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Abstract
We introduce the concepts “maximal error-correcting capability” and “maximal
error-detecting capability” of a given formal language (set of words), with re-
spect to a certain class of combinatorial channels. A combinatorial channel is
a set of pairs of words describing all the possible input/output channel situa-
tions. This paper is mainly intended to obtain basic general results on these
new concepts and discuss possible research directions with an emphasis on the
problem of computing maximal error-detecting (or -correcting) capabilities of a
given regular language.
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1 Introduction

A (combinatorial) channel is a set of pairs of words describing all the possible
input-output situations permitted by the channel. The fact that the pair (w, z)
is in the channel means that the word z can be received via the channel when the
word w is used as input. In this case, if w 6= z then we say that w was received
with errors. An error model is a set C of channels. Intuitively, C contains
the possible channels that appear to model the error situations arising in some
application where information needs to be transmitted or stored. Besides the
error model, we consider a (formal) language – this is simply a set of words
[6] – that is intended to be used for representing information. Depending on
the application, it is required that the language satisfies certain properties, for
instance, error-correction or error-detection with respect to a channel γ in C. A
language L is error-detecting for γ, [3], when no pair (w, z) in the channel is such
that w 6= z and both w and z are in L; that is, the channel cannot transform
a word of L into another different word of L. This fact allows one to detect
whether or not a transmitted word has been received with errors. The language
L is error-correcting for the channel γ, [3], when no two different words of L
can result via γ into the same output; that is, if (w1, z) and (w2, z) are in γ and
w1, w2 are in L then w1 must be the same as w2. This fact allows one to correct
a given channel output z to a unique word of L.
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Note: In previous papers we used L ∪ {λ} in the above definitions, where
λ is the empty word. Here, to simplify matters we assume that the empty word
λ is always a member of the language L. This assumption corresponds to the
situation where no data is sent to the channel. We also note that the above
definitions constitute natural generalizations of the corresponding definitions of
error-detection/correction found in traditional coding theory – see [5], for in-
stance, as well as the two examples below.

Consider now the problem of testing whether a given language is error-
correcting or error-detecting for a given channel. The answer to this problem
often requires careful mathematical reasoning even for apparently simple lan-
guages and channels. On the other hand, the theory of automata provides tools
that allow one to decide the above problem relatively easy. We want to exploit
those tools in the context of error-correction and error-detection. In particular,
consider the following problem:

Problem 1 Let L be a language and let C be an error model. Compute a
channel γ in C such that γ is a C-maximal error-detecting (or error-correcting)
capability of L.

A channel γ is said to be a C-maximal error-detecting capability of L if (i)
γ is in C, (ii) L is error-detecting for γ, and (iii) L is not error-detecting for γ′,
for any channel γ′ that properly contains γ, that is, γ′ ) γ.

In the sequel we shall focus on regular languages, that is, languages accepted
by finite automata. Recall that a finite automaton has finitely many states, one
of which is its initial state and some of them are its final states, and a set of
transitions of the form (p, a, q). Such a transition says that if the automaton is
in state p and the current input starts with a then it can enter the state q. The
automaton can consume a given input word by following its transitions and, in
this case, accepts the word when it is in some final state – see [7], for instance,
for more details on finite automata and regular languages.

Example 1 A typical channel considered in coding theory (in many cases
implicitly) is the channel σ(m,∞) consisting of all pairs of words (w, z) such
that z can be received using at most m substitutions of symbols in w, that is,
H (w, z) ≤ m, where H (w, z) is the Hamming distance between the words w
and z. For example, (0000, 0110) ∈ σ(2,∞), where we assume that 0 and 1 are
elements of the alphabet. In this case, we consider the error model

Cσ[∞] = {σ(m,∞) | m ≥ 0}

and the error-detection version of Problem 1 is equivalent to computing, for a
given language L, the maximum value of m such that H (L) > m, where the
quantity H (L) is the smallest Hamming distance between any two different
words in L – indeed, note that L is error-detecting for σ(m,∞) if and only if
H (L) > m [5]. This instance of the problem can be solved efficiently when L is
any regular language [2]. Using this result one can also solve the error-correction
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version of the problem by noting that L is error-correcting for σ(m,∞) if and
only if H (L) > 2m.

