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Abstract

A defect control boundary value ordinary differential equation (BVODE)
code computes a numerical solution for which an estimate of the defect,
i.e., the amount by which the approximate solution fails to satisfy the
BVODE, is less than a user-provided tolerance. Defect control is attrac-
tive from a backward error viewpoint and the computation of the defect is
inexpensive. A number of defect control codes are now in wide use, includ-
ing the MATLAB codes, bvp4c and bvp5c, and the Fortran codes, MIRKDC
and BVP SOLVER. However, the global error of a numerical solution, i.e.,
the difference between the numerical solution and the exact solution, is
often more familiar to users, and it can therefore be useful for a defect
control code to also return an estimate of the global error for the defect
controlled numerical solution it computes. The ratio of the global error to
the maximum defect can also provide an indication of the conditioning of
the BVODE. BVP SOLVER currently provides an option for the return of a
global error estimate based on Richardson extrapolation, and in this pa-
per we consider the practical implementation within BVP SOLVER of three
alternative strategies based on the direct use of a higher order discretiza-
tion formula, an estimate of the BVODE conditioning constant, and a
deferred correction approach. We provide numerical results comparing
the four estimators that show that the approaches based on the direct
use of a higher order discretization formula and deferred correction are
superior to the other two approaches.
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1 Introduction

Codes for boundary value ordinary differential equations (BVODEs) return an
approximate numerical solution to the BVODE. Accordingly, the accuracy of
the solution provided by the code must be assessed in some way. There are two
common approaches to controlling solution accuracy in BVODE software: global
error control and defect control. The global error is the difference between the
approximate solution and the exact solution. The defect of a continuous numer-
ical solution is the amount by which that solution fails to satisfy the BVODEs.
High quality codes compute an estimate of the accuracy of the solution and at-
tempt to adapt the computation so that the estimate is less than a user-provided
tolerance.

Computational approaches for solving BVODEs are commonly divided into
two categories: initial-value methods and global methods. We now briefly review
these categories.

1.1 Initial-Value Methods

Simple shooting and multiple shooting methods are the primary initial-value
methods for solving BVODEs; see, e.g., [2]. These methods rely directly on
techniques for numerically solving initial-value problems (IVPs) for ODEs. In
simple shooting, guesses are made for the unknown data at one boundary and,
using IVP techniques, the resulting IVP is integrated to the other end of the
problem domain, where the numerical solution is compared with the known
boundary conditions. If these conditions are not satisfied, the initial guesses are
then corrected according to an iteration scheme such as Newton’s method, and
the process repeats.

Unfortunately, simple shooting is known to be unstable [2]; therefore most
initial-value BVODE codes implement some form of multiple shooting. Mul-
tiple shooting algorithms divide the problem domain into subintervals. Using
approximate initial conditions, an IVP solver is then applied to solve a local IVP
on each subinterval. Matching conditions are imposed on the numerical solu-
tions from each subinterval, and, together with the boundary conditions, these
are solved in an iterative fashion to obtain a continuous numerical solution over
the problem domain. The number and locations of the mesh points are also
chosen adaptively to improve the reliability and robustness of the computations
performed by the IVP solver. For problems that include both exponentially
increasing and exponentially decreasing solution components, it is well-known
(see, e.g., [2]) that multiple shooting algorithms can experience difficulties due
to the failure of the IVP solver or the need for a large number of subinter-
vals. Two well-known multiple shooting codes are the MUSL/MUSN packages
of Mattheij and Staarink; see [2] for more information.

Codes that numerically solve IVPs rarely attempt to directly control an es-
timate of the global error. Usually these codes control an estimate of the local
error. Authors of these codes consider global error control to be too computa-
tionally costly. Unfortunately, a small local error does not necessarily guarantee
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a small global error. However there are a few IVP solvers that use a compu-
tationally efficient scheme to compute and control an estimate of the global
error. One such code, called GERK [26], uses global extrapolation techniques
along with a Runge–Kutta–Fehlberg method to efficiently determine an esti-
mate of the global error for each step. A more recent investigation in this area
has undertaken by Lang and Verwer (see [20] and references within), where a
standard approach based on the integration of the variational equation for the
IVP is compared with a new approach by Cao and Petzold [7] based on the use
of an adjoint method.

Most multiple shooting codes attempt to solve each of the local IVPs to
within the given user tolerance (or fraction thereof) using IVP software that
performs some form of local error control. As well, the matching and bound-
ary conditions are solved iteratively to within the user tolerance (or fraction
thereof). When this computation is successful, the result is a numerical solu-
tion for which it can be shown that the corresponding global error is at least
indirectly controlled; see [2]. To our knowledge, there does not exist a multi-
ple shooting code that uses an IVP solver that attempts to directly control an
estimate of the global error when solving the local IVPs.

When an IVP solver employs “error-per-unit-step” local error control and
an appropriate interpolant to the discrete numerical solution computed by the
IVP solver, then it can be shown that the defect of the numerical solution is
also indirectly controlled; see Section 2 of [13]. Thus a multiple shooting code
that employs such an IVP solver also provides indirect control of the defect.
Although there exist IVP solvers that directly control the defect, see, e.g., [12],
to our knowledge none of these has ever been employed as the IVP solver within
a multiple shooting code for BVODEs. And thus, to our knowledge, there does
not exist a multiple shooting code that provides direct control of the defect of
the numerical solution it computes.

1.2 Global Methods

Global methods, based on, e.g., finite difference, Runge–Kutta, or collocation
methods for the discretization of the ODEs, generate a system of equations
whose solution typically gives approximations to the solution of the BVODE at
a set of mesh points that partition the solution domain. Moreover, some measure
of the accuracy of the solution (e.g., a global error estimate or an estimate of the
maximum defect) for each subinterval is normally computed. If the maximum of
these estimates does not satisfy the user-specified tolerance, the error estimates
are used to guide mesh refinement. Then based on the resultant mesh, a new
approximate solution is computed, and the process repeats; see, e.g., [2], for
more details.

1.2.1 Global Error Control Codes

One of the earliest BVODE codes of this type is the (Fortran) collocation code
COLSYS [1]. In the approach implemented in this code, the approximate solution
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is assumed to take the form of a piecewise polynomial with unknown coefficients
that are determined by requiring the approximate solution to satisfy the ODEs
at a set of collocation points over the problem domain. Several modifications
of this code have been developed to improve or enhance the capabilities of this
solver; the resultant codes include COLNEW [5], COLDAE [4], and COLMOD [10].
These codes estimate the global error by comparing the solution computed on a
given mesh with a solution computed on a mesh that is obtained by “doubling”
the original mesh; i.e., the second mesh is obtained by halving each subinterval of
the original mesh. Although this technique, known as Richardson extrapolation,
does provide a good quality error estimate, as we show in this paper, it is
relatively computationally expensive.

A special class of multi-step methods, called Top Order Methods, are em-
ployed in the MATLAB BVODE solver, TOM [21], in order to discretize the ODEs.
This code employs mesh selection based not only on a global error estimate but
also on an estimate of the conditioning of the BVODE.

Mono-implicit Runge–Kutta (MIRK) methods, see, e.g., [6] and references
within, and Lobatto collocation methods, see, e.g., [2], employed within a de-
ferred correction framework, provide the basis for the Fortran BVODE solvers
TWPBVP [11] and ACDC [10]. A related deferred correction code, TWPBVPL [8],
also based on Lobatto schemes and deferred corrections, has also recently been
developed. These codes control estimates of the global error and base mesh
refinement on the global error estimates for each subinterval. Extensions of
these codes that consider mesh selection based on global error estimates and
an estimate of the conditioning constant of the BVODE have led to the devel-
opment of new versions of TWPBVP and TWPBVPL, called TWPBVPC and
TWPBVPLC [9].

None of the above codes attempt to directly estimate and control the defect
of the numerical solution they return.

1.2.2 Defect Control Codes

Most BVODE codes provide a continuous solution approximation through the
use of some form of interpolation. In such cases, Enright and Hanson [16]
suggest the use of defects rather than global error to assess solution quality and
guide mesh refinement because the defect is considerably less computationally
expensive to compute than is an estimate of the global error. Codes that control
the defect are also interesting from a backward error viewpoint: the numerical
solution computed by such a code is the exact solution to a BVODE that is a
perturbation of the original BVODE (see Section 3.2).

The BVODE solvers bvp4c [18], bvp5c [19] (MATLAB) and MIRKDC [14] and
BVP SOLVER [25] (Fortran) all use defect control. The two Fortran codes and
bvp4c are based on MIRK formulas; bvp5c is based on a four-point Lobatto
scheme. None of these defect control codes attempt to directly control the
global error. However, bvp5c is able to indirectly control the global error; for
the Lobatto formula employed by this code, it is shown in [19] that a scaled
norm of the defect asymptotically approaches the norm of the global error. As
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well, in Section 3.2, we show that any defect control code is able to indirectly
control the global error provided the conditioning constant of the BVODE is
small.

Although a numerical solution for which the estimate of the maximum defect
is guaranteed to be less than the user tolerance is interesting, especially from a
backward error viewpoint, there can be cases where a defect controlled numerical
solution can have a large global error. In extreme cases, a defect control code can
return a numerical solution for a problem that in fact does not have a solution.
Shampine and Muir [24] refer to such solutions as pseudo-solutions and provide
examples where bvp4c and MIRKDC return pseudo-solutions. In such cases, the
numerical solution is still the exact solution to a BVODE that is “close” to the
original one. However, if the BVODE is ill-conditioned and the tolerance is
coarse, the solution of the perturbed problem may not be close to the solution
of the original problem. This suggests that it is important for a defect control
code to provide an assessment of the conditioning of the BVODE or an estimate
of the global error of the numerical solution.

1.3 Estimation of the Global Error in BVP SOLVER

The goal of this paper is explore the use of several standard approaches to
global error estimation within the context of a defect control code. We assume
that a primary solution with an estimated maximum defect satisfying a user-
provided tolerance has been accepted. The idea is then to investigate possible
algorithms for the generation of a robust but low cost a posteriori estimate of
the global error in the accepted numerical solution. We emphasize that although
the solution that is returned by a defect control code has the property that an
estimate of the maximum defect over the whole problem domain is less than the
user-provided tolerance, there is no guarantee that the global error is also less
than the user tolerance.

Although BVP SOLVER does not attempt to control global error directly, to
our knowledge it is the only defect control code to provide the option for the
direct computation of an a posteriori estimate of the global error; the estimate
is based on Richardson extrapolation and has the form

εg,R =
∣∣∣∣
∣∣∣∣

2p

2p − 1
(
Yh − Yh/2

)∣∣∣∣
∣∣∣∣
∞

, (1)

where Yh is the original defect controlled numerical solution, Yh/2 is the numer-
ical solution computed on a mesh that is obtained by halving each subinterval
of the original mesh, and p is the order of the MIRK method used in the com-
putation of these solutions. Both Yh and Yh/2 are evaluated at the points of
the original mesh. Also, εg,R is the global error estimate for the lower accuracy
solution, Yh. A derivation of this error estimate can be found in section 5.5.2
of [2].

