
f-Words and Binary Solid Codes1

Stavros Konstantinidis† and Joshua Young†

†Department of Mathematics and Computing Science
Saint Mary’s University

Halifax, Nova Scotia, B3H 3C3 Canada
s.konstantinidis@smu.ca, jyo04@hotmail.com

Abstract. Given any unbounded and non-decreasing sequence f of positive integers, we define an
infinite set of binary words, called f -words, which constitute an overlap-free language. We investi-
gate some properties of this language and then use these properties to define new classes of finite
and infinite binary solid codes – solid codes have the strongest synchronization and error-delimiting
capabilities in the hierarchies of codes. The finite class improves on an earlier construction of solid
codes in terms of average word length (or information rate), without sacrificing their encoding
complexity. The infinite class concerns maximal solid codes and builds on an earlier work on
maximal binary solid codes. This work constitutes another step towards a systematic structural
characterization of binary maximal solid codes.

Key words: construction, encoding complexity, maximal, overlap-free language, solid code, word.

1 Introduction

Solid codes constitute a proper subclass of comma-free codes, providing thus synchronization of
messages without delay. In addition, they possess the following remarkable property: if a message
over a solid code undergoes any type of errors, then the codewords containing no errors can be
identified and decoded correctly without delay. We refer the reader to [3] for a relevant discussion
and further references on these codes, as well as to [2], [7], [1], [11], [5], [9] for more recent results
on these objects.

From a language theoretic point of view, a solid code is an infix code (no codeword is contained
in another codeword) and an overlap-free language (no proper prefix of a codeword is also a proper
suffix of some codeword, unless it is empty). The general problem of constructing “good” solid codes
is of central importance in our context. Some of the criteria used in the literature for evaluating
the quality of codes are the following: maximality, information ratio (or average word length),
encoding/decoding complexity, error-detectability. In addition, there have been systematic efforts
to characterize explicitly, or generate algorithmically, all possible solid codes of certain types [2], [7].

In [2], and then in [5], the authors presented constructions of binary solid codes (subsets of
a{a, b}∗b) that are defined via pairs of functions h and g and have words of the form

ah(ż)bz0az1 · · · bz2k−2az2k−1bg(ż), (1)

such that ż is the tuple (z0, . . . , z2k−1) of the positive integers appearing in the runs bz0 , az1 , . . . of
the above word – see the next section for definitions of technical terms. In [2] the authors showed
a complete structural characterization of all maximal solid codes that are subsets of a+b+a+b+, by
defining the exact requirements for the functions h and g. In [5], using again the approach of word
runs, a class of finite solid codes is shown that has an asymptotically optimal information ratio and

1Research supported by a Discovery Research Grant of NSERC, Canada.

1

very simple linear encoding/decoding complexity. Moreover, some of these codes have certain good
error-detecting capabilities. In [8], [9] the author presents a simple class of fixed-length solid codes
that appear to be the best possible in terms of information ratio.

In this paper, we continue the systematic investigation of binary solid codes that are defined
in terms of the runs of the words involved, in view of the fact, [2], that every binary solid code
can be defined via a pair of functions h and g as shown in (1). It turns out that an explicit
characterization of all maximal solid codes that are subsets of (a+b+)k, for some integer k ≥ 2,
is quite difficult to describe. Our investigations have led to the discovery of f -words. These are
words of the form shown in the expression (1), where h and g are defined explicitly via the choice
of any non-decreasing and unbounded sequence f of positive integers. In particular, the sets of all
f -words of the form a+b+a+b+ are exactly all the maximal solid codes defined in [2]. The f -words
can also be used to improve the information rate of the finite solid codes defined in [5], without
sacrificing their encoding/decoding complexity.

This paper is organized as follows. The next section contains the basic notions and notation
used throughout the paper. Section 3 contains the definition of f -words and shows some basic
properties of these words. In particular, the set of these words is an infinite overlap-free language.
Section 4 uses f -words to improve the construction of the finite solid codes in [5], and Section 5
defines, again via f -words, new classes of infinite solid codes, including a class of infinite maximal
solid codes that are subsets of

a+b+a+b+a+b+ ∪ a+b+a+b+a+b+a+b+.

Finally, Section 6 contains a few concluding remarks.

2 Basic Notions and Notation

The symbol N denotes the set of positive integers. An alphabet is any finite and nonempty set of
elements, which we call symbols or letters. We shall use the symbol Σ for the binary alphabet

Σ = {a, b}.