Example 2 Another typical channel is the channel sid(m,∞) consisting of
all pairs of words (w, z) such that z can be received using a total of at most m
substitutions, insertions, and deletions of symbols in w, that is, Λ (w, z) ≤ m,
where Λ (w, z) is the Levenshtein distance (also called edit distance) between
the words w and z. In this case, we consider the error model

Csid[∞] = {sid(m,∞) | m ≥ 0}

and the error-detection version of Problem 1 is equivalent to computing, for a
given language L, the maximum value of m such that Λ (L) > m, where the
quantity Λ (L) is the smallest Levenshtein distance between any two different
words in L – indeed, note that L is error-detecting for sid(m,∞) if and only
if Λ (L) > m. This instance of the problem can be solved in polynomial time
when L is any regular language [4]. Using this result one can also solve the
error-correction version of the problem by noting that L is error-correcting for
sid(m,∞) if and only if Λ (L) > 2m.

We argue now that Problem 1 is important. First, the problem is natural
from a theoretical point of view. Moreover, the version of the problem described
in Example 1 is the converse of the following classical problem of coding theory:
Let m be the maximum number of substitution errors permitted by the channel
in any word of length l. Construct a language L whose words are of uniform
length l such that L is m-error-correcting. In addition, many existing languages,
natural or artificial, are presently in use and it is desirable to know their error-
handling capabilities. For example, one might consider a DNA language which
is “processed” by various enzymes in determining the growth of the organism
– here a DNA language is a set of words over the DNA alphabet {a, c, g, t}.
Similarly, this approach could offer an alternative method of evaluating the
error-handling capabilities of existing codes used in information transmission.

2 Basic Results, Rational Channels

We use Σ to denote a fixed, but arbitrary alphabet. Then the symbol Σ∗ denotes
the set of all words (or strings) over Σ. A binary relation ρ over Σ is a subset
of Σ∗ × Σ∗. The inverse of ρ is the relation ρ−1 = {(u, v) | (v, u) ∈ ρ}. If L
is a language, then ρ ↓ L is the relation ρ ∩ (L × Σ∗) = {(x, y) ∈ ρ | x ∈ L},
and ρ ↑ L is the relation ρ ∩ (Σ∗ × L) = {(x, y) ∈ ρ | y ∈ L}. Note that
ρ ↑ L = (ρ−1 ↓ L)−1.

A channel is a domain preserving binary relation over some alphabet Σ,
that is, γ ⊆ Σ∗ × Σ∗ and γ contains the pair (v, v) when the word v is a
possible input to the channel – this requirement represents the fact that error-
free communication over the channel is always possible. The domain dom γ of
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the channel γ is the set of all possible inputs of γ, that is,

dom γ = {w | (w, z) ∈ γ, for some word z}.
Lemma 1 Let γ1, γ2 be channels and L be a language.

1. If γ1 ⊆ γ2 and L is error-detecting (respectively, error-correcting) for γ2

then L is error-detecting (respectively error-correcting) for γ1.

2. If L is error-detecting for γ1 and for γ2 then L is error-detecting for γ1∪γ2.

Proof. For the second statement, let (w1, w2) be in γ1 ∪ γ2, with w1, w2 ∈ L.
We need to show that w1 = w2. If (w1, w2) is in γ1 then w1 = w2, as L is error-
detecting for γ1. The same holds if (w1, w2) is in γ2. Thus, L is error-detecting
for γ1 ∪ γ2. The proof of the first statement is left to the reader. ¥

The next result establishes some interesting connections between the con-
cepts of error-detection and error-correction. The composition γ2 ◦ γ1 of two
relations is the relation that consists of all pairs (w1, w2) such that (w1, z) is in
γ1 and (z, w2) is in γ2, for some word z. Because of this connection, we focus
in the sequel on the error-detection version of Problem 1.

Proposition 1 Let γ be a channel and let L be a language.

1. The language L is error-correcting for L if and only if it is error-detecting
for γ−1 ◦ γ.

2. Suppose that all words of L are possible inputs of γ, that is, L ⊆ dom γ.
Then L is error-detecting for γ if and only if L is error-correcting for
γ ↑ L.

Proof. The proof of the first statement is based on the definition of the operation
‘◦’, and is left to the reader. We proceed with the proof of the second statement.