In this paper, we consider three other approaches for the computation of
an a posteriori estimate of the global error of the primary numerical solution.
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The first approach employs a higher order discretization formula to generate
a more accurate numerical solution that can then be used to give a global
error estimate. The second approach computes an estimate of the BVODE
conditioning constant that, when multiplied by the estimate of the maximum
defect of the primary solution, gives a bound for the global error. The third
scheme uses a deferred correction approach to obtain a more accurate numerical
solution that allows us to compute an estimate of the global error.

Although the global error estimators presented in this paper can be applied
to any BVODE code, BVP SOLVER is the primary focus. Therefore, section 2 de-
scribes the algorithms BVP SOLVER uses to solve BVODEs. Section 3 describes
the global error estimation techniques and their efficient implementation within
BVP SOLVER. Section 4 presents numerical experiments comparing the four global
error estimators with respect to accuracy and efficiency. Finally section 5 sum-
marizes our results, gives our conclusions, and provides suggestions for future
work.

The estimate of the conditioning constant requires only a few extra back
solves at the end of the computation, and it is therefore reasonable to expect
that a global error estimate based on this approach would be low cost but po-
tentially not particularly accurate because the underlying theory gives only an
upper bound on the global error. On the other hand, the Richardson extrapola-
tion approach is expected to provide an accurate estimate of the global error but
at considerable expense as a larger discrete problem must be solved on a doubled
mesh. The results of this paper verify these expectations and also show that the
other two global error estimators combine the best of the above performances:
the approaches based on the direct use of a higher order discretization method
and deferred corrections provide the accuracy of the Richardson extrapolation
approach but at a significantly lower cost. This suggests an improvement to the
global error estimator currently implemented within BVP SOLVER. Furthermore,
these results of this paper provide a direct comparison of global error estima-
tion algorithms that are useful for global error control codes, suggesting that
an estimator based on either a higher order discretization method or deferred
correction could replace a Richardson extrapolation approach in such codes.

2 Review of BVP SOLVER

BVP SOLVER is capable of solving a first-order system of n ODEs of the form

y′(x) =
(

Λ
x − a

)
y + f(x,y,p), a ≤ x ≤ b,

subject to nonlinear separated two-point boundary conditions

ga(y(a),p) = 0, gb(y(b),p) = 0.

Here y and f are vectors of length n and p is an optional vector of length np

of unknown parameters. The vector [ga,gb]T is of length n + np. The n × n
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constant matrix Λ is optional. In this paper we assume the simpler form

y′ = f(x,y), a ≤ x ≤ b, ga(y(a)) = 0, gb(y(b)) = 0. (2)

In order to solve a BVODE, BVP SOLVER generates a system of nonlinear
equations for which the unknowns, yi, are approximations to the solution values,
y(xi), at the mesh points a = x0 < x1 < . . . < xN = b. The nonlinear system
includes the separated boundary conditions,

ga(y0) = 0, gb(yN ) = 0,

together with equations that discretize the ODEs on each subinterval using
MIRK formulas. Let hi = xi − xi−1, i = 1, 2, . . . , N . On subinterval i + 1,
[xi, xi+1], i = 0, 1, . . . , N − 1, these equations have the form

φi+1(yi,yi+1) = yi+1 − yi − hi+1

s∑

j=1

bjf(xi + cjhi+1,Yj) = 0, (3)

where

Yj = (1 − vj)yi + vjyi+1 + hi+1

j−1∑

k=1

aj,kf(xi + ckhi+1,Yk), (4)

for j = 1, 2, . . ., s, are called the stages of the MIRK method.
The coefficients defining the MIRK method are represented by the modified

Butcher tableau

c1 v1 0 0 . . . 0
c2 v2 a2,1 0 . . . 0
...

...
...

...
. . .

...
cs vs as,1 as,2 . . . 0

b1 b2 . . . bs

,

where cj = vj +
j−1∑

k=1

aj,k and the s × s matrix A, with (j, k)th component aj,k,

is strictly lower triangular.
Equation (3) represents n nonlinear equations involving the unknowns yi

and yi+1 associated with subinterval i + 1, i = 0, 1, . . . , N − 1. Taking all these
equations, for all subintervals, together with the boundary conditions, gives a
system of (N +1)n nonlinear equations whose solution gives the discrete solution
at the mesh points, Y ≡ [yT

0 ,yT
1 , . . . ,yT

N ]T . This nonlinear system has the form

Φ(Y) ≡




ga(y0)
φ1(y0,y1)

...
φN (yN−1,yN )

gb(yN )




= 0. (5)
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System (5) is solved using a Newton iteration, which requires the evaluation
and factorization of the Jacobian

∂Φ(Y)
∂Y

. (6)

When the Newton iteration converges, we obtain the discrete solution, {yi}N
i=0,

which serves as the basis for a C1 continuous piecewise polynomial, S(x), that
is generated from a continuous MIRK formula [22]. On subinterval i + 1, S(x)
takes the form

S(xi + θhi+1) = yi + hi+1

s∗∑

j=1

bj(θ)f(xi + cjhi+1,Yj),

where 0 ≤ θ ≤ 1 and s∗ ≥ s. In the above equation, each bj(θ) is a known
polynomial in θ, defined by a continuous MIRK method. Because s∗ ≥ s, it
follows that S(x) may need to use extra stages; each such stage has the same
general form as in (4). The piecewise polynomial, S(x), is a C1 continuous
approximation to the exact solution to the BVODE, y(x).

In order to assess the accuracy of S(x), BVP SOLVER samples the defect,

δ(x) ≡ S′(x) − f(x,S(x)), (7)

of this approximate solution at several points on each subinterval and chooses
the maximum of these samples as an estimate of the maximum defect. If the
estimated maximum defect is greater than the user-prescribed tolerance on any
subinterval, the current solution approximation is rejected. The estimates of
the maximum defects on each subinterval are used to guide a process that at-
tempts to construct a new mesh such that (i) the maximum defect estimates are
approximately equidistributed over the subintervals of the new mesh, and (ii)
the maximum defect estimate on each subinterval of the new mesh is less than
the user tolerance. Once this new mesh is obtained, the computation described
above is repeated. If the estimated maximum defect for each subinterval is less
than the user-prescribed tolerance, the solution is accepted.

We can also associate with S(x), a different assessment of solution quality,
namely, the global error, εg(x), given by,

εg(x) ≡ y(x) − S(x). (8)

However, because y(x) is generally not known, the global error must be esti-
mated. As described in section 1.3, BVP SOLVER currently uses a Richardson
extrapolation technique, (1), for its a posteriori global error estimator. We now
describe and evaluate the practical implementation of several other standard
global error estimation techniques within BVP SOLVER.
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3 Implementation of New Global Error Estima-
tors in BVP SOLVER

This section describes three alternative techniques we have implemented within
BVP SOLVER in order to estimate the global error after the defect controlled nu-
merical solution has been accepted by the code. An important point is that we
do not estimate the global error until after a candidate final numerical solution
has been obtained. It is therefore not appropriate to consider approaches that
would add extra work to the computation of all the intermediate solutions com-
puted by BVP SOLVER during its efforts to obtain the primary defect controlled
numerical solution.

Subsection 3.1 describes a global error estimation technique based on the di-
rect use of higher order MIRK formulas. Subsection 3.2 examines defect control
from a backward error analysis viewpoint and describes a global error estimator
based on the norm of the defect and an estimate of the conditioning constant for
the BVODE. Subsection 3.3 describes an approach based on the use of higher
order formulas within a deferred correction framework.

3.1 Direct Use of a Higher Order MIRK Formula for Global
Error Estimation

This section describes a global error estimator that uses a higher order MIRK
formula to compute an approximate solution that is of higher order than the
primary numerical solution, S(x), accepted by BVP SOLVER. Such an approach
is commonly used for local error estimation in the numerical solution of IVPs
by Runge–Kutta methods, particularly in the form of embedded Runge–Kutta
pairs. Suppose that at the end of the ith step, [xi−1, xi], a numerical solution,
yi, that approximates the true local solution, y(xi), is computed and that a
higher order numerical solution, ȳi, is also determined. The difference of these
two numerical solutions gives an estimate of the local error in the lower order
solution, yi. The higher order solution, ȳi, is computed by using a higher order
method and is usually more computationally expensive to obtain than yi. How-
ever, embedded Runge–Kutta pairs can be used to improve efficiency because,
once yi is computed, only a small number of additional stage computations are
required to compute ȳi. In some cases, the higher order solution is propagated
to the next step even though the available error estimate is for the lower order
solution; this is known as local extrapolation. Embedded methods are described
in greater detail in, e.g., [3].

In the approach we consider in this paper, we compute a higher order numer-
ical solution by solving an additional nonlinear system obtained by discretizing
the BVODE on the same mesh that was used to compute the primary solution
but using a Runge–Kutta method that is 2 orders of accuracy higher than that
used to compute the primary solution. That is, assuming that the primary
solution is obtained using a MIRK method of order p, we obtain a numerical
solution of order p + 2 by setting up and solving a nonlinear system of the
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form (5) for which the underlying MIRK method is of order p + 2. We choose
a method 2 orders higher rather than 1 order higher because it is important
to employ symmetric Runge–Kutta methods when solving a BVODE, and the
symmetric methods have only even orders [23]. This global error estimate is
only for the discrete solution approximation at the mesh points of the final
mesh. That is, we do not compute an interpolant for the higher order solution
to allow an estimation of the global error of the primary continuous numerical
solution; however, this feature could be added without much additional cost.

BVP SOLVER can solve BVODEs using a second-, fourth-, or sixth-order
MIRK method; see [23] for the tableaus that define these formulas and their
associated interpolants. Thus for primary solutions obtained using a second-
or fourth-order MIRK formula, there is a natural MIRK formula available for
the computation of the error estimate. For the case when the primary solution
is obtained by using the sixth-order MIRK formula, we have added an eighth-
order MIRK method [15] to BVP SOLVER. Although the formulas included in
BVP SOLVER are optimal in a certain sense [23], there is no reason to expect
that the eighth-order formula from [15] is also optimal, and further work could
be done to develop an optimal eighth-order MIRK formula for this application.
However, because the formula is only used on the final mesh, it is not clear that
the use of an optimized eighth-order formula rather than the formula of [15]
would lead to much improvement overall.