As usual, we use the notation Σ∗ for the set of all words over the alphabet Σ, including the empty
word λ. The length of a word u is denoted as |u| and is defined to be the number of symbols
occurring in u. Any set of words is called a language. The concatenation of two words u and v
is written as uv. This notation is extended naturally to more than two words: u1u2 · · ·un is the
concatenation of the words u1, u2, . . . , un. When all the ui’s are the same, say equal to v, we write
vn for their concatenation. Obviously uλ = λu = u, for all words u. If a word u is of the form xy
then x is called a prefix of u and y is called a suffix of u. If x is not equal to u then it is called a
proper prefix – proper suffixes are defined analogously. If u is of the form xyz then y is an infix of
u – obviously prefixes and suffixes are special infixes of a word. A run of u is an infix of u of the
form σn, for some σ ∈ Σ, such that u can be written as xσny, and x does not end with σ and y
does not start with σ.

Two nonempty words have an overlap z, if z is a nonempty word such that z is a proper prefix
of one of the words and a proper suffix of the other. For example aa is an overlap of the words
aaabb and ababaa. A language L is an overlap-free language if no two words of L have an overlap.
A language L is an infix code, if no L-word is a proper infix of another L-word. A language is called
a solid code (or, code without overlaps) if it is both an infix code and an overlap-free language. If
C is any class of languages/codes (infix, overlap-free, etc), then we say that a language/code L is a

2

maximal C language/code, if for any word w outside of L, namely w ∈ Σ∗ − L, the set L ∪ {w} is
not in the class C.

A tuple is any finite sequence of positive integers written as

ż = (z0, . . . , zk−1). (2)

We use the dot notation ż for tuples. The empty tuple is (). The length of ż is the number of
components in ż – this is equal to k in the tuple shown in (2). The set of all tuples of length k is
denoted as Nk and the set of all tuples as N∗. The size of the tuple ż is

∑
ż =

∑k−1
i=0 zi. We also

define max ż = max{zi | i = 0, . . . , k − 1}.
Consider any unbounded and non-decreasing function f : N → N (as usual, non-decreasing

means f(i) ≤ f(i + 1) for all i ∈ N). The near inverse of f is the function f̂ : N→ N such that

f̂(j) = min{i | f(i) > j}.

The term near-inverse arises from the fact that, if ϕ is any real non-decreasing function with
ϕ(i) = f(i) for all i ∈ N, then

f̂(j) = 1 + bϕ−1(i)c.
In [4], it is shown that, like f , the near-inverse f̂ is unbounded and non-decreasing. A basic property
of near-inverses is

For all i, j ∈ N: f(i) > j if and only if i ≥ f̂(j). (3)

When f(i) = 2i it is easy to see that f̂(j) = 1 + bj/2c. We shall also use the identity function
δ(i) = i and its near-inverse δ̂(j) = 1 + j.

3 f-Words

We define a certain type of words, called f -words, with the aim that any two such words are overlap
free. The definition of these words is inspired from the constructions of solid codes in [2] and [5].
In particular, in [2] it is noted that every binary solid code that is a subset of aΣ∗b is defined using
a set of tuples T of even length, and two functions h, g : T→ N such that each word of the code is
of the form shown in (1), where ż is a tuple in T of some length 2k. In [5], the set T consists of all
tuples ż such that

∑
ż = n, for some fixed word length n, and

h(ż) = max{f(z2i) : i = 0, . . . , k − 1} and g(ż) = max{f̂(z2i−1) : i = 1, . . . , k},

where f : N → N is any non-decreasing and unbounded function. Thus h(ż) is the f -value on the
length of the longest a-run, and g(ż) is the f -value on the length of the longest b-run in the word
bz0az1 · · · bz2k−2az2k−1 .

For reasons of notational convenience we view a tuple ż of even length as consisting of two
interleaved tuples ẋ and ẏ of the same length k, where we use the components of the second one in
reverse order. More specifically, for any two tuples ẋ, ẏ of some length k, we define the word

wd(ẋ, ẏ) = bx0ayk−1bx1 · · · ayk−ibxi · · · ay1bxk−1ay0 ,

where we assume that wd(ẋ, ẏ) is empty if k = 0.
In the sequel we assume that f : N→ N is any non-decreasing and unbounded function. We use

this function to define, for any tuples ẋ and ẏ, the quantities fẋ,ẏ = h(ẋ, ẏ) and f̂ẏ,ẋ = g(ẋ, ẏ) that
will be used to make overlap-free words as shown in the expression (1). One possibility is to use

