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Abstract

Boundary value ordinary differential equations (BVODEs) are systems
of ODEs with boundary conditions imposed at two or more distinct points.
The global error (GE) of a numerical solution to a BVODE is the differ-
ence between that numerical solution and the exact solution. The defect is
the amount by which the numerical solution fails to satisfy the ODEs and
boundary conditions. The BVODE solver, BVP SOLVER, computes a nu-
merical solution whose (estimated) defect satisfies a given user tolerance
but it can also provide an a posteriori estimate of the GE using Richardson
extrapolation (RE). Using a modified version of BVP SOLVER, we present,
in this report, numerical experiments comparing four strategies for a pos-
teriori GE estimation of a defect controlled numerical solution, based on
(i) RE, (ii) the direct use of a higher order (HO) discretization formula (a
mono-implicit Runge–Kutta (MIRK) formula), (iii) the use of a higher or-
der discretization formula (a MIRK formula) within a deferred correction
(DC) framework, and (iv) the product of the defect estimate and an esti-
mate of the BVODE conditioning constant (CO). We also present numer-
ical experiments investigating a (further) modified version of BVP SOLVER

that provides options for (i) defect control (DefC), (ii) GE control (GEC),
and combinations thereof: (iii) a sequential combination control (SCC) in
which we first compute a defect controlled solution and then, using this
solution, continue on to compute a GE controlled solution, and (iv) a
parallel combination control (PCC) in which we simultaneously control
estimates of the defect and the GE.
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1 Introduction

In this report, we consider software for the numerical solution of boundary value
ordinary differential equations (BVODEs) having the form

y′(x) = f(x,y(x)), a ≤ x ≤ b, ga(y(a)) = 0, gb(y(b)) = 0, (1)

where y, f, and [gT
a ,gT

b ]T are vectors of length n.
There are two common approaches to controlling solution accuracy in soft-

ware for BVODEs: global error (GE) control and defect control. The GE is the
difference between the numerical solution and the exact solution. The defect
of a continuous numerical solution is the amount by which the solution fails to
satisfy the ODEs and boundary conditions. Typically the GE or defect estimate
is scaled to accommodate a blend of absolute and relative tolerances, based on
the numerical solution or its derivative. This estimate is used to adapt the com-
putation to return a solution for which the estimate is less than a user-provided
tolerance. We refer to such solvers as providing GE control or defect control,
respectively. Although control of the GE is often more familiar to users, control
of the defect has an interesting backward error interpretation: the defect con-
trolled numerical solution is the exact solution to a perturbation (on the order
of the tolerance) of the original BVODE.

This report describes numerical experiments involving the study of defect
and GE control. We employ modified versions of the defect control solver,
BVP SOLVER [15]. The original version of BVP SOLVER returns a defect controlled
numerical solution but provides an option for an a posteriori estimate of the GE
of the numerical solution, based on Richardson extrapolation (RE), see, e.g., [2].
We first consider, within the BVP SOLVER framework, implementations of three
well-known GE estimation schemes as alternatives for the a posteriori estimation
of the GE. These schemes are based on (i) the direct use of a higher order (HO)
discretization formula (a mono-implicit Runge–Kutta (MIRK) formula - see, e.g.
[12] and references within), (ii) the use of a higher order discretization formula
(a MIRK formula) within a deferred correction (DC) framework, and (iii) the
product of the defect estimate and an estimate of the BVODE conditioning
constant (CO). We compare their performance with respect to accuracy and
efficiency. We then consider a further modified version of BVP SOLVER that has
an option for estimation and control of the GE. This new version of BVP SOLVER
provides options for GE control, defect control, and combinations thereof. We
provide numerical results comparing these options.

It is possible that a numerical solution with an estimated maximum defect
that satisfies a user tolerance can nonetheless have a large GE. In extreme cases,
a defect control solver can return a numerical solution for a problem that has
no solution. The paper [14] refers to such solutions as pseudosolutions and pro-
vides examples where the defect control codes bvp4c [10] and MIRKDC [6] return
pseudosolutions under certain conditions. It should be emphasized that such a
solution is in fact an acceptable numerical solution in the following sense: the
solver has returned a numerical solution whose defect satisfies the user tolerance.
In such cases, the numerical solution is the exact solution to a BVODE that is
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reasonably close to the original one. However, if the BVODE is ill-conditioned
and the tolerance is coarse, the solution of the perturbed problem may not be
close to the solution of the original problem. This suggests that it can be impor-
tant for a defect control solver to also provide an assessment of the GE of the
defect controlled numerical solution it computes. This report will also include
experiments in which we investigate the role that a GE estimate can play within
a defect control code when we consider a problem that has a pseudosolution.

The report is organized as follows. Section 2 reviews the algorithms used in
BVP SOLVER. Section 3 describes the three alternative GE estimation techniques
and their efficient implementation within BVP SOLVER. This section also briefly
discusses a slight modification of the RE based approach implemented in the
original version of BVP SOLVER. Section 4 presents numerical experiments com-
paring the four GE estimators with respect to accuracy and efficiency. Section
5 considers a new version of BVP SOLVER that provides options for defect and
GE control as well as options for combinations of defect and GE control. This
section also provides results associated with the treatment of a problem having
a pseudosolution. Section 6 provides our conclusions.

2 Review of BVP SOLVER

BVP SOLVER is capable of solving a first order system of n ODEs of the form

y′(x) =
(

Λ
x − a

)
y(x) + f(x,y(x),p), a ≤ x ≤ b,

subject to separated nonlinear two-point boundary conditions (BCs)

ga(y(a),p) = 0, gb(y(b),p) = 0.