For completeness, we provide here the tableau for the ten-stage, eighth-order
MIRK formula from [15] that we have implemented in BVP SOLVER:

0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0
1
4

5
32

9
64

− 3
64

0 0 0 0 0 0 0 0
3
4

27
32

3
64

−9
64

0 0 0 0 0 0 0 0
1
2

1
2

− 5
24

5
24

2
3

− 2
3

0 0 0 0 0 0
1
8

β a1 a2 a3 a4 0 0 0 0 0 0
7
8 1 − β −a2 −a1 −a4 −a3 0 0 0 0 0 0

7−
√

21
14 Θ a5 a6 0 0 0 a7 a8 0 0 0

7+
√

21
14 1 − Θ −a6 −a5 0 0 0 −a8 −a7 0 0 0
1
2

1
2

29
896 − 29

896 0 0 0 −2
21

2
21

7
√

21
128 − 7

√
21

128 0
1
20

1
20 0 0 0 0 0 49

180
49
180

16
45

where β is a free parameter, and

a1 =
757
9216

− β

18
, a2 =

43
9216

− β

18
, a3 =

235
4608

− 4β

9
,

a4 = − 59
4608

− 4β

9
, a5 =

3451 + 717
√

21
139258

, a6 =
−3451 + 717

√
21

139258
,

a7 =
64

1029
+

1024
√

21
69629

, a8 =
−64
1029

+
1024

√
21

69629
, Θ =

1
2

+
2211

√
21

19894
.
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This formula contains embedded formulas of orders 2, 4, and 6, and in [15] it
is noted that if the embedded sixth-order formula is not required, stage five
can be ignored. We do not make use of the embedded formulas, and thus we
implement this formula as a nine-stage method. We also choose β = 0, which
is a reasonable approximation to the value β ≈ 0.006970 that minimizes the
2-norm of the Principal Error Function (see, e.g., [23]) for this eighth order
method; the corresponding values for the norms of the ninth and tenth order
error coefficients are 6.9950× 10−6 and 6.9751× 10−6, respectively.

Denote the primary solution of order p, evaluated at the mesh points associ-
ated with the computation of the primary solution, by Yp. Denote the solution
of order p + 2, at the same set of points, obtained by using the higher order
MIRK formula, by Yp+2. Then the estimate of the norm of the global error for
Yp is

εg,HO = ||Yp − Yp+2||∞.

When implementing this scheme, several observations were exploited in order
to obtain substantial savings in computation time. All observations relate to
how Newton’s method is used to solve the system of nonlinear equations, (5),
based on the higher order MIRK formula.

First, from our numerical experiments, we have observed that the primary
solution, Yp, proves to be an effective initial guess for the solution of the system
of nonlinear equations based on the higher order MIRK formula. Because Yp

is saved in the solution structure employed by BVP SOLVER, it is available for
use as the initial guess at no additional cost in computation time. This is in
contrast to using Richardson extrapolation where evaluations of the continuous
numerical solution must first be performed to generate an initial guess at the
additional mesh points associated with the doubled mesh.

Second, in order to solve the system of nonlinear equations associated with
the higher order MIRK formula using Newton’s method, a Jacobian matrix is
required and the expensive evaluation and factorization of this matrix can be
avoided by employing the Jacobian matrix used by BVP SOLVER when it com-
putes the primary solution. This matrix is also available within one of the arrays
used by BVP SOLVER during the computation of the primary solution. Again,
this is in contrast to the Richardson extrapolation approach where, because
the mesh has been doubled, there is no straightforward way to make use of
the factored Jacobian from the primary solution computation. In our numer-
ical experiments, the Jacobian matrix from the primary solution computation
has proven to be a good approximation for the Jacobian associated with the
nonlinear system based on the higher order MIRK formula.

Third, due to the effectiveness of the initial guess, Yp, we have observed in
our experiments that no further Jacobian evaluations are required to achieve
quick convergence of Newton’s method. That is, we perform Newton iterations
for which the Jacobian is held constant as long as the Newton iterates decrease
at a sufficient rate (as is done in the Newton iterations performed during the
computation of the primary solution), and in our experiments we have observed
that we were able to hold the Jacobian constant for the entire iteration required
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to determine Yp+2.
By making use of the (factored) Jacobian from the primary computation,

the implementation of this global error estimate involves only a sequence of back
solves, involving the evaluation of Φ in (5). We have modified BVP SOLVER to
provide an option that implements the global error estimation scheme via higher
order MIRK formula described above.

3.2 Global Error Estimation based on an Estimate of the
Conditioning Constant of the BVODE

The second error estimation approach we consider is based on a backward error
analysis for the numerical solution of a BVODE; for completeness we now briefly
review the basic ideas; see, e.g., [24] for further details.

Suppose S(x) is a continuous approximate solution to the BVODE (2). Al-
though S(x) is an approximate solution to (2), it is the exact solution to the
BVODE

z′(x) = f(x, z(x)) + δ(x), a ≤ x ≤ b, ga(z(a)) = σa, gb(z(b)) = σb, (9)

where the defect δ(x) is given by (7), and the boundary condition defects are
σa = ga(S(a)), and σb = gb(S(b)). When S(x) is computed by a defect control
code, we have

||δ(x)|| ≤ TOL, ||σa|| ≤ TOL, ||σb|| ≤ TOL,

for an appropriate norm, where TOL is the user tolerance. Thus S(x) is the
exact solution to the BVODE, (9), that differs from the original BVODE (2) by
an amount that is bounded by the user tolerance, typically chosen to be small.
Although S(x) is the exact solution to a problem that is close to the original
problem, S(x) is not necessarily close to y(x), the exact solution to (2). The
relationship between the defect and the global error depends on the conditioning
constant of the BVODE. We now briefly sketch the derivation of this relationship
for the case of a linear BVODE with coupled linear boundary conditions; the
results can be extended to the nonlinear case in a straightforward manner [2].

Assume that the exact solution, y(x), satisfies the BVODE,

y′(x) = A(x)y(x) + q(x), Bay(a) + Bby(b) = β. (10)

In (10), A(x),Ba,Bb ∈ Rn×n and q(x),y(x), β ∈ Rn. A fundamental solution
for (10), Y(x) ∈ Rn×n, is defined as the solution of the IVP system

Y′(x) = A(x)Y(x), a < x < b, Y(a) = I.

Then the solution to (10) can then be expressed as

y(x) = Y(x)Q−1β +
∫ b

a

G(x, t)q(t)dt, (11)
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where G(x, t) is the associated Green’s function and Q is the non-singular ma-
trix

Q = BaY(a) + BbY(b).

In this case, the approximate solution, S(x), exactly satisfies the perturbed
BVODE

S′(x) = A(x)S(x) + q(x) + δ(x), (12)

and the perturbed boundary conditions

BaS(a) + BbS(b) = β + σ,

where
δ(x) = S′(x) −A(x)S(x) − q(x),

and
σ = BaS(a) + BbS(b) − β,

are the defects associated with the ODE and the boundary conditions, respec-
tively. Because S(x) satisfies (12), we can use the associated Green’s function
to obtain

S(x) = Y(x)Q−1β + Y(x)Q−1σ +
∫ b

a

G(x, t)q(t)dt +
∫ b

a

G(x, t)δ(t)dt. (13)

Subtracting (11) from (13) gives an expression for the global error of S(x):

S(x) − y(x) = Y(x)Q−1σ +
∫ a

b

G(x, t)δ(t)dt. (14)

We next introduce weight functions to take into account the weighted norm
used in BVP SOLVER to scale the defect; see [25] for further details. Let w1(x),
w2, and w3(x) be n× n diagonal matrices with positive entries. The weighting
functions w2 and w3(x) are associated with the scaling of the defect; w1(x)
is associated with a corresponding scaling for the global error. Then weighted
norms are defined as follows:

||δ(x)||w1 = max
a≤x≤b

||w−1
1 (x)δ(x)||∞, ||σ||w2 = ||w−1

2 σ||∞,

||S(x) − y(x)||w3 = max
a≤x≤b

||w−1
3 (x) (S(x) − y(x)) ||∞.

Rewriting (14) as

w−1
3 (x)(S(x) − y(x)) = (w−1

3 (x)Y(x)Q−1w2)(w−1
2 σ)

+
∫ b

a

(w−1
3 (x)G(x, t)w1(t))(w−1

1 (t)δ(t))dt.

and taking norms, we get

||y(x) − S(x)||w3 ≤ κ max(||δ(x)||w1 , ||σ||w2 ) , (15)
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where the conditioning constant, κ, for the BVODE is given by

κ = max
a≤x≤b

∫ b

a

||w−1
3 (x)G(x, t))w1(t)||∞dt + ||w−1

3 (x)Y(x)Q−1w2||∞.

Inequality (15) says that the global error is bounded by the product of the
conditioning constant for the BVODE and the defect, and therefore a bound on
the global error can be obtained from

εg,CO ≡ κ‖δ‖∞.

Because a defect control code must compute an estimate of the maximum defect,
the remaining work involves the computation of an estimate of the conditioning
constant.

The paper [24] also explains how to compute an estimate of κ. Let W12 =
diag{w1(x2), . . . ,w1(xN+1),w2} and W3 = diag{w3(x1), . . . ,w3(xN+1)}. Then
in [24], it is shown that, for a sufficiently fine mesh,

κ ≈ ||W−1
3

∂Φ(Y)
∂Y

−1

W−1
12 ||∞,

where ∂Φ(Y)
∂Y is the Newton matrix, (6), which is computed and factored during

the computation to determine the primary numerical solution.
Because it is impractical to compute ||W−1

3
∂Φ(Y)

∂Y

−1
W−1

12 ||∞ directly (due to

the presence of ∂Φ(Y)
∂Y

−1
), [24] suggests the use of the Higham–Tisseur algorithm

[17] for the efficient estimation of the norm of ||W−1
3

∂Φ(Y)
∂Y

−1
W−1

12 ||∞. Once
the primary solution is accepted, and because the factored Newton matrix that
was used by BVP SOLVER to obtain the primary solution is still available, the
Higham–Tisseur algorithm can be used to obtain the estimate for κ using only
a few additional back solves, involving the matrix W12

∂Φ(Y)
∂Y

W3, where the
matrix ∂Φ(Y)

∂Y is already in factored form.
We have modified BVP SOLVER to use the above approach to efficiently es-

timate κ after the primary solution is accepted. The product of κ and the
estimate of the maximum norm of the defect then gives a bound on the global
error, as indicated above. However, it is worth noting that, especially for a
defect control code, it may be useful to estimate and return κ itself because this
quantity gives a measure of the sensitivity of the solution to small changes in
the problem definition. In this case the bound on the global error is obtained
at the cost of only one multiplication.

3.3 Global Error Estimation based on Deferred Correc-
tions

We begin the discussion of this approach by considering the system of nonlinear
equations, (5), whose solution gives a discrete approximation to the exact solu-
tion evaluated at the mesh points. When the MIRK method upon which (5) is
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based is of order p, let us refer to this system as

Φp(Yp) = 0,

where the pth order discrete solution, obtained by solving this system, is Yp.
In [11], the authors describe a deferred correction method based on MIRK

formulas. They demonstrate how solutions of orders four, six, and eight can be
computed by solving the systems

Φ4(Y4) = 0, Φ4(Y6) = −Φ6(Y4), Φ4(Y8) = Φ4(Y6) −Φ8(Y6). (16)

In [11], the authors first compute a solution of order four and then use two
steps of deferred correction to efficiently compute the solutions of orders six and
eight. That is, the fourth-order solution Y4 is computed using the first equation
from (16) and the sixth- and eighth-order solutions, Y6 and Y8, are obtained
by solving the second and third equations from (16).