3

fẋ,ẏ = f(max ẋ) and f̂ẏ,ẋ = f̂(max ẏ), as in [5]. However, we can do better than that. Instead of
giving immediately the definitions for fẋ,ẏ and f̂ẏ,ẋ, we provide a couple of examples that motivate
the choice of our definitions. Any two (possibly equal) f -words will be of the form

afẋ,ẏwd(ẋ, ẏ)bf̂ẏ,ẋ , afṡ,ṫwd(ṡ, ṫ)bf̂ṫ,ṡ . (4)

An overlap of these words has the form afẋ,ẏbf̂ṫ,ṡ (case “i = −1”), or

afẋ,ẏbx0(ayk−1bx1) · · · (ayk−ibxi)ayk−i−1bf̂ṫ,ṡ = afẋ,ẏbsl−i−1(atibsl−i) · · · (at1bsl−1)at0bf̂ṫ,ṡ , (5)

where f̂ṫ,ṡ ≤ xi+1 and fẋ,ẏ ≤ ti+1, and for i ≥ 0 the tuples match as follows (x0, . . . , xi) =
(sl−i−1, . . . , sl−1) and (yk−1, . . . , yk−i−1) = (ti, . . . , t0). In the case of i = −1, the overlap is pre-
vented when we require that always f(x0) ≤ fẋ,ẏ and f̂(t0) ≤ f̂ṫ,ṡ. Indeed, in this case, we get
f(x0) ≤ t0 and f̂(t0) ≤ x0, and by the property of near-inverses, x0 < f̂(t0); a contradiction.

When the overlap in (5) is equal to afẋ,ẏbx0ayk−1bf̂ṫ,ṡ , we have fẋ,ẏ ≤ t1 and f̂ṫ,ṡ ≤ x1, and
x0 = sl−1, t0 = yk−1. Then, if yk−1 ≥ f(x1), we have f̂(t0) = f̂(yk−1) > x1 ≥ f̂ṫ,ṡ, which
already contradicts our first requirement that f̂ṫ,ṡ ≥ f̂(t0). Analogously, f̂(t1) ≤ sl−1 leads to a
contradiction. Hence, yk−1 < f(x1) and f̂(t1) > sl−1. To get a contradiction and prevent the
overlap we require that fẋ,ẏ ≥ f(x1) if yk−1 < f(x1) and, analogously, f̂ṫ,ṡ ≥ f̂(t1) if f̂(t1) > sl−1.
Indeed, fẋ,ẏ ≥ f(x1) implies fẋ,ẏ ≥ f(f̂ṫ,ṡ), and f̂ṫ,ṡ ≥ f̂(t1) implies f̂ṫ,ṡ ≥ f̂(fẋ,ẏ), which in turn
gives f(f̂ṫ,ṡ) > fẋ,ẏ.

For longer overlaps of the form shown in (5) the requirements for fẋ,ẏ and f̂ṫ,ṡ become more
complex. Next we give the definition for these quantities. It is based on the following sets of indices

If (ẋ, ẏ) = {0} ∪ {i | 0 < i < k, max(yk−1, . . . , yk−i) < f(xi)} (6)

If̂ (ẏ, ẋ) = {0} ∪ {j | 0 < j < k, f̂(yj) > max(xk−j , . . . , xk−1)} (7)

For example, using the function f(i) = 2i, with f̂(j) = 1 + bj/2c, and the word

wd(ẋ, ẏ) = ba3bab2a4b2a2

we see that If (ẋ, ẏ) = {0, 2} and If̂ (ẏ, ẋ) = {0, 1}.
We note that if i ∈ If (ẋ, ẏ) − {0} then none of k − 1, . . . , k − i belongs to If̂ (ẏ, ẋ). This is

because yk−1, . . . , yk−i < f(xi) and, by Property 3 of near-inverses, f̂(yk−1), . . . , f̂(yk−i) ≤ xi. So
we cannot have f̂(yk−j) > xj , . . . , xk−1 for any j ∈ {1, . . . , i}.

Definition 1 For any non-decreasing and unbounded function f : N → N, and tuples ẋ and ẏ of
the same length k,

fẋ,ẏ = max{f(xi) | i ∈ If (ẋ, ẏ)} (8)

f̂ẏ,ẋ = max{f̂(yj) | j ∈ If̂ (ẏ, ẋ)} (9)

An f-word is any word of the form

wdf (ẋ, ẏ) = afẋ,ẏ wd(ẋ, ẏ) bf̂ẏ,ẋ = afẋ,ẏ bx0ayk−1bx1 · · · ayk−ibxi · · · ay1bxk−1ay0 bf̂ẏ,ẋ .

The language of all f-words is

Lf = {wdf (ẋ, ẏ) | ẋ, ẏ ∈ Nk, for some k > 0 }.

