
Refinement and Implementation of Algorithmic Tools for
Deciding the Error-detection Property1

ALIFASI DAKA and STAVROS KONSTANTINIDIS

Department of Mathematics and Computing Science, Saint Mary’s University
Halifax, Nova Scotia, B3H 3C3 Canada

alifasi@hotmail.com, s.konstantinidis@smu.ca

Abstract We consider new and refine existing algorithmic tools for deciding
whether a given regular language is error-detecting for a given rational channel,
with the aim of providing tractable implementations of these concepts. The algo-
rithmic tools involve product constructions between automata and transducers, a
decision procedure for functionality of transducers, and the new concept of pseudo-
sequential transducer. Our implementation is written in C++ using Grail-style
libraries. To our knowledge this is the first implementation deciding the error-
detection property at this level of generality, which brings us one step closer to the
development of practical software for investigating the error-detecting capabilities
of communication languages.
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1 Introduction

The abstract above serves very well as a summary of the theme and the contributions of this paper,
which is structured as follows. In the next section, we present the basic notation and terminology
about languages, channels, error-detection, as well as representations of these concepts via finite
automata and transducers. In Section 3, we consider a special class of real-time transducers,
called nondeterministic sequential transducers, and we argue that these machines are adequate
models for combinatorial channels. In Section 4, we introduce pseudo-sequential transducers as a
technical intermediate tool to answer questions about the error-detecting capabilities of languages
with respect to channels that are modeled via sequential transducers. In Section 5, we present
concrete algorithmic tools, involving sequential and pseudo-sequential transducers, that lead to a
concrete algorithm for deciding the property of error-detection. The algorithm is termed concrete
as it has led to an open implementation in C++, which is discussed in Section 6.

2 Basic notions and notation

We begin this section with notation and concepts on words, languages and binary relations, and
then on finite automata and transducers. We use [10] as a general reference, as well as [2, 12, 11]
for automata and transducers.

We denote with |S| the cardinality of a set S. We use iff as a shorthand for “if and only if.”

2.1 Word, Language, Binary relation, Channel, Error-detection

We use the standard language theory concepts of alphabet Σ, word (or string), language, etc. The
empty word is denoted with λ and the length of a word w is denoted with |w|. The set of all
words is denoted with Σ∗. A binary relation ρ (over the alphabet Σ) is a subset of Σ∗ × Σ∗. The
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domain, dom(ρ), of ρ is the set of all words x with (x, y) ∈ ρ, for some word y. The relation is
called functional if (x, y1), (x, y2) ∈ ρ implies that y1 = y2. A (combinatorial) channel γ is a binary
relation that is domain preserving, that is, (x, x) ∈ γ, for all x ∈ dom(γ). The meaning of (x, y) ∈ γ
is that the message x can be received as y via the channel. Moreover, if y 6= x, we say that x is
received with errors, or that y contains errors. A language L is error-detecting for a channel γ if
no word x ∈ Lλ can be received with errors as y ∈ Lλ via the channel γ; that is, (x, y) ∈ γ and
x, y ∈ Lλ imply that x = y. We have used the notation Lλ = L ∪ {λ}.

2.2 Automaton and transducer concepts

A nondeterministic finite automaton with empty transitions, λ-NFA for short, is a quintuple â =
(Q,Σ, T, s, F ) such that Q is the set of states, Σ is the alphabet, s ∈ Q is the start (or initial)
state, F ⊆ Q is the set of final states, and T ⊆ Q × (Σ ∪ {λ}) ×Q is the finite set of transitions.
Let (p, x, q) be a transition of â. Then x is called the label of the transition, and we say that p
has an outgoing transition (with label x), and q has an incoming transition (with label x). A path
of â is a finite sequence (p0, x1, p1, . . . , xℓ, pℓ), for some nonnegative integer ℓ, such that each triple
(pi−1, xi, pi) is a transition of â. The word x1 · · · xℓ is called the label of the path. The path is
called accepting if p0 is the start state and pℓ is a final state. The language accepted by â, denoted
as L(â), is the set of labels of all the accepting paths of â. The λ-NFA â is called trim, if every
state appears in some accepting path of â. The λ-NFA â is called an NFA, if no transition label is
empty, that is, T ⊆ Q×Σ×Q. A deterministic finite automaton, DFA for short, is a special type
of NFA where there is no state p having two outgoing transitions with different labels. Given any
λ-NFA â, we denote by âλ the λ-NFA that is obtained from â if we add the transitions (p, λ, p),
for all states p. Obviously,

L(âλ) = L(â).