Because BVP SOLVER uses MIRK formulas, we can use an approach similar
to that of [11]; however, we use only one step of deferred correction to obtain a
higher order solution that can give us a global error estimate. When BVP SOLVER
solves a BVODE it returns one solution of order two, four, or six, depending on
what order of method the user has selected. This gives what we have referred
to as the primary solution. Assume the primary solution is of order p; i.e., we
have Yp available from the primary defect controlled computation. Then the
deferred correction equation that allows us to obtain the higher order solution,
Yp+2, is

Φp(Yp+2) = −Φp+2(Yp).

That is, we need to solve the nonlinear system

Φp(z) + Φp+2(Yp) = 0, (17)

for the unknown z. A Newton iteration is employed to obtain z, and upon con-
vergence, we set Yp+2 = z. The primary expense is the setup and factorization
of the Jacobian matrix of this nonlinear system. However, the system

Φp(z) = 0, (18)

is the one that was just solved during the primary computation to get Yp. That
computation was based on a Newton iteration and the corresponding Jacobian
(evaluated at Yp or an approximation to it) was computed and factored for
use in that iteration. A significant advantage of employing (17) to determine
Yp+2 is that that system has the same Jacobian matrix as (18). Furthermore,
a natural initial guess for Yp+2 to start the Newton iteration for (17) is to use
Y(0)

p+2 = Yp. Thus in the Newton iteration used to compute the solution, Yp+2,
to (17), we can employ the already computed and factored Jacobian from the
Newton iteration used in the primary computation to get Yp.

As in the approach described in Section 3.1, once the higher order solution
Yp+2 is available, the estimate of the norm of the global error for Yp is

εg,DC = ||Yp − Yp+2||∞.
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The computational costs incurred in this approach involve only a sequence
of evaluations of Φp(z) and corresponding back solves associated with applying
Newton’s method with a fixed Jacobian to (17) and the computation of the
correction term, Φp+2(Yp), once at the beginning of the iteration. We have
modified BVP SOLVER to allow it to perform this additional computation after
the primary solution has been accepted.

3.4 Summary

Previous subsections have described the various global error estimations schemes
for which we present numerical results in the next section. Based on the de-
scriptions of these estimators, we can make an assessment of their relative costs.
The approach based on Richardson extrapolation requires the setup and factor-
ization of a Newton matrix that is twice the size of that employed to compute
the primary accepted solution on the final mesh. This obviously represents a
significant additional cost, and we therefore expect to see that the costs for
this approach are significantly larger than the other estimators. The deferred
correction approach makes use of the already factored Newton matrix during
the computation of the pth order primary solution, and as can be seen from
(17) and (18), this is exactly the required Newton matrix. This is in contrast
to the approach that directly employs a higher order method, as described in
Section 3.1, where the system to be solved should employ a Newton matrix
based on the MIRK method of order p + 2, but we instead use the already fac-
tored Newton matrix associated with the computation of the pth order primary
solution. Thus the Newton matrix we employ in this case is only an approxi-
mation to the matrix that we should employ, and we might expect that more
iterations to obtain convergence are required than for the approach based on
deferred corrections in some cases. Both of these methods require each New-
ton iteration to compute a fairly complicated right hand side vector based on
a MIRK method; on the other hand the approach based on the estimation of a
conditioning constant for the BVODE uses the already factored Newton matrix
from the primary computation and only simple right hand sides computed by
the conditioning constant estimation software. We therefore expect its costs to
be less than the previous two approaches.

4 Numerical Results

With the implementation of the three approaches for global error estimation
discussed in Sections 3.1, 3.2, and 3.3 and the Richardson extrapolation global
error estimate that was already available, BVP SOLVER now has four possible
methods for estimating the global error. This section presents a comparison of
accuracy and computational efficiency for these four estimators. We consider
five test problems, and for each test problem we examine the performance of
BVP SOLVER and the global error estimators for the three MIRK formula order
options: 2, 4, and 6. All test problems were first converted to first order sys-
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tems as required by BVP SOLVER. In order to assess the quality of the global
error estimates, we need to compare them with the true global error. For test
problems with a known exact solution, we provide this solution in the problem
description and use it to compute the exact global error. For the other prob-
lems, we compute a high precision solution using the BVP SOLVER package with
a stringent tolerance setting and use this numerical solution as the reference
solution.

The computations were performed using an Intel Xeon w3520 quad core
processor running at 2.667 GHz. The RAM consists of 6GB of DDR3 memory
running at 1.333 GHz. The operating system is Ubuntu 8.04 with kernel 2.6.24-
25-generic and the Fortran compiler is gfortran with gcc 4.2.4-lubuntu4.

4.1 Test Problems

The first problem is the linear problem

y′′ − y′

x2
+ 100y = 1000x− 10

x2
+

10 cos (10x)
x2

, (19)

with boundary conditions,

y′(0) = 0, y(1) = 10 − sin (10).

It can be found in [18]. The problem has the exact solution,

y(x) = 10x − sin (10x) .

Because the problem has a singularity at the left endpoint a = 0, we solved the
problem with a = 0.0038. To achieve stable, measurable timings, the problem
was solved 15 times in a loop - timing results are accumulated over all iterations.
An initial guess y(x) ≡ y′(x) ≡ 0 was used for each iteration.

The second problem is the nonlinear problem (see [9]),

εy′′ + (y′)2 = 1, (20)

with boundary conditions

y(0) = 1 + ε ln cosh
−0.745

ε
, y(1) = 1 + ε ln cosh

0.255
ε

.

The problem has the exact solution,

y(x) = 1 + ε ln cosh
(

x − 0.745
ε

)
.

To achieve stable, measurable timings, the problem was solved in a loop of 80
iterations. For each iteration, we use ε = 0.028 and the initial guess y(x) ≡ 1

2 ,
y′(x) ≡ 0. Timing results are the accumulated totals over all iterations.
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The third problem is the nonlinear Problem 21 from the BVP test set at
www.ma.ic.ac.uk/∼jcash/BVP software; it is

εy′′ = y + y2 − exp
(
−2x√

x

)
, (21)

with boundary conditions,

y(0) = 1, y(1) = exp
(
−1√

ε

)
.

The problem has the exact solution,

y(x) = exp
(
−x√

ε

)
.

We use ε = 10−7 and the guess y(x) ≡ 1
2
, y′(x) ≡ 0. To achieve measurable

timings, the problem was solved in a loop of 10 iterations. Timing results are
cumulative over all iterations.

The fourth problem is the nonlinear Example 1.19 from [2]; it has the form

f ′′′ +
1
2
(3 − n)ff ′′ + n(f ′)2 + g2 − sf ′ = γ2,

g′′ +
1
2
(3 − n)fg′ + (n − 1)gf ′ − s(g − 1) = 0, (22)

with boundary conditions,

f(0) = f ′(0) = g(0) = 0, f ′(∞) = 0, g(∞) = γ,

where S = 0.05, n = 0.3, and γ = 1. Because the problem is posed on a
semi-infinite interval, x is transformed to

t =
1

x + 1
, 0 < t ≤ 1.

The transformed problem has a singularity at the left endpoint. Accordingly,
we solve this transformed problem with a left end point a = 0.0025; we use
initial solution guesses f(t) ≡ g(t) ≡ 0.8, f ′(t) ≡ f ′′(t) ≡ g′(t) ≡ 0. To achieve
stable, measurable timings, the problem was solved repeatedly in a loop of 45
iterations. Timing results are for the cumulative run time over all iterations.
Because no exact solution for this problem is known, a reference solution was
computed by BVP SOLVER using the sixth-order MIRK method with a tolerance
of 10−11.

The fifth problem is Example 1.20 of [2] given by

εf ′′′ + ff ′′′ + gg′ = 0, εg′′ + fg′ − f ′g = 0, (23)

with boundary conditions,

f(0) = f(1) = f ′(0) = f ′(1) = 0, g(0) = Ω0, g(1) = Ω1,
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where Ω0 = −1 and Ω1 = −1 and ε = 9× 10−5. The initial solution guesses are
g(x) = 2x − 1, g′(x) = 2, and f(x) ≡ f ′(x) ≡ f ′′(x) ≡ f ′′′(x) ≡ 0. To achieve
stable, measurable timings, the problem was solved repeatedly in a loop of 30
iterations. Timing results are for the cumulative run time over all iterations.
No exact solution is known and a numerical reference solution, obtained using
the same approach as for the fourth problem, is employed.

4.2 Results for Second Order

BVP SOLVER was used, with method = 2 in this case, to solve the five test
problems as described above, over a range of tolerance values, typically from
10−4 to 10−8. In essentially all results there is excellent agreement between the
exact global error and the estimated global error from Richardson Extrapolation
(RE), the use of a higher order method (HO), and deferred correction (DC). The
results from the use of the conditioning constant estimate on the other hand
give a substantial overestimate of the global error, typically overestimating the
global error by several orders of magnitude. In the Appendix we provide tables
of results for the second order case for each test problem. See Tables 1, 2, 3, 4,
and 5 for results on problems (19), (20), (21), (22), and (23), respectively.

In order to illustrate the main points of our investigation, we present several
graphs based on some of the data from the tables; these allow us to investi-
gate the relative efficiency of the estimators by considering plots of tolerance
vs. execution time of each global error estimator expressed as a percentage of
the time required to compute the primary solution. Typical results are obtained
for test problem (19); see Figure 1. Similar results were obtained for problems
(21), (22), and (23) - see Figure 2, Figure 3 and Figure 4, respectively. The
execution time for RE is a much higher percentage of the primary solution com-
putation time than the HO or DC estimators whereas the execution for the CO
estimator is essentially negligible.

For the test problem (20), we see slightly different results for the coarsest
tolerance; see Figure 5. The HO estimator cost in this case is comparable to
that of the RE estimator.

In summary, over a large majority of the tests involving the second order
MIRK method, the RE estimator costs are generally a large fraction of the
primary solution computation costs, whereas the HO and DC costs are usually
comparable in cost and represent a significantly smaller fraction of the overall
cost. The costs associated with the CO method are negligible for all tolerances
and problems. However, the global error estimate from the CO method is such
a substantial overestimate of the global error that it is not of practical interest.
The other three estimators are in excellent agreement, in general, with the
exact global error. The Newton iterations associated with all of the estimation
schemes converge sufficiently well that it is possible to iterate to convergence
without the need for an update of the Newton matrix; typically the RE and DC
methods require only a small number of Newton iterations to obtain convergence
to the desired tolerance; the HO method sometimes needs a few extra iterations.
The CO method typically requires 5 iterations but the evaluation of the right
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Figure 1: Plot of − log10 of defect tolerance vs. execution time for global error
estimator as percentage of primary solution execution time for second order for
test problem (19).

hand side vectors has a relatively negligible cost. (See the Appendix Tables 1,
2, 3, 4, and 5 for further details.)