4

Using again the above word wd(ẋ, ẏ) = ba3bab2a4b2a2, we see that wdf (ẋ, ẏ) = a4ba3bab2a4b2a2b3.

Lemma 1 Let wdf (ẋ, ẏ) be any f -word, and let w be any nonempty word having at as a longest
run of a’s and bs as a longest run of b’s, with s, t > 0.

1. If w is a proper prefix of wdf (ẋ, ẏ) then f̂(t) > s.

2. If w is a proper suffix of wdf (ẋ, ẏ) then f(s) > t.

Proof. We only prove the first statement, as the second one follows by symmetry. We argue by
contradiction, assuming that f̂(t) ≤ s and, therefore, t < f(s). As afẋ,ẏ is a run in w, we have
fẋ,ẏ ≤ t. Hence,

fẋ,ẏ < f(s).

We continue by distinguishing two cases. First, s ≤ xi for some index i. Then, as f is non-
decreasing, f(xi) > t, so f(xi) must be greater than all the yj ’s appearing in w. This implies that
i ∈ If (ẋ, ẏ) and, therefore, fẋ,ẏ ≥ f(xi) ≥ f(s), which is a contradiction. In the second case, we
assume that s > max ẋ, which implies that w ends in the run bf̂ẏ,ẋ of wdf (ẋ, ẏ), and bs is part (in
fact a proper prefix) of bf̂ẏ,ẋ . Hence,

f̂ẏ,ẋ > s ≥ f̂(t).

As f̂ẏ,ẋ = f̂(yj) for some index j, and ayj is a run of w, we have that f̂ẏ,ẋ ≤ f̂(t), which again is a
contradiction. ¥

Theorem 1 For every non-decreasing and unbounded function f , the language Lf of all f-words
is an overlap-free language.

Proof. If w is a proper prefix and proper suffix of two f -words, then a contradiction arises using
the above lemma and the properties of near-inverses. Hence, Lf is overlap-free. ¥

A natural question that arises here is whether Lf is a maximal overlap-free language. As shown
next, this is not the case. However, every word w outside of Lf that has no overlap with any
Lf -word must be a proper prefix, or a proper suffix of some Lf -word. For example, for f(i) = 2i,
with f̂(j) = 1 + bj/2c, we have the following

w = a6ba2b3 /∈ Lf , a2ba2b2 ∈ Lf , wa4b2a3b3 ∈ Lf .

Obviously, the word w itself is overlap-free. If a proper nonempty prefix, say v, of w is a proper suffix
of some Lf -word then the word v is also a proper prefix of the Lf -word wa4b2a3b3, which is impos-
sible. Similarly, if a proper nonempty suffix of w is a proper prefix of some f -word afẋ,ẏwd(ẋ, ẏ)bf̂ẏ,ẋ

then this suffix must be in

{aiba2b3, ajb3 | i = 1, . . . , 5; j = 1, 2},

which implies that afẋ,ẏ = ai, or afẋ,ẏ = aj , as shown above and, therefore, fẋ,ẏ < 6. On the other
hand, it must be that fẋ,ẏ ≥ f(3) = 6, which is again impossible. Hence, Lf ∪{w} is an overlap-free
language.

Proposition 1 Let w be any word in Σ∗ − Lf . Then w has an overlap with some word in Lf , or
w is a proper prefix, or proper suffix, of some word in Lf .

5

Proof. Consider any word w in Σ∗ − Lf , and assume for the sake of contradiction that w has no
overlap with any word in Lf , and that w is neither a prefix nor a suffix of any word in Lf .

If w starts with b or ends with a then w has an overlap with every word in Lf ; a contradiction.
If w is of the form atbs then we consider the word u = af(s)bsatbf̂(t) ∈ Lf , and we observe that,
as atbf̂(t) is not a proper prefix of w and w is not a proper prefix of u, we must have f̂(t) > s.
Similarly, we must have f(s) > t, which leads to a contradiction by the properties of near-inverses.