A (finite) transducer is a sextuple t̂ = (Q,Σ,∆, T, s, F ) such that Q, s, F are exactly the same
as those in λ-NFAs, Σ is now called the input alphabet, ∆ is the output alphabet, and T ⊆
Q × Σ∗ × ∆∗ × Q is the finite set of transitions. We write (p, x/y, q) for a transition – the label
here is (x/y), with x being the input and y being the output label. The concepts of path, accept-
ing path, and trim transducer are similar to those in λ-NFAs. In particular the label of a path
(p0, x1/y1, p1, . . . , xℓ/yℓ, pℓ) is the pair (x1 · · · xℓ, y1 · · · yℓ) consisting of the input and output labels
in the path. The relation realized by the transducer t̂, denoted as R(t̂), is the set of labels in all the
accepting paths of t̂. The transducer t̂ is said to be in standard form, if each transition (p, x/y, q) is
such that x ∈ (Σ∪ {λ}) and y ∈ (∆∪ {λ}). We note that every transducer is effectively equivalent
(realizing the same relation, that is) to one in standard form. A transition of the form (p, λ/y, q)
is called a λ-input transition. We write t̂(x) for the set of possible outputs of t̂ on input x, that is,

y ∈ t̂(x) iff (x, y) ∈ R(t̂). A functional transducer is a transducer realizing a functional relation,
and a channel transducer ĉ is a transducer realizing a domain preserving relation.

Size of machines. For any finite state machine m̂ we assume that the set of states is of the form
{0, 1, . . . , n − 1}, for some integer n > 0. The alphabet is also seen as a set of this form. For
all practical purposes, any such object (state or alphabet symbol) can be stored in a register of a
modern computer and can be processed with unit cost. This implies that we can construct arrays,
indexed by states, whose entries maintain information about the states and, therefore, accessing
the entry of a randomly chosen state takes constant time. The size |

−→
t | of a transition

−→
t = (p, β, q)

is 1 + |β| if the machine is a λ-NFA, or 1 + |x|+ |y| if it is a transducer and β = x/y. The size |m̂|
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of a machine m̂ is the number of states plus the total size of the transitions:

|m̂| = |Qm̂|+
∑

−→
t ∈T

m̂

|
−→
t |.

3 Nondeterministic sequential transducers realizing channels

Arbitrary transducers in standard form are quite useful in realizing combinatorial channels—see,
for example, Fig. 1. When it comes to deciding properties of languages with respect to channels,
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Figure 1: The first channel transducer allows at most two symbol substitu-
tions/deletions in any input word. The second channel transducer allows at most
two insertions of symbols in any input word. An arrow with label ‘σ/λ’ indicates
multiple transitions between the states involved, one for each letter σ of the alpha-
bet. A label ‘σ/σ′’ indicates multiple transitions, for all different symbols σ and
σ′. Labels with σ1, σ2 again indicate multiple transitions, for all symbols σ1, σ2
(possibly equal). These notational conventions also apply to the rest of the figures.

the problem of testing the functionality of a transducer is instrumental. However, this test works
efficiently when the transducer in question is real-time [11] and in particular when each transition
(p, σ/e, q) is such that e is a single word. For this reason we provide the following definition.

Definition 1 A transducer is called (nondeterministic) sequential if every transition label is of the
form σ/w, where σ is a single symbol and w is a word.

By definition, if the input to a sequential transducer ŝ is λ, then there is an output iff the start
state is also a final sate and the output is exactly λ. Observe that the first channel transducer in
Fig. 1 is sequential, but the second one is not. However, it turns out that the second one is equivalent
to the first sequential transducer in Fig. 2, except for any pairs (λ, y), where y is nonempty. In
fact, in [3] it is shown that many types of channels, including all ordinary SID channels [7, 9], can
be realized using sequential transducers, again except for the pairs (λ, y) mentioned before. This
limitation is negligible for most practical purposes.

4 Pseudo-sequential transducers

While sequential transducers are convenient for certain needs (as discussed in the previous section),
they are not in standard form, as they could include transitions having labels σ/w with |w| ≥ 2.
This creates a complication when we need to (a) intersect the output language of a sequential
transducer ŝ with a regular language, given via an automaton â, and then (b) test the functionality
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Figure 2: The first transducer shown here is sequential and equivalent to the second
transducer in Fig. 1 minus any channel pairs where the input word is empty and the
output word is nonempty. State f has no outgoing transitions, which is necessary to
realize insertion errors at the end of the input word. The second transducer shown
here is again sequential and realizes the channel that allows a burst of up to two
consecutive insertions in any input word.

of the resulting transducer. This sequence of tasks can be accomplished if we somehow convert ŝ

to a certain type of transducer p̂ in standard form, so as to intersect its outputs with â, and then
convert the resulting transducer back to sequential form in order to test it for functionality.