Firstly, let (w1, z), (w2, z) be in γ ↑ L with w1, w2 ∈ L. We need to show
that w1 = w2. As z is in L and L is error-detecting for γ, it follows that w1 = z
and w2 = z, hence w1 = w2.

Now consider any pair (w1, w2) in γ with w1, w2 in L. Then (w1, w2) ∈ γ ↑ L.
As dom γ contains L and γ is domain preserving, (w2, w2) ∈ γ ↑ L. As L is
error-correcting for γ ↑ L, w1 = w2.

¥
Consider the error model C[rat] of all rational channels, that is, all channels

γ that can be realized by finite transducers. Recall that a finite transducer
is a finite state machine, with an initial state and some final states, having a
finite set of transitions of the form (p, x/y, q). Such a transition says that if the
transducer is in state p and the current input starts with x then it enters in
state q and outputs the word y. The transducer consumes a given input word
and produces some output word by following its available transitions. Our focus
on rational channels should not be considered as a restriction because, to our
knowledge, most channels can be described by finite-state machines.

Next we obtain a few basic results that confirm our intuition about the
legitimacy of the concepts of maximal error-detection and -correction.
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Proposition 2 Let L be a language and let γ be a a channel such that all
words of L are possible inputs of γ, that is, L ⊆ dom γ. If γ is a C[rat]-maximal
error-detecting capability of L then L is maximal error-detecting for γ.

Proof. Assume for the sake of contradiction that L is not maximal error-
detecting for γ. Then, there is a word w not in L such that the language
L′ = L∪{w} is error-detecting for γ. We choose any word v0 from L and define
the channel

γ′ = γ ∪ {(v0, w)}.
Note that v0 ∈ dom γ implies that indeed γ′ is domain preserving. Moreover,
the channel γ′ is in C[rat], as the class of rational relations is closed under union.
Obviously L′ is not error-detecting for γ′. As L′ is error-detecting for γ, we have
that γ is a proper subset of γ′ and, as γ is a maximal error-detecting capability
of L, it follows that L is not error-detecting for γ′. Thus, there are two different
words v1, v2 in L such that (v1, v2) is in γ′. As v2 6= w, it must be the case that
(v1, v2) is in γ, which contradicts the fact that L is error-detecting for γ. ¥

In the next result, for a given language L, the symbol DL denotes the diag-
onal relation {(w,w) | w ∈ L}.

Proposition 3 For every regular language L there is exactly one C[rat]-maximal
error-detecting capability, denoted by µL, which is equal to

µL = DL ∪ [L× (Σ∗ − L)] ∪ [(Σ∗ − L)× Σ∗]

Proof. Note that µL is a C[rat]-maximal error-detecting capability of L. Sup-
pose that γ is another one such that µL 6= γ. If either µL ⊆ γ or γ ⊆ µL holds,
then there is a contradiction. Hence, both γ and µL are proper subsets of µL∪γ
which implies that L is not error-detecting for µL ∪ γ. On the other hand, L
must be error-detecting for µL ∪ γ by Lemma 1-(2). ¥

When the language L is given as a deterministic finite automaton A, say,
one can compute a transducer realizing µL in time linear with respect to the
size of A – this quantity is simply the number of states in A. Indeed, given
A, one can construct in linear time an automaton for Σ∗ − L, and transducers
for each of the relations DL, L × (Σ∗ − L), (Σ∗ − L) × Σ∗. Hence, we have the
following result.

Corollary 1 Let A be a deterministic finite automaton. The C[rat]-maximum
error-detecting capability of L(A) can be computed in linear time.

It turns out that the analogue of Proposition 2 for the case of error-correction
holds true as well, albeit with a little extra work in proving its correctness.

Proposition 4 Let L be a language and let γ be a a channel such that all
words of L are possible inputs of γ, that is, L ⊆ dom γ. If γ is a C[rat]-maximal
error-correcting capability of L then L is maximal error-correcting for γ.
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Proof. Assume for the sake of contradiction that L is not maximal error-
correcting for γ. Then, there is a word w not in L such that the language
L′ = L ∪ {w} is error-correcting for γ. We choose a word v0 from L as follows:

• If there is a word v in L such that (v, w) is in γ then v0 is any such v;
hence, (v0, w) is in γ.

• If there is no word v in L such that (v, w) is in γ then v0 is any word in L.