Now suppose that w is of the form

w = aymbx0aym−1bx1 · · · bxm−1ay0bxm ,

for some m ≥ 1. We show that, for all i = 0, . . . , m,

xi < max{f̂(ym), . . . , f̂(ym−i)}. (10)

Indeed, assume that there is an index i such that xi > f̂(ym), . . . , f̂(ym−i), and consider the word

u = afṡ,ṫbx0aymbx0 · · · aym−i+1bxi−1aym−ibf̂ṫ,ṡ ∈ Lf ,

where ṡ = (x0, x0, . . . , xi−1) and ṫ = (ym, . . . , ym−i). Then the word

z = aymbx0 · · · aym−i+1bxi−1aym−ibf̂ṫ,ṡ

is a proper suffix of u. If i < m, or i = m and f̂ṫ,ṡ < xm then z is an overlap of w and u, which is a
contradiction. If i = m and f̂ṫ,ṡ = xm then w is a proper suffix of u, which is again a contradiction.
Hence, (10) holds. By symmetry, we also get that, for all j = 0, . . . ,m,

ym−j < max{f(xj), . . . , f(xm)}. (11)

Now it follows that max ẋ < f̂(ym−j), for some index j, which implies f(max ẋ) ≤ ym−j . Also, by
(11), we have ym−j < f(max ẋ), which is a contradiction, as required. ¥

We close this section by proving an interesting property of an f -word.

Proposition 2 For every f-word wdf (ẋ, ẏ) we have that

(fẋ,ẏ = f(max ẋ) > max ẏ and f̂ẏ,ẋ ≤ max ẋ) OR (f̂ẏ,ẋ = f̂(max ẏ) > max ẋ and fẋ,ẏ ≤ max ẏ)

Proof. First we show that one of fẋ,ẏ > max ẏ and f̂ẏ,ẋ > max ẋ must hold, using contradiction.
So assume fẋ,ẏ ≤ max ẏ and f̂ẏ,ẋ ≤ max ẋ. We can write

wdf (ẋ, ẏ) = afẋ,ẏw1σ
r1
1 w2σ

r2
2 w3b

f̂ẏ,ẋ ,

with {σr1
1 , σr2

2 } = {amax ẏ, bmax ẋ}. Then, as afẋ,ẏw1σ
r1
1 w2σ

r2
2 is a proper prefix of wdf (ẋ, ẏ), we have

f̂(max ẏ) > max ẋ, which implies max ẏ ≥ f(max ẋ). Now, as σr1
1 w2σ

r2
2 w3b

f̂ẏ,ẋ is a proper suffix of
wdf (ẋ, ẏ), we have f(max ẋ) > max ẏ, which is a contradiction.

Now we show that fẋ,ẏ ≥ max ẏ implies fẋ,ẏ = f(max ẋ) – then, by symmetry, we also have
that f̂ẏ,ẋ ≥ max ẋ implies f̂ẏ,ẋ = f̂(max ẏ). Assume fẋ,ẏ ≥ max ẏ. Then, afẋ,ẏ is a longest run of
a’s in the word wdf (ẋ, ẏ), and this word has a proper prefix of the form afẋ,ẏwbmax ẋ. By Lemma 1,
f̂(fẋ,ẏ) > max ẋ and, therefore, fẋ,ẏ ≥ f(max ẋ). Also, as always fẋ,ẏ ≤ f(max ẋ), we have that
fẋ,ẏ = f(max ẋ).

The statement of the proposition will follow easily when we show that fẋ,ẏ > max ẏ implies
f̂ẏ,ẋ ≤ max ẋ. Indeed this can be easily verified using the previous facts. ¥

6

4 Finite solid codes based on f-words

In [5], the authors showed that the language

Kn = {amax ẋwd(ẋ, ẏ)b1+max ẏ | wd(ẋ, ẏ) = bua, for some word u of length n}
is a solid code. Moreover, the information rate rt(Kn) of Kn tends to 1, as n → ∞ – recall the
information rate rt(C) of a finite code C is the quantity log |C|/¯̀(C), where ¯̀(C) is the average
word length of C. Obviously, this code contains exactly 2n codewords. Moreover, it is evident that
every binary word u of length n can be encoded to a unique codeword in linear time – the time to
identify the largest runs of b’s and a’s in bua. Here we use the same idea and the identity function
δ(i) = i, whose near-inverse is δ̂(j) = 1 + j, to define a new sequence of solid codes that has a
better information rate without sacrificing the order of magnitude of the encoding complexity.

Theorem 2 The language

Fn = {aδẋ,ẏwd(ẋ, ẏ)bδ̂ẏ,ẋ | wd(ẋ, ẏ) = bua, for some word u of length n}
is a solid code of cardinality 2n such that rt(Fn) ≥ rt(Kn) and, therefore, rt(Fn) → 1, as n → ∞.
Moreover, there is an algorithm that encodes (maps) every binary word of length n to a unique
codeword of Fn in linear time.