Definition 2 A (nondeterministic) pseudo-sequential transducer is a trim transducer in standard
form with the following restrictions on the λ-input transitions.

• The start and final states have no outgoing λ-input transitions.

• If a state has an outgoing λ-input transition then that state has no other outgoing transitions.

Lemma 1 Let p̂ be a pseudo-sequential transducer.

1. p̂ contains no cycle consisting entirely of λ-input transitions.

2. Let (p, λ/y, q) be a λ-input transition in p̂. There exists a unique state r and a unique path
of λ-input transitions from q to r such that r has no outgoing λ-transitions—obviously, the
unique path is empty if already state q has no λ-input transitions.

Proof. For the first statement, assume that p̂ contains a cycle of λ-input transitions. By the second
condition in Definition 2, these transitions are the only outgoing transitions of the states involved
in the cycle and, as p̂ is trim, one of the states in the cycle must be final, which contradicts the
fact that the final states of p̂ have no outgoing λ-input transitions. The second statement follows
from the facts that state p must reach a final state (as p̂ is trim), and no final state of p̂ has any
outgoing λ-input transitions. �

The next result is important because the resulting machine p̂ is in standard form and can be
intersected on the output with an NFA—see Section 5.

Lemma 2 There is a linear time algorithm that converts any sequential transducer ŝ to an equiv-
alent pseudo-sequential transducer p̂ such that |p̂| = O(|ŝ|).
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Proof. The required transducer p̂ is obtained if we first make ŝ trim and then, for each transition
(p, σ/σ1 · · · σℓ, q) of ŝ, with each σi ∈ Σ, we either add that transition to the set of transitions of
p̂ if ℓ < 2, or we add to p̂ the transitions (p, σ/σ1, q1), (q1, λ/σ2, q2), . . . , (qℓ−1, λ/σℓ, qℓ) if ℓ ≥ 2,
where qℓ = q and the other qi’s are new states. This transition expansion is a folklore construction
used to convert a transducer to one in standard form—see, e.g., [2, 12]. The start and final states
of p̂ are exactly those of ŝ. �

Now we turn to the converse of the above lemma. Consider a pseudo-sequential transducer p̂

with some set of states Qp̂, and let

Qroot

p̂
= {r ∈ Qp̂ | r has incoming λ-input transitions, but no outgoing λ-input transitions }

By Lemma 1, for each transition (p, λ/y, q), there is a unique λ-input path from p to a unique
r ∈ Qroot

p̂
. If we create the reverses of all the λ-input transitions heading to r, we get a labeled tree

êr whose root is r. Moreover, for any other r′ ∈ Qroot

p̂
− {r}, the trees êr and êr′ share no vertices

(as p̂ is pseudo-sequential)—see the example in the next figure.
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Figure 3: A pseudo-sequential transducer p̂, with Qroot

p̂
= {9, 10}, and the tree ê9.

The input and output alphabets are {0, 1}.

A simple algorithm converting p̂ to an equivalent sequential transducer ŝ is the following

(1) Let ŝ be a copy of p̂.

(2) Let X be the set of all transitions (p, x/y, q) in ŝ such that x 6= λ and there is a λ-input
transition (q, λ/z1, r1).

(3) Each transition (p, x/y, q) in X is replaced with (p, x/yz1 · · · zk, r) such that r is the unique
state in Qroot

p̂
that is reachable from q, and z1, . . . , zk are the words appearing in the unique

λ-input path from q to r—see Fig. 4.

(4) Delete all the λ-input transitions.
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Figure 4: Converting from pseudo-sequential to sequential via the simple algorithm.

Step (3) of the above algorithm can be improved if we make use of the trees êr, so that λ-input
transitions are not visited multiple times. The improved algorithm is presented in the next lemma.

Lemma 3 There is a linear time algorithm that converts any pseudo-sequential transducer p̂ to an
equivalent sequential transducer ŝ such that |ŝ| = O(|p̂|).