Note that (v0, v0) is in γ, as L ⊆ dom γ. Define the channel

γ′ = γ ∪ {(w, w), (v0, w)}.

The channel γ′ is in C[rat], as the class of rational relations is closed under
union. Obviously L′ is not error-correcting for γ′. As L′ is error-correcting for
γ, we have that γ is a proper subset of γ′ and, as γ is a maximal error-correcting
capability of L, it follows that L is not error-correcting for γ′. Thus, there are
two different words v1, v2 in L such that (v1, z) and (v2, z) are in γ′, for some
word z. We obtain a contradiction as follows.

Case 1: At least one of (v1, z) and (v2, z) is not in γ. Without loss of gener-
ality, suppose that (v1, z) is not in γ. Then, (v1, z) must be in {(w, w), (v0, w)}.
As w is not in L and v1 is in L, it must be (v1, z) = (v0, w). Also, as v0 6= v2,
the pair (v2, w) must be in γ. Then, by the choice of v0, it follows that (v0, w)
must be in γ, which is a contradiction.

Case 2: Both of (v1, z) and (v2, z) are in γ. This implies that L is not
error-correcting for γ, which is a contradiction. ¥

Unlike the case of error-detection, a language L can have more than one
maximal rational error-correcting capability. To see this, consider the finite
language L = {00001, 1001} and the channels σ(1,∞) – see Example 1 – and
δ(1,∞) that consists of all pairs (w, z) such that z results by deleting at most one
symbol from w. Firstly, note that there is no word z such that both (00001, z)
and (1001, z) are in δ(1,∞), hence, L is error-correcting for δ(1,∞). Similarly,
L is error-correcting for σ(1,∞). If there were a unique maximal rational error-
correcting capability of L, say γ, then γ would include both δ(1,∞) and σ(1,∞).
Then, however, a contradiction arises when we note that both (00001, 0001) and
(1001, 0001) would be in γ.

3 SID Channels and SID Error Models

The class C[rat] of rational channels is interesting from a theoretical point of
view but includes channels that do not correspond to physical ones. We turn
our attention to SID channels [3] of the form τ(m, l), where τ is an error type
in

{σ, ι, δ, σ ¯ ι, σ ¯ δ, ι¯ δ, σ ¯ ι¯ δ}
and (m, l) is a pair of nonnegative integers with m < l. This channel consists of
all pairs of words (w, z) such that z results by using at most m errors of type τ
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in any segment of length l (or less) of the input word w. The symbol ¯ is used
simply as a connective for the simpler types σ, ι, δ, which denote substitutions,
insertions, and deletions, respectively. We call the ratio m/l the error density
of the channel τ(m, l).

Example 3 The pair (w, z) is in the channel σ ¯ δ(2, 7) if and only if z can
be obtained by substituting and/or deleting no more than 2 symbols in every
segment of length 7 of w. For example the pair

(100000000, 01000010)

is in σ ¯ δ(2, 7), but the pair

(100000000, 01001000)

is not in σ ¯ δ(2, 7) as one has to use more than 2 errors in the prefix 1000000
of 100000000 in order to obtain 01001000.

3.1 The error model C1
τ [l] = {τ(m, l) | 0 ≤ m < l}

In this error model, the parameters τ and l are fixed and, therefore, there are
only finitely many channels:

τ(0, l), . . . , τ(l − 1, l).

In this case, Problem 1 can be solved using the following results of [3]:

• There is an algorithm that constructs a transducer realizing the SID chan-
nel τ(m, l), for any given parameters τ , m and l.

• One can decide in polynomial time, for given rational channel and given
regular language, whether the language is error-detecting for the channel.

We note that the construction of a transducer realizing τ(m, l) would nor-
mally require a very large number of states and transitions – see [1] for a relevant
discussion.