4.3 Results for Fourth Order

We applied BVP SOLVER with method = 4 to solve the five problems over the
same range of tolerance values considered in the previous subsection. As before,
there is generally excellent agreement between the exact global error and the
estimated global error from RE, HO, and DC approaches, and the CO approach
gives a substantial overestimate of the global error. Details are provided in the
Appendix. See Tables 6, 7, 8, 9, and 10 for results on problems (19), (20), (21),
(22), and (23), respectively.

We present several graphs based on some of the data from the tables in order
to investigate the relative efficiency of the estimators for the fourth order case.
Figure 6 and Figure 7 show typical results for the test problems (21) and (23):
the RE approach has a cost that is significantly greater than that of the DC and
HO methods, and the CO approach has a relatively negligible cost. Slightly
different results are obtained for the test problems (19) and (20) - see Figure 8
and Figure 9. The RE cost is somewhat smaller and the HO cost is somewhat
greater for these problems.
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Figure 2: Plot of − log10 of defect tolerance vs. execution time for global error
estimator as percentage of primary solution execution time for second order for
test problem (21).

For test problem (22) all of the estimators have relatively small costs when
measured as a percentage of primary solution execution time - see Figure 10.
This is attributable to the large amount of time required to obtain the primary
solution for this problem.

In summary, it is generally the case that the RE approach has a substantially
higher cost than that of either the HO and DC approaches, which are themselves
generally comparable in cost, and, as in the second order case, the CO approach
has a negligible cost. From the tables given in the Appendix - see Tables 6,
7, 8, 9, and 10 - it can also be seen that the RE, HO, and DC estimates are
generally accurate and in good agreement while the CO method gives substantial
overestimates of the error.

4.4 Results for Sixth Order

In this subsection we discuss results for BVP SOLVER with method = 6 applied
to the five problems over the same tolerance values as in the previous two cases.
The accuracy results are consistent with the previous two cases. The efficiency
results are generally consistent with those reported in the previous subsection.
We illustrate this with the graphs given below. Further details are provided in
the tables in the Appendix. See Tables 11, 12, 13, 14, and 15 for results on

21



4 4.5 5 5.5 6 6.5 7 7.5 8
0

5

10

15

20

25

30

35

40

45

−log
10

 (defect tolerance)

R
el

at
iv

e 
ex

ec
ut

io
n 

tim
e 

(%
)

Richardson Extrapolation
Higher Order
Deferred Correction
Conditioning

Figure 3: Plot of − log10 of defect tolerance vs. execution time for global error
estimator as percentage of primary solution execution time for second order for
test problem (22).

problems (19), (20), (21), (22), and (23), respectively.
Figure 11 shows typical results; these were obtained for test problem (21).

Test problems (19) and (23) show similar results - see Figure 12 and Figure 13.
The other problems, for the most part, yield similar results, with a few excep-

tions. For test problem (20), the cost of the DC estimator is comparable to that
of the RE estimator for the coarser tolerances; see Figure 14. As in the fourth
order case, test problem (22) shows all of the estimators having relatively small
costs compared to the cost of the primary solution computation - see Figure 15.

In summary, the results for the sixth order case are generally comparable to
the results from the other two cases: the RE approach is usually more expensive
than the HO and DC approaches, which have similar costs, and the CO approach
has a relatively negligible cost. And except for the CO method, all estimators
give good approximations to the global error.
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Figure 4: Plot of − log10 of defect tolerance vs. execution time for global error
estimator as percentage of primary solution execution time for second order
for test problem (23). Costs for the CO approach are negligible and are not
included.

5 Summary, Conclusions, and Future Work

5.1 Summary

Although several well-known BVODE codes control an estimate of the maxi-
mum defect of the approximate solution they return, and this kind of control
is interesting from a backward error perspective, users of these codes are often
also interested in obtaining an estimate of the global error of the approximate
solution. One recently developed defect control code, BVP SOLVER, provides an
option for an a posteriori estimate (based on Richardson extrapolation) of the
global error of the defect controlled solution it returns. This paper considers
three other global error estimators for defect control BVODE codes. These are
a global error estimator that makes direct use of higher order methods, one
that makes use of a conditioning constant, and one that is based on deferred
corrections. Efficient implementations of these estimators have been added to
the BVP SOLVER package.
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Figure 5: Plot of − log10 of defect tolerance vs. execution time for global error
estimator as percentage of primary solution execution time for second order for
test problem (20).

5.2 Conclusions

After comparing the three global error estimators, along with one already avail-
able in BVP SOLVER, we can make several observations. First, both the approach
based on the direct use of a higher order MIRK method and the use of a higher
order MIRK method within a deferred correction approach are generally faster
than the Richardson extrapolation estimator while achieving a global error esti-
mate with the same accuracy. The Richardson extrapolation estimate, although
of good quality, can represent a significant additional cost. Second, the estima-
tor that uses an estimate of the conditioning constant has a relatively negligible
cost but does not have comparable accuracy. However, a user may wish to com-
pute an estimate of the conditioning constant in order to be aware of possible
ill-conditioning for a given BVODE [24]. In that case, the conditioning constant
based global error estimate can be computed essentially for free by making use
of the last defect norm the code has computed for the solution.

We can draw several conclusions from the results presented in this paper:

(i) The results suggest that the a posteriori global error estimation employed
by BVP SOLVER should be based on the direct use of a higher order MIRK
method or the use of a higher order MIRK method with a deferred cor-
rection framework rather than Richardson extrapolation. Furthermore, as

24



4 4.5 5 5.5 6 6.5 7 7.5 8
0

5

10

15

20

25

30

35

−log
10

 (defect tolerance)

R
el

at
iv

e 
ex

ec
ut

io
n 

tim
e 

(%
)

Richardson Extrapolation
Higher Order
Deferred Correction
Conditioning

Figure 6: Plot of − log10 of defect tolerance vs. execution time for global error
estimator as percentage of primary solution execution time for fourth order for
test problem (21).

long as the factored Jacobian matrix from the computation of the primary
solution is available, this conclusion is also relevant for other defect control
codes.

(ii) Prior to conducting this investigation, we felt that the estimation of the
conditioning constant for the BVODE would cost less than any of the
global error estimation schemes (although we were aware that the accuracy
of the corresponding estimate might not be as good as that of the other
approaches since it provides a upper bound on the global error rather than
an estimate of the global error.) The results presented in this paper show
that the more efficient of the global error estimators cost somewhat more
than the estimation of the conditioning constant and yet provide much
more accurate results. This suggests that a better way of estimating the
conditioning constant for a BVODE may be through the direct estimation
of the global error: rewriting (15), we get

||y(x) − S(x)||w3

max(||δ(x)||w1 , ||σ||w2)
≤ κ,

which gives a lower bound on κ.
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Figure 7: Plot of − log10 of defect tolerance vs. execution time for global error
estimator as percentage of primary solution execution time for fourth order
for test problem (23). Costs for the CO approach are negligible and are not
included.

(iii) As mentioned above, the global error estimators considered in this paper
are quite general and thus the results presented in this paper are also rel-
evant for global error control codes. In particular, they suggest that an
improvement to the performance of codes, such as COLSYS, that employ
Richardson extrapolation for global error estimation can be obtained in-
stead by the direct use of a higher order discretization method or by the
use of a higher order discretization method within a deferred correction
approach.

5.3 Future Work

One possible direction for future work would be to implement continuous exten-
sions of the higher order solutions provided by the Richardson extrapolation,
high order MIRK, and deferred corrections schemes. This would allow an as-
sessment of the global error of the continuous approximate solution obtained
from the primary computation. This continuous solution is in fact what is pro-
vided to the user, and thus an assessment of the global error for the continuous
approximate solution would be more stringent than the current one, which is
based only on the solution values at the mesh points.

Another possible area of investigation would be to explore the feasibility of
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Figure 8: Plot of − log10 of defect tolerance vs. execution time for global error
estimator as percentage of primary solution execution time for fourth order for
test problem (19).

employing the factored Newton matrix from the computation of the primary
solution within the Newton iteration performed by the Richardson extrapola-
tion based global error estimator. Because the two matrices are of different
dimensions, the direct use of the already factored matrix is not possible but an
efficient algorithm that makes use of the factored matrix indirectly might be
possible.

A modification of COLSYS to replace the current global error estimator with
one based on the use of a higher order collocation method or deferred correc-
tion approach using a higher order collocation method might lead to significant
improvements in the efficiency of the code.

Since both the defect and the global error provide interesting measures of
solution quality, the work presented in this paper also suggests that one might
implement a practical BVODE code that employs a hybrid defect/global error
control strategy. This would mean that, in addition to the low cost computation
of the maximum defect estimate, a low cost global error estimator, such as one
of the ones we recommend in this paper, would also be computed after every
intermediate solution and then a combination of the maximum defect estimate
and the global error estimate would be controlled and used to guide the mesh
refinement process.

27



4 4.5 5 5.5 6 6.5 7 7.5 8
0

5

10

15

20

25

30

−log
10

 (defect tolerance)

R
el

at
iv

e 
ex

ec
ut

io
n 

tim
e

Richardson Extrapolation
Conditioning
Higher Order
Deferred Corrections

Figure 9: Plot of − log10 of defect tolerance vs. execution time for global error
estimator as percentage of primary solution execution time for fourth order for
test problem (20).
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A Appendix: Tables for Orders 2, 4, and 6

See Tables 1, 2, 3, 4, and 5 for results on second order methods applied to
problems (19), (20), (21), (22), and (23), respectively. See Tables 6, 7, 8, 9,
and 10 for results on fourth order methods applied to problems (19), (20), (21),
(22), and (23), respectively. See Tables 11, 12, 13, 14, and 15 for results on sixth
order methods applied to problems (19), (20), (21), (22), and (23), respectively.

The entries in each table are organized by columns. The first column is
the method used to estimate the global error. The second column (Tol) is the
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Figure 14: Plot of − log10 of defect tolerance vs. execution time for global error
estimator as percentage of primary solution execution time for fourth order for
test problem (20).

tolerance for the defect. The third column (Time) is the run time in seconds for
the estimator. The forth column (% Total) is the percent of the total solution
time used to determine the global error with that estimation method. The fifth
column (Actual) is the actual global error. The sixth column (Estimated) is
estimated global error as determined by that estimation method. The seventh
column is τ = |E−G|, where E is the estimated global error and G is the actual
global error. The last column (BS) is the number of backsolves, over all runs,
used to determine the error estimate.