Proof. Initially ŝ is equal to an exact copy of p̂ having the same start and final states. Then, the
algorithm computes in linear time the set Qroot

ŝ
by scanning each transition of ŝ and recording, for

each encountered state q, its outgoing and incoming transitions. Then, using the recorded data,
the algorithm creates each tree êr, with r ∈ Qroot

ŝ
, and iterates for each level i (from level 1 to

the leaves) of êr, where it deletes the vertices of level i and makes new edges from the root r to
every vertex p of level i + 1 such that the label of a new edge results by concatenating the labels
of the two edges leading from r to p. When a vertex of êr is deleted, then also the corresponding
state of ŝ is deleted, and when a new edge is made, then also the reverse of that edge is added as
a transition of ŝ. More details are given below—see also the next figure.

For each r ∈ Qroot

ŝ
:

(1) Compute the tree êr

(2) Let R be the set of children of r; if R is empty, then exit

(3) For each edge (r, λ/z, q) of êr, with q ∈ R, and for each transition (p, x/y, q) of ŝ

(4) delete q from êr and ŝ, and add in ŝ the transition (p, x/yz, r)

(5) if x = λ, then add in êr the edge (r, λ/yz, p)

(6) goto (2)

Note that, in Step (3), if q is a leaf node then there is no edge of the form (q, λ/y, p) in êr. On the
other hand, there is always a transition of ŝ going into q, as (q, λ/z, r) is in ŝ and q is reachable
from the start state of ŝ.

For each tree, the algorithm operates on the tree and the corresponding subgraph of ŝ in linear
time. Moreover, as the trees are disjoint, the overall complexity of the algorithm is linear with
respect to the original input p̂. �
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Figure 5: The transducer and the tree ê9 of Fig. 3 after eliminating one level of
nodes as described in the algorithm in Lemma 3.

5 Error-detection: concrete algorithmic tools

In [8], the author characterizes error-detecting languages in terms of the operations ↓ and ↑, which
are defined between a binary relation ρ and a language K as follows:

ρ ↓ K = ρ ∩ (K × Σ∗), ρ ↑ K = ρ ∩ (Σ∗ ×K). (1)

The characterization is as follows.

Theorem 1 [8] A language L is error-detecting for a channel γ if and only if the binary relation
(γ ↓ Lλ) ↑ Lλ is functional, where Lλ = L ∪ {λ}

In [8] it is also shown via simple product constructions that, when ρ and K are effectively given
via a transducer ĉ in standard form and a λ-NFA â, respectively, then we can construct trim
transducers (ĉ ↓ â) and (ĉ ↑ â) realizing the relations in (1) such that the constructions operate in
time O(|ĉ||â|) and the constructed transducers are of size O(|ĉ||â|). When ĉ is a channel transducer
then we can decide whether L(â) is error-detecting for the channel R(ĉ) by testing whether the
transducer (ĉ ↓ â0) ↑ â0 is functional, where â0 is a λ-NFA accepting L(â) ∪ {λ}. Transducer
functionality is shown to be decidable in [6, 1, 11]. In particular, [1, 11] provide an algorithm
that works for real-time transducers that are essentially nondeterministic sequential transducers2.
As stated in [11], for any such transducer ŝ, the algorithm works in time O(|ŝ|2), assuming O(1)
cost in processing words independently of their lengths. With these tools, the tools about pseudo-
sequential transducers, and the following lemma, we can state and prove the main result of this
section—see Theorem 2 further below. This result is a refinement of Corollary 3 in [8], and gives a

2In [1], it is stated that the real-time transducer used as input to the algorithm has transitions (p, σ/e, q), where
e is a single word.
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concrete algorithm for deciding the property of error-detection, which leads to a publicly available
implementation—see Section 6. To our knowledge, this is the first open implementation of deciding
the error-detection property at the level of generality considered in this paper.

A note on (ĉ ↓ â) and (ĉ ↑ â). These transducers are trim and in standard form. They have
(q0, q

′

0
) as start state, where q0 and q′

0
are the start states of ĉ and âλ, respectively. They have

as final states all pairs (f, f ′) with f and f ′ being final states of ĉ and âλ, respectively. A tuple
((p1, p2), x/y, (q1, q2)) is a transition of ĉ ↓ â (resp. ĉ ↑ â) iff (p1, x/y, p2) is a transition of ĉ and
(p2, x, q2) (resp. (p2, y, q2)) is a transition of âλ.

Lemma 4 If p̂ is a pseudo-sequential transducer and â is a DFA, then the transducer (p̂ ↑ â) is
pseudo-sequential.