3.2 Cτ [den ≥ d] = {τ(m, l) | m < l and m/l ≥ d}
This error model consists of all channels τ(m, l) whose error density is at least d,
for some fixed parameters τ and d with 0 ≤ d < 1. Note that if m is fixed as well
then there is an upper bound on the parameter l of τ(m, l): l ≤ bm/dc. Now
consider a regular language L. We want to compute a Cτ [den ≥ d]-maximal
error-detecting (resp. error-correcting) capability of L, where τ and d are fixed.
It appears that there are infinitely many channels τ(m, l) with m/l ≥ d that
need to be considered. We demonstrate, however, that there is an upper bound
on m which implies (using l ≤ bm/dc) that only a finite number of channels
τ(m, l) need to be considered.
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1. If the error type τ contains at least one of ι and δ (namely, τ 6= σ) then
m < sL, where sL is the shortest length of a word in L. Indeed, if m ≥ sL

and |w| = sL for some w ∈ L, then the pair (w, λ) is in τ(m, l) if τ
contains δ, or the pair (λ,w) is in τ(m, l) if τ contains ι, for every l > m –
recall that λ is the empty word. Hence, L cannot be error-correcting (or
error-detecting) for τ(m, l).

2. If τ = σ the channel only permits substitution errors. If every two different
words of L have different lengths then L is error-correcting for σ(m, l) for
all values of m and l. On the other hand, if there are different words of
L that are of the same length, let s′L be the shortest length of two such
words. It follows that m < s′L.

Now let M be the maximum value of m according to the above cases.
For each value m = 0, . . . , M , we can consider the possible values l = m +
1, . . . , bm/dc for which L is error-detecting for τ(m, l) by using the results of
[3] that were mentioned in Section 3.1. This process would identify a maxi-
mal channel τ(m, l) for a particular m. Now suppose that there are two values
m1, m2 with m1 < m2 , and two values l1, l2 such that both, τ(m1, l1) and
τ(m2, l2) are error-detecting capabilities of L. We consider two cases.

• Case of l1 ≤ l2. Here τ(m1, l1) is a proper subset of τ(m2, l2). Hence,
τ(m1, l1) can be disregarded and τ(m2, l2) can be kept as a potential
maximal error detecting capability of L.

• Case of l1 > l2. Here the two channels might be incomparable in terms of
‘⊆’. In the sequel we consider only the case of τ = σ. First consider the
word z = 1m1+10l2−(m1+1) – a symbol of the form an denotes the word
consisting of n concatenated copies of a. Note that

(0l2 , z) ∈ σ(m2, l2) and (0l2 , z) /∈ σ(m1, l1),

as there are more than m1 errors in the prefix 0l1 of 0l2 . Let r1 =
min{m1, l2%l1}, where l2%l1 is the remainder of the division l2/l1. If
m2 < bl2/l1cm1 + r1 then one can verify that

(0l2 , (1m10l1−m1)bl2/l1c1r10l2%l1−r1) ∈ σ(m1, l1)− σ(m2, l2).

Hence, the two channels are incomparable! If m2 ≥ bl2/l1cm1 + r1 then
σ(m1, l1) is a subset of σ(m2, l2) and, therefore, the channel σ(m1, l1) can
be discarded and the channel σ(m2, l2) can be kept as a potential maximal
error-detecting capability of L. To see that indeed σ(m1, l1) is a subset of
σ(m2, l2), assume for the sake of contradiction that there is a pair (u, v) in
σ(m1, l1)−σ(m2, l2). Then there is a segment u2 of u of length l2 with more
than m2 errors. Let v2 be the corresponding segment of v. Then (u2, v2) is
in σ(m1, l1)−σ(m2, l2) and, as u2 is of length l2, H (u2, v2) > m2. Hence,
H (u2, v2) > bl2/l1cm1 + r1. On the other hand, we can have at most m1

errors in every segment of u2 of length l1, which implies that there can be
at most bl2/l1cm1 + r1 errors in u2; a contradiction.
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3.3 The error model C2
τ [m] = {τ(m, l) | l > m}

In this error model, the parameters τ and m are fixed. Given an automaton
A we want to find the smallest l (if any) such that L(A) is error-detecting for
τ(m, l). This turns out to be difficult. Possibly the problem might be easier
when τ = σ.

4 Discussion

We have introduced the concepts of maximal error-detecting and -correcting
capability of a given language, with respect to a certain error model, and have
argued that these concepts are meaningful at least from a theoretical point of
view. Possible directions for future research include the following.

• Investigate to what extend the algorithmic methods for computing vari-
ous maximal error-handling capabilities outlined here can be improved in
terms of efficiency.

• For each error type τ , resolve the containment relations between any two
channels τ(m1, l1) and τ(m2, l2).

• Apply the algorithms to real world languages such as gene languages and
codes for data communications.
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