Proof. As Fn ⊆ Lδ, the language Fn is overlap-free. Moreover, it is not difficult to see that no
word of Fn is a proper infix of another word in Fn. Hence, the language is a solid code. The
statement about the information rate of Fn follows easily from the fact that δẋ,ẏ ≤ max ẋ and
δ̂ẏ,ẋ ≤ 1 + max ẏ. Regarding the encoding complexity, it is sufficient to show that δẋ,ẏ can be
computed from wd(ẋ, ẏ) in linear time. Recall, δẋ,ẏ is the largest value δ(xr) = xr over all r with
r = 0 or max(yk−1, . . . , yk−r) < δ(xr). The algorithm reads the runs of wd(ẋ, ẏ) left to right and
uses the variables X and Y . The variable Y keeps track of the current largest length of the a-runs
seen so far, and is initially zero. The variable X keeps track of the largest length of a b-run that is
also greater than Y . Once the first run bx0 has been read, X is set to x0 and, then, the following
loop is performed

while (there are another two runs ai, bj) {
if (Y < i) then Y = i;
if (X < j AND Y < j) then X = j;

}
The final value of the variable X is equal to δẋ,ẏ. ¥

The improvement rt(Fn) ≥ rt(Kn) in the above result could be nontrivial. In particular there
are many pairs of tuples (ẋ, ẏ) for which the corresponding words in Fn are strictly shorter than
those in Kn. To see this consider all tuples ẋ, ẏ of some fixed length k such that

∑
ẋ +

∑
ẏ = n + 2, y0 = 1, max ẋ = xk−1 > max ẏ.

Then δẋ,ẏ = xk−1 and δ̂ẏ,ẋ = 2. Moreover, for all of these tuples we have

axk−1wd(ẋ, ẏ)b1+max ẏ ∈ Kn and axk−1wd(ẋ, ẏ)b2 ∈ Fn.

Clearly, each of these Fn-words is (max ẏ − 1) bits shorter than the corresponding Kn-word. For
example, for n = 16 and k = 3, if we consider all tuples ẋ, ẏ as above such that max ẋ = xk−1 = 5,
y0 = 1, and max ẏ = 4 we get the equation

x0 + x1 + y1 + y2 = 12, with max(x0, x1) ≤ 5, max(y1, y2) = 4.

7

This equation has 29 solutions, which implies that there are at least 29 words in F16 with each one
being 3 bits shorter than the corresponding word in K16.

For a finite nonempty language L, we use `(L) to denote the length of the longest word in L.
We recall from [5] that when the code Kn is restricted as follows

KC = {amax ẋwd(ẋ, ẏ)b1+max ẏ | wd(ẋ, ẏ) = bua, for some word u ∈ C},

where C is any code of length n that is error-detecting for the combinatorial channel2 σ(1, n),
then K∗

C is error-detecting for the channel that permits at most one substitution, insertion, or
deletion error in any segment of length `(KC) of the transmitted message. This result is shown in
Theorem 7.2 of [5]. Using essentially the same proof as in that theorem, it turns out that when

FC = {aδẋ,ẏwd(ẋ, ẏ)bδ̂ẏ,ẋ | wd(ẋ, ẏ) = bua, for some word u ∈ C}

the language F ∗
C is also error-detecting for the channel that permits at most one substitution,

insertion, or deletion error in any segment of length `(FC) of the transmitted message.

5 Infinite maximal solid codes based on f-words

In [2] the authors obtained a complete structural characterization of all infinite maximal solid
codes that are subsets of a+b+a+b+. In particular, for any non-decreasing and unbounded function
f : N→ N, the language

Cf,1 = {af(x)bxaybf̂(y) | x, y ∈ N}
is a maximal solid code and, conversely, every maximal solid code that is a subset of a+b+a+b+

must be equal to Cf,1, for some function f . It should be clear that Cf,1 ⊆ Lf . A natural question
then is to consider, for each k ≥ 1, the language

Cf,k = {afẋ,ẏbx0(ayk−1bx1) · · · (ay1bxk−1)ay0bf̂ẏ,ẋ | ẋ, ẏ ∈ Nk}.