Proof. By definition of the operation ‘↑’, the transducer (p̂ ↑ â) is trim and in standard form.
Now consider any λ-input transition

−→
t = ((p1, p2), λ/σ, (q1, q2)) of (p̂ ↑ â). We have to show that

(p1, p2) is neither the start state, nor a final state, and that it has no other outgoing transitions.
By definition of (p̂ ↑ â), (p1, λ/σ, q1) is a transition of p̂ and (p2, σ, q2) is a transition of â. Then
(p1, p2) is neither the start state nor a final state, as otherwise the same would hold for the state
p1 of p̂. By Lemma 1, p1 6= q1, as otherwise the transition (p1, λ/σ, q1) itself would form a cycle.
Now let ((p1, p2), x/y, (q

′

1
, q′

2
)) be any transition in (p̂ ↑ â) going out of state (p1, p2). Again,

(p1, x/y, q
′

1
) is a transition of p̂ and (p2, y, q

′

2
) is a transition of âλ. As p̂ is pseudo-sequential and â

is deterministic, it follows that x = λ, y = σ, q′
1
= q1, q

′

2
= q2. Thus,

−→
t is the only transition going

out of (p1, p2). �

Theorem 2 The following problem is decidable in time O(|ĉ|2|â|4).

Input: sequential channel transducer ĉ and DFA â.

Return: whether L(â) is error-detecting for the channel R(ĉ).

Proof. We first note that the operation ĉ ↓ â can be extended easily to the case where ĉ is not
necessarily in standard form, but in input-standard form; that is, every transition label is of the
form x/w where x ∈ Σ ∪ {λ} and w ∈ Σ∗. Indeed in this case, a tuple ((p1, p2), x/w, (q1, q2)) is a
transition of ĉ ↓ â iff there are two corresponding transitions: (p1, x/w, q1) of ĉ and (p2, x, q2) of
âλ. Let â0 be a DFA accepting the language L(â)∪{λ}. If the start state of â is a final state, then
â0 = â. Otherwise, â0 results from â if we add a new state s′, which is the start state of â0 and
also one of its final states, and the transitions (s′, σ, p), for all transitions (s, σ, p) of â in which s is
the start state of â. Then, the algorithm is as follows.

1. Construct p̂← (ĉ ↓ â0)

2. Convert p̂ to pseudo-sequential

3. Construct ŝ← (p̂ ↑ â0)

4. Convert ŝ to sequential

5. if (ŝ is functional) return YES; else return NO

Note that in the first step, transducer p̂ is sequential because ĉ is sequential and each transition
label of p̂ is also a transition label of ĉ. The second step is necessary so that p̂ is converted in
standard form before performing p̂ ↑ â0.

The correctness and complexity of the algorithm follow from the statements in the previous
paragraph, the discussion at the beginning of this section, and Lemmata 4, 2, 3. �
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6 Open implementation

We have implemented a version of the algorithm presented in Theorem 2 and made the implemen-
tation accessible via the website

http://research1.cs.smu.ca/~a_daka/index.php

which is also accessible via

http://cs.smu.ca/~stavros/#research

Implementation details are given in that website as well as in the thesis [3]. The implementa-
tion is written in C++ and uses an old version of Grail [5] libraries. We have added classes for
transducer objects and methods implementing the various algorithmic tools required for deciding
error-detection.

At the time of writing this report, the current implementation converting a pseudo-sequential
transducer to an equivalent sequential one does not use the algorithm in Lemma 3, but the simpler
algorithm presented prior to that lemma.

The website allows users to enter automata in Grail format and also transducers in Grail-like
format. The empty word is represented using the character ‘~’. Below we show the Grail-like
description of the first transducer in Fig 1, where the input and output alphabets are equal to
{a, b}, and the Grail description of a DFA accepting the language of all words of length 3 over
{a, b} with an even number of b’s.

(START) |- 0 (START) |- 0

0 (a,a) 0 0 a 2

0 (b,b) 0 0 b 1

0 (a,~) 1 1 a 3

0 (b,~) 1 1 b 4

0 (a,b) 1 2 a 4

0 (b,a) 1 2 b 3

1 (a,a) 1 3 b 5

1 (b,b) 1 4 a 5

1 (a,~) 2 5 -| (FINAL)

1 (b,~) 2

1 (a,b) 2

1 (b,a) 2

2 (a,a) 2

2 (b,b) 2

0 -| (FINAL)

1 -| (FINAL)

2 -| (FINAL)
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