For the CO method the backsolves are associated with estimating the norm of
the inverse of the Newton matrix, (6); the right hand sides used in the backsolves
are simple vectors generated by the Higham–Tisseur algorithm [17] at relatively
little cost. For the RE, HO, and DC methods, the right hand side vectors used
in the backsolves are much more expensive evaluations of the residual vector,
appearing in (5). From some simple profiling of the computations, we have
observed that the cost of a backsolve is only about one sixth of the cost of the
evaluation of the residual. Thus even though the CO method employs more
backsolves than do the other methods, in some cases, the costs for the CO
method are much lower because the costs for generating the right hand sides it
uses for the backsolves are negligible.
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Figure 15: Plot of − log10 of defect tolerance vs. execution time for global error
estimator as percentage of primary solution execution time for fourth order for
test problem (22).
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Tol Time % Total Actual Estimated τ BS

RE 1×10−4 0.285 41.48 % 2.524×10−3 2.524×10−3 1.996×10−7 7
1×10−5 2.402 42.50 % 1.135×10−4 2.548×10−5 8.800×10−5 8
1×10−6 1184.113 97.76 % 1.422×10−7 1.380×10−7 4.184×10−9 2
1×10−7 347.359 87.81 % 4.442×10−7 1.952×10−8 4.247×10−7 4
1×10−8 2469.672 89.87 % 6.683×10−8 6.684×10−8 1.309×10−11 2

CO 1×10−4 0.012 1.70 % 2.524×10−3 1.441 1.438 5
1×10−5 0.035 0.62 % 1.135×10−4 3.381×10−1 3.380×10−1 5
1×10−6 1.133 0.09 % 1.422×10−7 8.990×10−2 8.990×10−2 5
1×10−7 0.605 0.15 % 4.442×10−7 1.591×10−2 1.591×10−2 5
1×10−8 1.602 0.06 % 6.683×10−8 5.404×10−3 5.403×10−3 5

HO 1×10−4 0.027 3.98 % 2.524×10−3 2.515×10−3 9.327×10−6 2
1×10−5 0.449 7.95 % 1.135×10−4 1.129×10−4 5.492×10−7 7
1×10−6 3.883 0.32 % 1.422×10−7 1.422×10−7 2.149×10−11 2
1×10−7 4.063 1.03 % 4.442×10−7 4.434×10−7 8.325×10−10 4
1×10−8 8.156 0.30 % 6.683×10−8 6.685×10−8 1.410×10−11 3

DC 1×10−4 0.035 5.11 % 2.524×10−3 2.514×10−3 1.010×10−5 2
1×10−5 0.332 5.87 % 1.135×10−4 1.134×10−4 1.028×10−7 5
1×10−6 4.715 0.39 % 1.422×10−7 1.422×10−7 1.801×10−12 2
1×10−7 4.910 1.24 % 4.442×10−7 4.451×10−7 8.846×10−10 5
1×10−8 6.773 0.25 % 6.683×10−8 6.678×10−8 4.782×10−11 2

Table 1: Results for problem (19) for order 2.
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Tol Time % Total Actual Estimated τ BS

RE 1×10−4 0.539 18.02 % 9.458×10−6 9.466×10−6 8.425×10−9 2
1×10−5 3.195 31.83 % 1.027×10−6 1.027×10−6 4.388×10−10 2
1×10−6 42.938 43.17 % 1.116×10−7 1.116×10−7 1.385×10−11 2
1×10−7 463.250 41.30 % 9.037×10−9 9.037×10−9 6.034×10−14 2

CO 1×10−4 0.023 0.78 % 9.458×10−6 7.088×10−1 7.088×10−1 5
1×10−5 0.289 2.88 % 1.027×10−6 2.125×10−1 2.125×10−1 5
1×10−6 0.539 0.54 % 1.116×10−7 7.037×10−2 7.037×10−2 5
1×10−7 2.453 0.22 % 9.037×10−9 2.249×10−2 2.249×10−2 5

HO 1×10−4 0.555 18.54 % 9.458×10−6 9.460×10−6 2.041×10−9 13
1×10−5 0.766 7.63 % 1.027×10−6 1.023×10−6 3.586×10−9 7
1×10−6 4.484 4.51 % 1.116×10−7 1.110×10−7 5.370×10−10 2
1×10−7 5.133 0.46 % 9.037×10−9 9.050×10−9 1.279×10−11 2

DC 1×10−4 0.102 3.39 % 9.458×10−6 9.512×10−6 5.386×10−8 2
1×10−5 0.531 5.29 % 1.027×10−6 1.029×10−6 2.571×10−9 2
1×10−6 1.953 1.96 % 1.116×10−7 1.117×10−7 1.787×10−10 2
1×10−7 6.430 0.57 % 9.037×10−9 9.034×10−9 3.630×10−12 2

Table 2: Results for problem (20) for order 2.
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Tol Time % Total Actual Estimated τ BS

RE 1×10−4 10.527 34.20 % 1.560×10−6 1.560×10−6 8.021×10−10 2
1×10−5 10.555 33.32 % 1.501×10−6 1.501×10−6 5.323×10−11 2
1×10−6 10.648 32.91 % 1.470×10−6 1.470×10−6 1.601×10−12 2
1×10−7 110.277 36.92 % 1.350×10−7 1.350×10−7 1.314×10−15 2
1×10−8 1073.238 29.13 % 1.442×10−8 1.442×10−8 3.262×10−17 2

CO 1×10−4 0.078 0.25 % 1.560×10−6 1.460 1.460 5
1×10−5 0.078 0.25 % 1.501×10−6 6.632×10−1 6.632×10−1 5
1×10−6 0.074 0.23 % 1.470×10−6 6.356×10−1 6.356×10−1 5
1×10−7 0.238 0.08 % 1.350×10−7 3.312×10−1 3.312×10−1 5
1×10−8 0.785 0.02 % 1.442×10−8 6.485×10−2 6.485×10−2 5

HO 1×10−4 0.234 0.76 % 1.560×10−6 1.560×10−6 8.332×10−10 2
1×10−5 0.773 2.44 % 1.501×10−6 1.501×10−6 1.044×10−11 7
1×10−6 0.785 2.43 % 1.470×10−6 1.470×10−6 8.115×10−12 7
1×10−7 2.551 0.85 % 1.350×10−7 1.350×10−7 7.580×10−15 7
1×10−8 8.078 0.22 % 1.442×10−8 1.442×10−8 1.935×10−16 7

DC 1×10−4 0.297 0.96 % 1.560×10−6 1.560×10−6 7.403×10−10 2
1×10−5 0.297 0.94 % 1.501×10−6 1.501×10−6 5.304×10−11 2
1×10−6 0.293 0.91 % 1.470×10−6 1.470×10−6 2.424×10−12 2
1×10−7 0.945 0.32 % 1.350×10−7 1.350×10−7 8.035×10−15 2
1×10−8 2.992 0.08 % 1.442×10−8 1.442×10−8 1.935×10−16 2

Table 3: Results for problem (21) for order 2.
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Tol Time % Total Actual Estimated τ BS

RE 1×10−4 0.410 19.59 % 1.942×10−5 1.941×10−5 1.564×10−8 2
1×10−5 1.199 37.53 % 2.868×10−6 2.865×10−6 2.885×10−9 2
1×10−6 9.613 35.60 % 2.096×10−7 2.096×10−7 6.654×10−11 2
1×10−7 44.945 40.99 % 2.046×10−8 2.047×10−8 1.011×10−11 2
1×10−8 416.844 43.59 % 1.992×10−9 1.993×10−9 1.005×10−12 2

CO 1×10−4 0.059 2.80 % 1.942×10−5 7.650×10−2 7.648×10−2 5
1×10−5 0.137 4.28 % 2.868×10−6 2.762×10−2 2.761×10−2 5
1×10−6 0.598 2.21 % 2.096×10−7 6.335×10−3 6.334×10−3 5
1×10−7 1.082 0.99 % 2.046×10−8 1.543×10−3 1.543×10−3 5
1×10−8 3.480 0.36 % 1.992×10−9 4.767×10−4 4.767×10−4 5

HO 1×10−4 0.238 11.38 % 1.942×10−5 1.941×10−5 1.558×10−8 7
1×10−5 0.184 5.75 % 2.868×10−6 2.865×10−6 2.883×10−9 2
1×10−6 2.301 8.52 % 2.096×10−7 2.096×10−7 6.927×10−11 7
1×10−7 6.516 5.94 % 2.046×10−8 2.047×10−8 1.046×10−11 11
1×10−8 20.922 2.19 % 1.992×10−9 1.994×10−9 1.058×10−12 11

DC 1×10−4 0.090 4.29 % 1.942×10−5 1.941×10−5 1.569×10−8 2
1×10−5 0.199 6.23 % 2.868×10−6 2.865×10−6 2.893×10−9 2
1×10−6 0.844 3.12 % 2.096×10−7 2.096×10−7 7.007×10−11 2
1×10−7 1.656 1.51 % 2.046×10−8 2.047×10−8 1.002×10−11 2
1×10−8 5.242 0.55 % 1.992×10−9 1.993×10−9 9.596×10−13 2

Table 4: Results for problem (22) for order 2.
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Tol Time % Total Actual Estimated τ BS

RE 1×10−4 3.992 9.66 % 4.684×10−3 8.493×10−3 3.809×10−3 3
1×10−5 25.977 27.87 % 2.860×10−4 8.795×10−4 5.935×10−4 3
1×10−6 190.117 43.31 % 3.561×10−5 6.968×10−5 3.407×10−5 2
1×10−7 1639.477 52.11 % 3.954×10−6 7.758×10−6 3.804×10−6 2

CO 1×10−4 0.586 1.42 % 4.684×10−3 2.323×103 2.323×103 9
1×10−5 1.805 1.94 % 2.860×10−4 8.459×102 8.459×102 9
1×10−6 5.430 1.24 % 3.561×10−5 2.220×102 2.220×102 9
1×10−7 16.422 0.52 % 3.954×10−6 6.854×10 6.854×10 9

HO 1×10−4 0.785 1.90 % 4.684×10−3 8.432×10−3 3.748×10−3 5
1×10−5 1.957 2.10 % 2.860×10−4 8.765×10−4 5.905×10−4 4
1×10−6 4.594 1.05 % 3.561×10−5 6.964×10−5 3.403×10−5 3
1×10−7 13.914 0.44 % 3.954×10−6 7.758×10−6 3.803×10−6 3

DC 1×10−4 0.535 1.30 % 4.684×10−3 8.680×10−3 3.995×10−3 3
1×10−5 1.652 1.77 % 2.860×10−4 8.887×10−4 6.027×10−4 3
1×10−6 3.746 0.85 % 3.561×10−5 6.980×10−5 3.419×10−5 2
1×10−7 11.516 0.37 % 3.954×10−6 7.760×10−6 3.805×10−6 2

Table 5: Results for problem (23) for order 2.
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Tol Time % Total Actual Estimated τ BS