As this language also is a subset of Lf , it is an overlap-free language. Moreover, it is not difficult
to see that Cf,k is an infix code and, therefore, a solid code. It turns out, however, that Cf,k is
not a maximal solid code, and it appears that a complete characterization of maximal solid codes
containing Cf,k is rather difficult to describe. In the sequel we show that, for any choice of the
function f , the language

Kf,2 = Cf,2 ∪ {wdf (ẋ, ẏ) | ẋ, ẏ ∈ N3, f(x1) > y2, f̂(y1) > x2}

is a maximal solid code. Again, as this language is a subset of Lf , it is an overlap-free language.
Moreover, Kf,2 is an infix code. Indeed, if there were a word in Kf,2 that is a proper infix of another
word in Kf,2 then clearly these words must be of the form

afṡ,ṫbs0at1bs1at0bf̂ṫ,ṡ , afẋ,ẏbx0ay2bx1ay1bx2ay0bf̂ẏ,ẋ . (12)

One possibility is that the shorter word is an infix of afẋ,ẏbx0ay2bx1ay1bx2 such that y1 = t0 and
x2 ≥ f̂ṫ,ṡ.Then, f̂(t0) > f̂ṫ,ṡ, which is impossible by the definition of f̂ṫ,ṡ. Similarly one shows that

2This channel permits at most one substitution error in any segment of length n of the transmitted message. A
language L is error-detecting for a channel γ, if no word of L∪{λ} (the transmitted message) results in another word
of L ∪ {λ} using the errors permitted by the channel γ – see [3], [6] for details on these concepts.

8

the shorter word cannot be an infix of the last six runs of the longer one. Hence, we have that Kf,2

is a solid code.
Our aim now is to show that Kf,2 is a maximal solid code. We need to establish a special

notation. For any word w = wd(ẋ, ẏ), with ẋ, ẏ tuples of length m, we define the pattern w̃ =
P0P1 · · ·Pm−1 of w as follows. Each Pi is either the symbol F or G, depending on whether f̂(ym−i) >
xi or ym−i < f(xi), respectively. Equivalently, Pi is either the symbol F or G, depending on whether
ym−i ≥ f(xi) or f̂(ym−i) ≤ xi, respectively. For example, for f(i) = i and f̂(j) = 1 + j, we have
that the pattern of a3b2a2b3ab2 is FGG. It is easy to see that the pattern of any f -word starts
with F and ends with G. Moreover, the pattern of any word in (Kf,2 − a+b+a+b+a+b+) is equal
to FGFG, and the pattern of any word in Kf,2 ∩ a+b+a+b+a+b+ is FGG or FFG. Note that, with
this notation, it is immediate to see that Kf,2 is an infix code.

We write Pi > Pi+1 when f̂(ym−i) > xi+1, and Pi < Pi+1 when ym−i < f(xi+1). Obviously, by
the properties of near-inverses, exactly one of Pi > Pi+1 and Pi < Pi+1 is true, for each index i. In
the former case, we write the predicate

P0 · · · (Pi > Pi+1) · · ·Pm−1 ∈ ~w,

and we say that P0 · · · (Pi > Pi+1) · · ·Pm−1 is an enhanced pattern of w. We use a similar notation
for the latter case. For example, the word a3b2a2b3ab2 considered above has (F>G)G as an enhanced
pattern.

Lemma 2 Let u be any word in Kf,2 and w be any word in aΣ∗b.

1. If ũ = FFG then F(F < G) ∈ ~u.

2. If ũ = FGG then (F > G)G ∈ ~u.

3. If ũ = FGFG then (F > G)(F < G) ∈ ~u.

4. If w̃ = G then w begins with a nonempty suffix of Kf,2.

5. If w̃ = F then w ends with a nonempty prefix of Kf,2.

6. If F(F < G) ∈ ~w, or (F > G)G ∈ ~w, or (F > G)(F < G) ∈ ~w then w must contain a word of
Kf,2.

7. If (F > G)(F > G) ∈ ~w then w must end with a nonempty proper prefix of Kf,2.

8. If (F < G)(F < G) ∈ ~w then w must begin with a nonempty proper suffix of Kf,2.

9. If (F < G)G ∈ ~w then w must begin with a nonempty proper suffix of Kf,2.

10. If F(F > G) ∈ ~w then w must end with a nonempty proper prefix of Kf,2.

Proof. The proof of each statement is based on the definitions of pattern and enhanced pattern,
using the form of the words in Kf,2 as shown in (12). For the first statement, if F(F > G) ∈ ~u then
f̂(t1) > f̂ṫ,ṡ, which implies that f̂ṫ,ṡ = f̂(t0) and f̂(t1) ≤ s1; hence, the pattern of u must be FGG,
which is a contradiction. Thus, F(F < G) ∈ ~u. The second statement is symmetric. For the third
statement, one can use the same arguments as before. For the fourth statement, w is of the form
aqbp with q < f(p); hence, f̂(q) ≤ p. The statement follows when we note that aqbf̂(q) is a suffix of
af(1)babaqbf̂(q) ∈ Kf,2. The fifth statement is symmetric to the fourth one.

