has not
led to the development of a robust software package for the treatment of these
problems.

For simpler systems of this type and for simple spatial discretization schemes
it has been proven that the resultant DAE systems have Jacobians which have
eigenvalues on the imaginary axis, and it appears that this property carries over
to more general Schrödinger problems. This means that one needs to consider
time integration schemes whose stability regions include the imaginary axis. As
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Figure 6: |u(x, t)| for cubic Schrödinger equation.

mentioned earlier, higher order BDF methods (of order greater than 2), such as
those employed by DASSL, will not perform well; see, e.g., [14]. On the other
hand, RADAU5 employs a fifth-order Runge-Kutta scheme which is A-stable,
implying that its stability region does include the imaginary axis.

In order to treat this problem using the BACOL and BACOLR codes, we
first decompose the complex function u(x, t) into its real and imaginary parts
v(x, t) and w(x, t), respectively. Equations (8)–(10) become

vt = −wxx − 8(v2 + w2)w, −40 ≤ x ≤ 40, t ≥ 0,

wt = vxx + 8(v2 +w2)v, −40 ≤ x ≤ 40, t ≥ 0,

v(x, 0) = sech(x), w(x, 0) = 0, −40 ≤ x ≤ 40,

v(−40, t) = v(40, t) = w(−40, t) = w(40, t) = 0, t > 0.

The L2-norm error of the complex function u(x, t) = v(x, t) + i w(x, t), is
defined as

‖U (x, t)− u(x, t)‖2 =

√∫ b

a

(U (x, t)− u(x, t))2 dx

=

√∫ b

a

((V (x, t) − v(x, t))2 + (W (x, t) −w(x, t))2) dx,

where U (x, t) = V (x, t) + iW (x, t) is the approximate solution.
In our initial experiments on this problem, we found that BACOL was unable

to obtain a solution. This is expected because, as mentioned above, the stability
regions of the BDF methods whose orders are greater than or equal to 3 do not
include the imaginary axis. Therefore, in order to continue with this experiment,
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we employed an option within DASSL that allows one to restrict the BDF
methods that the code uses to be of at most order 2.

Figure 7 shows the performance of the two codes for the cubic Schrödinger
equation at Tout = 2.5, with BACOL using DASSL in an order restricted mode.
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Figure 7: L2-norm error vs. CPU time for cubic Schrödinger equation; BACOL
is run with DASSL in order restricted mode.

We make the following observations:

• BACOL fails on this problem unless it is run with DASSL in a order
restricted mode (orders 1 and 2 only).

• BACOLR is substantially more efficient than BACOL for this problem.
This is because of the advantage of the higher order time integration
scheme of RADAU5 over the lower order ones of the order restricted
DASSL.

• We note that for a given tolerance, BACOLR is able to generate a much
more accurate solution than BACOL. For example, we can see that for
a tolerance of 10−10 BACOL gives a solution whose error is about 10−4

while BACOLR gives a solution whose error is about 10−7. We note that
neither code is able to meet the requested tolerance; in each case this is
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due to the fact that the time integrator is not able to return a solution
to the DAEs which satisfies the given time tolerance. As for the previous
problem, we observed that we could get both codes to return solutions
that satisfy the requested TOL value by setting the time tolerance to
be sharper than the spatial tolerance. This forces both DAE solvers to
return solutions that have errors that are in fact less than the requested
time tolerance.

• As in previous experiments, we observed that BACOL and BACOLR em-
ploy similar spatial meshes. The codes quickly adapt the meshes to place
a sufficient number of points near the origin and then maintain this mesh
for the remainder of the computation.

3.4 A Coupled Nonlinear Schrödinger System

This system is given by

(u1)t = i

(
1
2
(u1)xx + η (u1)x + (|u1|2 + ρ |u2|2)u1

)
,

(u2)t = i

(
1
2
(u2)xx − η (u2)x + (ρ |u1|2 + |u2|2)u2

)
,

where i2 = −1 and η and ρ are positive constants. The boundary conditions
are

(u1)x(a, t) = (u2)x(a, t) = 0, (u1)x(b, t) = (u2)x(b, t) = 0, t > 0,

where a = −30 and b = 90, again chosen so that the solution values outside this
interval are negligible. The initial conditions are

u1(x, 0) = g1(x), u2(x, 0) = g2(x), a ≤ x ≤ b,

where g1(x) and g2(x) are chosen so that the modulus for each of the exact
solutions is a soliton and the exact solutions are given by

u1(x, t) =
√

2κ
1 + ρ

sech
(√

2κ(x− φt)
)
ei((φ−η)x−(φ2−η2

2 −κ)t),

u2(x, t) =
√

2κ
1 + ρ

sech
(√

2κ(x− φt)
)
ei((φ+η)x−( φ2−η2

2 −κ)t),

where κ is a constant and φ represents the speed of the soliton. In our numerical
experiments we choose φ = 1, η = 1/2, ρ = 2/3 and κ = 1. The modulus of
u1(x, t) is plotted at t = 0, 10, 20, . . ., 50 in Figure 8.