RE 1×10−4 0.191 15.76 % 2.719×10−6 2.589×10−5 2.317×10−5 4
1×10−5 0.125 18.60 % 1.927×10−7 5.394×10−6 5.202×10−6 4
1×10−6 0.219 22.22 % 2.244×10−7 3.871×10−9 2.205×10−7 4
1×10−7 0.297 33.04 % 5.556×10−7 6.217×10−7 6.608×10−8 7
1×10−8 0.375 34.66 % 8.846×10−8 1.473×10−9 8.698×10−8 6

CO 1×10−4 0.012 0.96 % 2.719×10−6 8.867×10−1 8.867×10−1 5
1×10−5 0.004 0.58 % 1.927×10−7 5.198×10−2 5.198×10−2 5
1×10−6 0.008 0.79 % 2.244×10−7 4.890×10−3 4.890×10−3 5
1×10−7 0.004 0.43 % 5.556×10−7 3.129×10−3 3.128×10−3 5
1×10−8 0.008 0.72 % 8.846×10−8 6.542×10−4 6.541×10−4 5

HO 1×10−4 0.180 14.79 % 2.719×10−6 5.667×10−8 2.662×10−6 11
1×10−5 0.066 9.88 % 1.927×10−7 1.827×10−7 9.947×10−9 7
1×10−6 0.027 2.78 % 2.244×10−7 2.349×10−7 1.051×10−8 2
1×10−7 0.207 23.04 % 5.556×10−7 5.352×10−7 2.036×10−8 15
1×10−8 0.203 18.77 % 8.846×10−8 8.885×10−8 3.961×10−10 8

DC 1×10−4 0.031 2.57 % 2.719×10−6 1.586×10−7 2.560×10−6 1
1×10−5 0.035 5.23 % 1.927×10−7 1.761×10−7 1.657×10−8 2
1×10−6 0.066 6.75 % 2.244×10−7 2.429×10−7 1.851×10−8 3
1×10−7 0.055 6.09 % 5.556×10−7 4.907×10−7 6.488×10−8 4
1×10−8 0.090 8.30 % 8.846×10−8 8.300×10−8 5.454×10−9 4

Table 6: Results for problem (19) for order 4.
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Tol Time % Total Actual Estimated τ BS

RE 1×10−4 0.094 9.76 % 4.778×10−6 4.784×10−6 6.182×10−9 2
1×10−5 0.055 5.79 % 5.472×10−7 5.473×10−7 1.380×10−10 2
1×10−6 0.141 14.52 % 5.968×10−8 5.968×10−8 6.768×10−12 2
1×10−7 0.242 21.68 % 6.637×10−9 6.637×10−9 4.497×10−13 2
1×10−8 0.375 28.24 % 1.549×10−9 1.549×10−9 5.487×10−14 2

CO 1×10−4 0.008 0.81 % 4.778×10−6 3.378×10−2 3.378×10−2 5
1×10−5 0.016 1.65 % 5.472×10−7 6.870×10−3 6.870×10−3 5
1×10−6 0.016 1.61 % 5.968×10−8 1.144×10−3 1.144×10−3 5
1×10−7 0.008 0.70 % 6.637×10−9 1.993×10−4 1.993×10−4 5
1×10−8 0.039 2.94 % 1.549×10−9 4.648×10−5 4.648×10−5 5

HO 1×10−4 0.070 7.32 % 4.778×10−6 4.746×10−6 3.166×10−8 7
1×10−5 0.102 10.74 % 5.472×10−7 5.422×10−7 5.018×10−9 7
1×10−6 0.125 12.90 % 5.968×10−8 5.925×10−8 4.268×10−10 7
1×10−7 0.188 16.78 % 6.637×10−9 6.597×10−9 3.967×10−11 7
1×10−8 0.227 17.06 % 1.549×10−9 1.545×10−9 3.654×10−12 7

DC 1×10−4 0.031 3.25 % 4.778×10−6 4.807×10−6 2.943×10−8 2
1×10−5 0.031 3.31 % 5.472×10−7 5.499×10−7 2.697×10−9 2
1×10−6 0.023 2.42 % 5.968×10−8 5.995×10−8 2.698×10−10 2
1×10−7 0.047 4.20 % 6.637×10−9 6.666×10−9 2.925×10−11 2
1×10−8 0.102 7.65 % 1.549×10−9 1.552×10−9 3.327×10−12 2

Table 7: Results for problem (20) for order 4.

41



Tol Time % Total Actual Estimated τ BS

RE 1×10−4 2.863 30.30 % 9.860×10−12 6.933×10−12 2.928×10−12 1
1×10−5 2.863 29.97 % 4.308×10−12 4.791×10−12 4.830×10−13 1
1×10−6 2.863 28.97 % 2.459×10−12 2.463×10−12 4.319×10−15 1
1×10−7 2.840 28.35 % 2.391×10−12 2.390×10−12 5.230×10−16 1
1×10−8 2.852 28.07 % 2.345×10−12 2.344×10−12 7.846×10−16 1

CO 1×10−4 0.039 0.41 % 9.860×10−12 6.465×10−3 6.465×10−3 5
1×10−5 0.039 0.41 % 4.308×10−12 2.599×10−4 2.599×10−4 5
1×10−6 0.039 0.40 % 2.459×10−12 3.296×10−6 3.296×10−6 5
1×10−7 0.035 0.35 % 2.391×10−12 1.480×10−6 1.480×10−6 5
1×10−8 0.031 0.31 % 2.345×10−12 1.715×10−6 1.715×10−6 5

HO 1×10−4 0.078 0.83 % 9.860×10−12 6.930×10−12 2.931×10−12 1
1×10−5 0.082 0.86 % 4.308×10−12 4.791×10−12 4.831×10−13 1
1×10−6 0.086 0.87 % 2.459×10−12 2.464×10−12 4.430×10−15 1
1×10−7 0.086 0.86 % 2.391×10−12 2.390×10−12 4.022×10−16 1
1×10−8 0.082 0.81 % 2.345×10−12 2.344×10−12 6.690×10−16 1

DC 1×10−4 0.133 1.41 % 9.860×10−12 6.973×10−12 2.887×10−12 1
1×10−5 0.129 1.35 % 4.308×10−12 4.791×10−12 4.834×10−13 1
1×10−6 0.133 1.34 % 2.459×10−12 2.464×10−12 4.430×10−15 1
1×10−7 0.137 1.37 % 2.391×10−12 2.390×10−12 4.022×10−16 1
1×10−8 0.133 1.31 % 2.345×10−12 2.344×10−12 6.690×10−16 1

Table 8: Results for problem (21) for order 4.
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Tol Time % Total Actual Estimated τ BS

RE 1×10−4 0.082 0.40 % 1.418×10−6 1.368×10−6 5.012×10−8 2
1×10−5 0.160 0.79 % 3.380×10−7 3.362×10−7 1.865×10−9 2
1×10−6 1.168 5.52 % 9.527×10−8 9.399×10−8 1.288×10−9 2
1×10−7 0.195 1.04 % 1.349×10−8 1.344×10−8 5.072×10−11 2
1×10−8 0.391 1.98 % 7.716×10−10 7.703×10−10 1.280×10−12 2

CO 1×10−4 0.004 0.02 % 1.418×10−6 3.542×10−3 3.540×10−3 5
1×10−5 0.020 0.10 % 3.380×10−7 5.986×10−4 5.982×10−4 5
1×10−6 0.105 0.50 % 9.527×10−8 2.171×10−3 2.171×10−3 5
1×10−7 0.016 0.08 % 1.349×10−8 4.874×10−5 4.873×10−5 5
1×10−8 0.039 0.20 % 7.716×10−10 9.675×10−6 9.674×10−6 5

HO 1×10−4 0.023 0.12 % 1.418×10−6 1.367×10−6 5.188×10−8 2
1×10−5 0.035 0.17 % 3.380×10−7 3.360×10−7 2.034×10−9 2
1×10−6 0.148 0.70 % 9.527×10−8 9.395×10−8 1.319×10−9 2
1×10−7 0.023 0.12 % 1.349×10−8 1.344×10−8 5.236×10−11 2
1×10−8 0.066 0.34 % 7.716×10−10 7.703×10−10 1.302×10−12 2

DC 1×10−4 0.023 0.12 % 1.418×10−6 1.368×10−6 5.058×10−8 2
1×10−5 0.023 0.12 % 3.380×10−7 3.361×10−7 1.943×10−9 2
1×10−6 0.199 0.94 % 9.527×10−8 9.398×10−8 1.296×10−9 2
1×10−7 0.051 0.27 % 1.349×10−8 1.344×10−8 5.116×10−11 2
1×10−8 0.086 0.44 % 7.716×10−10 7.703×10−10 1.286×10−12 2

Table 9: Results for problem (22) for order 4.
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Tol Time % Total Actual Estimated τ BS

RE 1×10−4 0.156 9.57 % 6.927×10−4 8.084×10−4 1.157×10−4 3
1×10−5 0.270 14.37 % 3.696×10−5 3.212×10−5 4.840×10−6 2
1×10−6 0.762 18.11 % 3.642×10−5 8.977×10−5 5.335×10−5 3
1×10−7 0.816 22.26 % 3.394×10−6 1.070×10−5 7.306×10−6 2
1×10−8 1.598 25.63 % 4.756×10−7 7.341×10−7 2.585×10−7 2

CO 1×10−4 0.023 1.44 % 6.927×10−4 1.116×102 1.116×102 5
1×10−5 0.059 3.13 % 3.696×10−5 2.717×10 2.717×10 7
1×10−6 0.086 2.04 % 3.642×10−5 5.674 5.674 5
1×10−7 0.063 1.70 % 3.394×10−6 9.280×10−1 9.280×10−1 5
1×10−8 0.215 3.45 % 4.756×10−7 9.158×10−2 9.158×10−2 7

HO 1×10−4 0.047 2.87 % 6.927×10−4 7.423×10−4 4.967×10−5 4
1×10−5 0.063 3.33 % 3.696×10−5 3.282×10−5 4.137×10−6 3
1×10−6 0.148 3.53 % 3.642×10−5 9.214×10−5 5.573×10−5 3
1×10−7 0.160 4.37 % 3.394×10−6 1.077×10−5 7.377×10−6 3
1×10−8 0.289 4.64 % 4.756×10−7 7.360×10−7 2.604×10−7 3

DC 1×10−4 0.031 1.91 % 6.927×10−4 7.252×10−4 3.256×10−5 3
1×10−5 0.047 2.50 % 3.696×10−5 3.264×10−5 4.323×10−6 2
1×10−6 0.176 4.18 % 3.642×10−5 9.160×10−5 5.518×10−5 3
1×10−7 0.125 3.41 % 3.394×10−6 1.075×10−5 7.357×10−6 2
1×10−8 0.223 3.57 % 4.756×10−7 7.353×10−7 2.598×10−7 2

Table 10: Results for problem (23) for order 4.
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Method Tol Time % Total Time Actual Error Estimated Error τ BS