9

For the sixth statement we only show the case (F > G)(F < G) ∈ ~w. In this case,

w = wd(ẋ, ẏ) = ay3bx0ay2bx1ay1bx2ay0bx3 ,

with ẋ and ẏ of length 4. By the pattern of w we must have y3 ≥ f(x0), y3 ≥ f(x1), f̂(y1) ≤ x3,
f̂(y0) ≤ x3. Hence, the word wdf (ẋ, ẏ) ∈ Kf,2 is contained in w. For the seventh statement, we
note that y1 ≥ f(x2), y1 ≥ f(x3), and y0 < f(x3). Hence, the word amax(f(x2),f(x3))bx2ay0bx3a1bf̂(1)

is in Kf,2, and w ends with a proper and nonempty prefix of that word, as required. The eighth
statement is symmetric to the seventh one. The last two statements can be dealt with using similar
arguments. ¥

Theorem 3 For every non-decreasing and unbounded function f : N→ N, the language Kf,2 is a
maximal solid code.

Proof. We use contradiction. So, assume there is a word w ∈ aΣ∗b − Kf,2 such that Kf,2 ∪ {w}
is a solid code. First we note that, by Lemma 2(4-5), the pattern w̃ must start with F and end
with G. Now we claim that w̃ can contain neither FF nor GG. With this claim w̃ must be of the
form FG· · ·FG, and then by Lemma 2(6), we must have that one of (F > G) · · · (F > G) and
(F < G) · · · (F < G) must be an enhanced pattern of w. The desired contradiction obtains when we
use Lemma 2(7-8). Now we prove the FF case of our claim in the following paragraph (the other
case is symmetric).

Assume that w̃ contains FF. As it ends with G, it must also contain FFG. By Lemma 2(6), w
has an enhanced pattern of the form

w̃1F(F > G)w̃2,

with no occurrence of FFG in w̃2. Now let r be the largest value such that (F > G)rw̃3 is an
enhanced pattern of w2; hence, no enhanced pattern of w3 can start with (F > G). Moreover, by
Lemma 2(6), no enhanced pattern of w3 can start with (F < G). Hence, w̃3 cannot start with FG.
By Lemma 2(10), w2 is nonempty. If w3 is empty then r ≥ 1 and an enhanced pattern of w ends
with (F > G)(F > G), which is a contradiction by the above lemma. So w3 must be nonempty and
w̃3 must start with F. Moreover, as w̃3 contains no FFG, it must start with FG; a contradiction. ¥

6 Discussion

We have presented new classes of both, finite and infinite, binary solid codes based on word runs.
These utilize the new concept of f -word. Our work constitutes another step towards the explicit
structural characterization of large classes of binary solid codes satisfying various good criteria. Can
we find a reasonable characterization of all maximal binary solid codes that are subsets of (a+b+)k,
for any k ≥ 2? Then, of such codes that are subsets of (a+b+)+? Would such constructions also
lead to improved finite solid codes?

References

[1] V.B. Balakirsky. Block codes for asynchronous data transmission designed from binary trees.
The Computer Journal 45.2 (2002), 243–248.

[2] H. Jürgensen, M. Katsura and S. Konstantinidis. Maximal solid codes. J. Automata, Lan-
guages and Combinatorics 6 (2001), 25–50.

10

[3] H. Jürgensen and S. Konstantinidis. Codes. In [10], Vol. 1, pp 511–607.

[4] H. Jürgensen and S. Konstantinidis. (Near-)inverses of sequences. International J. of Computer
Mathematics 83.2 (2006), 203–222.

[5] H. Jürgensen, S. Konstantinidis and N.H. Lâm. Asymptotically optimal low-cost solid codes.
Journal of Automata, Languages and Combinatorics 9.1 (2004), 81–102.

[6] S. Konstantinidis and A. O’Hearn. Error-detecting properties of languages. Theoretical Com-
puter Science 276.1-2 (2002), 355–375.

[7] N.H. Lâm. Finite maximal solid codes. Theoretical Computer Science 262.1-2 (2001), 333–347.

[8] V.I. Levenshtein. Maximum number of words in codes without overlaps. Probl. Inform. Transm.
6 (1970), 355–357.

[9] V.I. Levenshtein. Combinatorial problems motivated by comma-free codes. J. Combinatorial
Designs 12 (2004), 184–196.

[10] G. Rozenberg and A. Salomaa (eds). Handbook of Formal Languages, Vol. 1. Springer-Verlag,
Berlin, 1997.

[11] S.S. Yu. Languages and Codes. Tsang Hai Publishing Co., Taichung, Taiwan, 2005.

11