We chose this problem because the location of the sharp peak moves with
time thus providing more of a challenge to the mesh selection algorithms of the
codes. We observe that it will be necessary for the codes to quickly adapt the
initial uniform mesh to place points in the region of the initial peak and then, for
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Figure 8: |u1(x, t)| for coupled Schrödinger system.

later times, these points will have to move to track the motion of the peak across
the domain. As we did for the previous problem, we first decompose u1(x, t) and
u2(x, t) into their real and complex parts, obtaining a four component system.

This problem is taken from [17], where the authors treat it by using non-
adaptive methods, i.e. a fixed spatial mesh and fixed time steps. Neumann
boundary conditions are employed and second order central differences are used
for the spatial discretization. The implicit mid-point rule is used for the time
integration of the resultant IVODE system. Figure 9 shows the performance of
BACOL and BACOLR for this problem at Tout = 5.

We have the following observations:

• As was the case for the previous Schrödinger problem, BACOL cannot
handle this problem unless it is run with DASSL in an order restricted
mode (orders 1 and 2 only).

• We observe that BACOLR is substantially more efficient than BACOL for
all p values and for errors less than about 10−2.
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Figure 9: Maximum L2-norm error vs. CPU time for coupled Schrödinger
system. BACOL is run with DASSL in order restricted mode.

• For a given tolerance, BACOLR is able to generate a much more accurate
solution than BACOL. For example, when the tolerance is 10−10 BACOL
computes a solution whose error is about 10−6 while BACOLR returns a
solution whose error is about 5 × 10−9. The amount by which each code
fails to meet the requested tolerance is attributable to the fact that its
time integrator is not able to meet the time tolerance. This was verified
by running BACOL and BACOLR with sharper time tolerances provided
to their respective DAE solvers and observing that the codes were then
able to return solutions which met the requested TOL value.

• For this problem BACOLR is able to quickly adapt the initial mesh to the
location of the peak and then is able to move points to track the location
of the peak across the domain. BACOL is not able to handle this problem
as well and tends to use meshes that adapt to some extent to the presence
of the peak as it moves across the domain but have too many points.
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4 Summary, Conclusions and Future Work

BACOLR was obtained from BACOL through a substantial modification to
replace DASSL with RADAU5; this process also involved a substantial mod-
ification of the RADAU5 package, including the addition of a capability for
the efficient treatment of ABD linear systems. Extensive testing on parabolic
problems shows that BACOLR is generally more efficient than BACOL. This
advantage is greater for Schrödinger problems where BACOL is forced to use
DASSL in an order restricted mode which significantly reduces its efficiency.

We observed that for a single parabolic PDE, both BACOL and BACOLR
are able to satisfy a requested tolerance. This is consistent with other extensive
numerical testing we have performed; we have found that when we consider a
single parabolic equation both codes are able to obtain an approximate solution
whose error is consistent with the tolerance.

For the system of parabolic PDEs considered in this paper, we have noted
that BACOLR is able to meet a requested tolerance but BACOL is generally
not. This is because RADAU5 returns a solution to the DAEs which satisfies
the requested time tolerance while DASSL does not. We have also conducted
extensive numerical testing using other codes [32]. For example, when we apply
HPNEW to the first and second test problems in this paper we see similar per-
formance; the code usually returns a solution whose error satisfies the requested
tolerance for a single equation but is not able to do so for systems. When we
employ EPDCOL, the fixed-mesh software package mentioned previously, which
employs collocation in space and BDF methods for the time integration to solve
systems of equations, we also found that it is unable to obtain an approximate
solution whose error is close to the requested time tolerance no matter how
many points we use on the spatial domain. In each of these cases the initial
value solver is unable to compute a solution whose error is close to the given
tolerance. We have also observed this phenomenon for other parabolic PDE
systems. We can thus make the important observation that RADAU5 seems to
be more effective in controlling the temporal error for discretizations of PDE
systems.

For Schrödinger systems we saw that both BACOL and BACOLR (to a lesser
extent) have difficulty in returning solutions whose error is less than the given
tolerance. In each case this is because the DAE solver is not able to return a
solution that satisfies the given time tolerance. We have found that for all of the
problems considered in this paper we can address this difficulty and get BACOL
and BACOLR to satisfy requested tolerances, provided we set the time tolerance
sufficiently small compared to the spatial tolerance. This forces the DAE solver
to compute the solution to higher accuracy and it then returns a solution whose
error is in fact less than the spatial tolerance. However, in some cases this
significantly increases the cost of the computation. (For a different class of
problems, treated by the MOL, the paper [20] investigates similar behavior for
the code DASPK [8], which is derived from DASSL.)

Future work involves further investigation of the relationship between the
spatial tolerance and the time tolerance. Further investigation of the behaviour
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of time integrators applied to DAE systems whose Jacobians have pure imag-
inary eigenvalues is needed. Another possibility for future work follows from
the observation that RADAU5 has been generalized to a variable order code,
RADAU, based on Radau-type implicit Runge-Kutta methods of orders 5, 9,
and 13 [13]. It would be interesting to modify BACOLR to replace RADAU5
with this variable order time integrator.

The computation of a second global solution for the error estimate represents
a significant cost in BACOL and BACOLR and we are currently considering
alternative low cost error estimates. Generalization of the BACOLR code to
handle two-dimensional problems would also be interesting.
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