RE 1×10−4 0.051 7.60 % 2.524×10−7 4.595×10−7 2.072×10−7 1
1×10−5 0.031 9.30 % 1.231×10−6 5.396×10−7 6.910×10−7 4
1×10−6 0.090 22.33 % 2.544×10−8 1.077×10−8 1.466×10−8 8
1×10−7 1.023 23.82 % 3.259×10−11 2.193×10−11 1.066×10−11 1
1×10−8 2.715 30.96 % 1.567×10−10 1.317×10−10 2.493×10−11 2

CO 1×10−4 0.000 0.00 % 2.524×10−7 2.131×10−1 2.131×10−1 5
1×10−5 0.000 0.00 % 1.231×10−6 4.306×10−2 4.306×10−2 5
1×10−6 0.004 0.97 % 2.544×10−8 3.785×10−3 3.785×10−3 5
1×10−7 0.023 0.55 % 3.259×10−11 8.765×10−4 8.765×10−4 5
1×10−8 0.027 0.31 % 1.567×10−10 1.227×10−4 1.227×10−4 5

HO 1×10−4 0.012 1.75 % 2.524×10−7 1.798×10−7 7.260×10−8 1
1×10−5 0.004 1.16 % 1.231×10−6 1.288×10−6 5.782×10−8 2
1×10−6 0.004 0.97 % 2.544×10−8 2.620×10−8 7.599×10−10 2
1×10−7 0.082 1.91 % 3.259×10−11 1.825×10−11 1.434×10−11 1
1×10−8 0.348 3.96 % 1.567×10−10 8.405×10−11 7.263×10−11 2

DC 1×10−4 0.020 2.92 % 2.524×10−7 3.500×10−7 9.763×10−8 1
1×10−5 0.008 2.33 % 1.231×10−6 1.266×10−6 3.581×10−8 2
1×10−6 0.023 5.83 % 2.544×10−8 4.716×10−8 2.172×10−8 4
1×10−7 0.168 3.91 % 3.259×10−11 3.324×10−11 6.450×10−13 1
1×10−8 0.590 6.73 % 1.567×10−10 2.044×10−10 4.775×10−11 3

Table 11: Results for problem (19) for order 6.
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Tol Time % Total Actual Estimated τ BS

RE 1×10−4 0.023 3.00 % 1.540×10−6 1.542×10−6 2.045×10−9 2
1×10−5 0.055 8.75 % 2.481×10−7 2.482×10−7 8.826×10−11 2
1×10−6 0.055 7.95 % 2.306×10−8 2.306×10−8 4.643×10−12 2
1×10−7 0.148 17.27 % 2.497×10−9 2.497×10−9 1.841×10−13 2
1×10−8 0.219 20.90 % 2.732×10−10 2.732×10−10 1.452×10−14 2

CO 1×10−4 0.008 1.00 % 1.540×10−6 1.521×10−2 1.521×10−2 5
1×10−5 0.000 0.00 % 2.481×10−7 4.641×10−3 4.641×10−3 5
1×10−6 0.016 2.27 % 2.306×10−8 1.990×10−4 1.990×10−4 5
1×10−7 0.008 0.91 % 2.497×10−9 3.234×10−5 3.234×10−5 5
1×10−8 0.016 1.49 % 2.732×10−10 4.365×10−6 4.365×10−6 5

HO 1×10−4 0.016 2.00 % 1.540×10−6 1.566×10−6 2.647×10−8 2
1×10−5 0.008 1.25 % 2.481×10−7 2.406×10−7 7.555×10−9 2
1×10−6 0.016 2.27 % 2.306×10−8 2.292×10−8 1.400×10−10 2
1×10−7 0.047 5.45 % 2.497×10−9 2.488×10−9 9.209×10−12 2
1×10−8 0.094 8.96 % 2.732×10−10 2.732×10−10 3.438×10−14 2

DC 1×10−4 0.008 1.00 % 1.540×10−6 1.577×10−6 3.709×10−8 2
1×10−5 0.047 7.50 % 2.481×10−7 2.476×10−7 5.587×10−10 2
1×10−6 0.023 3.41 % 2.306×10−8 2.305×10−8 5.570×10−13 2
1×10−7 0.039 4.55 % 2.497×10−9 2.502×10−9 5.637×10−12 2
1×10−8 0.039 3.73 % 2.732×10−10 2.732×10−10 1.382×10−15 2

Table 12: Results for problem (20) for order 6.
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Tol Time % Total Actual Estimated τ BS

RE 1×10−4 1.770 43.31 % 7.134×10−5 7.155×10−5 2.090×10−7 2
1×10−5 0.559 17.50 % 2.726×10−14 5.370×10−16 2.672×10−14 1
1×10−6 0.527 16.42 % 6.336×10−16 5.900×10−16 4.363×10−17 1
1×10−7 0.570 16.74 % 1.279×10−15 4.404×10−16 8.389×10−16 1
1×10−8 0.563 15.42 % 1.335×10−15 3.929×10−16 9.422×10−16 1

CO 1×10−4 0.023 0.57 % 7.134×10−5 5.899×10−1 5.898×10−1 5
1×10−5 0.023 0.73 % 2.726×10−14 6.771×10−7 6.771×10−7 5
1×10−6 0.004 0.12 % 6.336×10−16 1.409×10−8 1.409×10−8 5
1×10−7 0.008 0.23 % 1.279×10−15 5.513×10−10 5.513×10−10 5
1×10−8 0.016 0.43 % 1.335×10−15 1.440×10−6 1.440×10−6 5

HO 1×10−4 0.270 6.60 % 7.134×10−5 7.325×10−5 1.912×10−6 3
1×10−5 0.043 1.35 % 2.726×10−14 5.286×10−16 2.673×10−14 1
1×10−6 0.055 1.70 % 6.336×10−16 5.808×10−16 5.285×10−17 1
1×10−7 0.043 1.26 % 1.279×10−15 4.387×10−16 8.407×10−16 1
1×10−8 0.059 1.61 % 1.335×10−15 4.026×10−16 9.325×10−16 1

DC 1×10−4 0.203 4.97 % 7.134×10−5 7.458×10−5 3.240×10−6 2
1×10−5 0.078 2.45 % 2.726×10−14 6.288×10−16 2.663×10−14 1
1×10−6 0.066 2.07 % 6.336×10−16 6.856×10−16 5.196×10−17 1
1×10−7 0.086 2.52 % 1.279×10−15 5.211×10−16 7.583×10−16 1
1×10−8 0.082 2.25 % 1.335×10−15 5.135×10−16 8.216×10−16 1

Table 13: Results for problem (21) for order 6.
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Tol Time % Total Actual Estimated τ BS

RE 1×10−4 5.383 1.57 % 2.347×10−9 1.757×10−9 5.899×10−10 1
1×10−5 4.973 1.44 % 2.661×10−9 2.170×10−9 4.912×10−10 1
1×10−6 11.699 3.19 % 4.065×10−9 4.075×10−9 1.044×10−11 1
1×10−7 4.988 1.42 % 7.920×10−13 8.189×10−13 2.694×10−14 1
1×10−8 4.953 1.39 % 6.255×10−15 3.019×10−15 3.236×10−15 1

CO 1×10−4 0.359 0.10 % 2.347×10−9 9.758×10−2 9.758×10−2 7
1×10−5 0.246 0.07 % 2.661×10−9 1.538×10−2 1.538×10−2 5
1×10−6 0.449 0.12 % 4.065×10−9 5.676×10−3 5.676×10−3 5
1×10−7 0.238 0.07 % 7.920×10−13 1.240×10−4 1.240×10−4 5
1×10−8 0.234 0.07 % 6.255×10−15 1.188×10−5 1.188×10−5 5

HO 1×10−4 0.316 0.09 % 2.347×10−9 1.270×10−9 1.077×10−9 1
1×10−5 0.305 0.09 % 2.661×10−9 1.865×10−9 7.958×10−10 1
1×10−6 0.551 0.15 % 4.065×10−9 4.052×10−9 1.286×10−11 1
1×10−7 0.313 0.09 % 7.920×10−13 8.017×10−13 9.674×10−15 1
1×10−8 0.309 0.09 % 6.255×10−15 3.012×10−15 3.244×10−15 1

DC 1×10−4 0.480 0.14 % 2.347×10−9 1.269×10−9 1.078×10−9 1
1×10−5 0.457 0.13 % 2.661×10−9 1.865×10−9 7.958×10−10 1
1×10−6 0.813 0.22 % 4.065×10−9 4.052×10−9 1.280×10−11 1
1×10−7 0.461 0.13 % 7.920×10−13 8.018×10−13 9.851×10−15 1
1×10−8 0.453 0.13 % 6.255×10−15 3.029×10−15 3.226×10−15 1

Table 14: Results for problem (22) for order 6.
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Tol Time % Total Actual Estimated τ BS

RE 1×10−4 0.090 12.11 % 1.602×10−3 6.227×10−4 9.790×10−4 2
1×10−5 0.141 17.06 % 1.300×10−4 1.530×10−5 1.147×10−4 2
1×10−6 0.191 18.85 % 1.689×10−5 9.061×10−7 1.598×10−5 2
1×10−7 0.254 23.64 % 3.316×10−6 3.393×10−7 2.977×10−6 2
1×10−8 0.406 24.53 % 2.588×10−7 9.734×10−8 1.614×10−7 2

CO 1×10−4 0.020 2.63 % 1.602×10−3 2.260×10 2.260×10 5
1×10−5 0.020 2.37 % 1.300×10−4 2.368 2.368 7
1×10−6 0.016 1.54 % 1.689×10−5 1.071 1.071 5
1×10−7 0.020 1.82 % 3.316×10−6 2.079×10−1 2.079×10−1 5
1×10−8 0.031 1.89 % 2.588×10−7 4.197×10−2 4.197×10−2 5

HO 1×10−4 0.031 4.21 % 1.602×10−3 7.201×10−4 8.816×10−4 4
1×10−5 0.035 4.27 % 1.300×10−4 1.389×10−5 1.161×10−4 3
1×10−6 0.027 2.69 % 1.689×10−5 9.121×10−7 1.597×10−5 2
1×10−7 0.043 4.00 % 3.316×10−6 3.388×10−7 2.977×10−6 2
1×10−8 0.086 5.19 % 2.588×10−7 9.642×10−8 1.624×10−7 3

DC 1×10−4 0.008 1.05 % 1.602×10−3 7.060×10−4 8.957×10−4 2
1×10−5 0.020 2.37 % 1.300×10−4 1.379×10−5 1.162×10−4 2
1×10−6 0.027 2.69 % 1.689×10−5 9.090×10−7 1.598×10−5 2
1×10−7 0.035 3.27 % 3.316×10−6 3.384×10−7 2.977×10−6 2
1×10−8 0.066 4.01 % 2.588×10−7 9.627×10−8 1.625×10−7 2

Table 15: Results for problem (23) for order 6.
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