Here y and f are vectors of length n and p is an optional vector of length np

of unknown parameters. The vector [gT
a ,gT

b ]T is of length n + np. The n × n
constant matrix Λ is optional. In this report, we assume the simpler form (1).

In order to solve a BVODE, BVP SOLVER generates a system of nonlinear
equations for which the unknowns, yi, are approximations to the solution values,
y(xi), at the points of a mesh that partitions the problem domain: a = x0 <
x1 < . . . < xN = b. Let hi+1 = xi+1−xi, i = 0, 1, . . ., N−1. On the subinterval,
[xi, xi+1], these nonlinear equations have the form

φi+1(yi,yi+1) = yi+1 − yi − hi+1

s∑

j=1

bjf(xi + cjhi+1,yij) = 0, (2)

where

yij = (1 − vj)yi + vjyi+1 + hi+1

j−1∑

k=1

aj,kf(xi + ckhi+1,yik), (3)
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for j = 1, 2, . . . , s, are the stages of the MIRK method. The coefficients,
vj , bj, aj,k, j = 1, . . . , s, k = 1, 2, . . ., j − 1, define the MIRK method, and

cj = vj +
j−1∑

k=1

aj,k.

Equation (2) represents n nonlinear equations involving the unknowns yi

and yi+1. Taking these equations for all subintervals together with the BCs
gives a system of (N + 1)n nonlinear equations whose solution gives a discrete
approximate solution at the mesh points, Y ≡ [yT

0 ,yT
1 , . . . ,yT

N ]T . This nonlin-
ear system has the form

Φ(Y) ≡




ga(y0)
φ1(y0,y1)

...
φN (yN−1,yN )

gb(yN )




= 0. (4)

System (4) is solved using a modified Newton iteration, which requires the
evaluation and factorization of the Jacobian

JΦ(Y) ≡ ∂Φ(Y)
∂Y

. (5)

BVP SOLVER solves the nonlinear system (4) via a hybrid damped Newton/fixed
Jacobian iteration. When there are convergence issues, the solver re-evaluates
the Jacobian and uses a damping factor to control the contribution of the New-
ton correction to the next iterate. Otherwise, it holds the Jacobian constant
and takes full Newton steps as long as convergence is sufficiently rapid. Once
the Newton iteration converges, we obtain the discrete solution, {yi}N

i=0, which
serves as the basis for a (vector) piecewise polynomial, S(x), that is based on
a continuous MIRK (CMIRK) formula [11]. On the subinterval, [xi, xi+1], S(x)
takes the form

S(xi + θhi+1) = yi + hi+1

s∗∑

j=1

bj(θ)f(xi + cjhi+1,yij),

where 0 ≤ θ ≤ 1 and s∗ ≥ s. In the above equation, each bj(θ) is a known
polynomial in θ, defined by the CMIRK method. Because s∗ ≥ s, it follows that
S(x) may need to use extra stages; each such stage has the same general form
as in (3). The piecewise polynomial, S(x), is a C1-continuous approximation to
the exact solution to the BVODE, y(x).

On each subinterval, BVP SOLVER computes a scaled defect, δ(x), of the
approximate solution at several points on each subinterval. The jth component
of δ(x) is

δj(x) =
|S′

j(x) − fj(x,S(x))|
1 + |fj(x,S(x))|

. (6)

4



The maximum of these scaled defect samples is taken to be an estimate of
the maximum scaled defect (MSD) for the subinterval. If the estimated MSD
is greater than the user-prescribed tolerance on any subinterval, the current
solution approximation is rejected and estimates of the MSD on each subinterval
are then used to guide a process that attempts to construct a new mesh such that
(i) the MSD estimates are approximately equidistributed over the subintervals
of the new mesh, and (ii) the MSD estimate on each subinterval of the new
mesh is less than the user tolerance. Achieving such a mesh typically involves
changing the total number of mesh points and redistributing them over the
problem domain. Once a new mesh is obtained, a new continuous solution
approximation is computed and the defect sampling process is repeated. If the
estimated MSD for each subinterval is less than the user tolerance, the solution
is accepted.

The current version of BVP SOLVER simply samples the defect at two points
on each subinterval; a more robust estimate of the MSD on each subinterval can
be obtained at a modest increase in cost using an approach called asymptoti-
cally correct defect control [7]. The approach relies on the development of a new
type of interpolant for the continuous solution approximation on each subinter-
val (building upon the CMIRK interpolants mentioned earlier) for which the
maximum defect is (asymptotically) guaranteed to occur at a known, problem
independent location within each subinterval.

Although BVP SOLVER does not attempt to directly control the GE, as men-
tioned earlier, it does provide the option for the computation of an a posteriori
estimate of the GE based on RE, which we now briefly describe (see also, e.g.,
Section 5.5.2 of [2]). Let π be the final mesh upon which the accepted, defect
controlled numerical solution is obtained. Let Yπ be the numerical solution
evaluated at the points of the mesh π. Let Y(i,j)

π be the jth component of the
numerical solution evaluated at the ith mesh point of π. Let π2 be a new mesh is
obtained by halving each subinterval of π. In the RE scheme, a second discrete
solution is computed on this new mesh, using the same MIRK scheme that was
used to obtain Yπ. Define Yπ2 to be this second solution evaluated only at the
points of π. Let Y(i,j)

π2
be the jth component of this second numerical solution

at the ith mesh point of π. The GE estimate by RE is then given by

(
2p

2p − 1

)
max

i,j

|Y(i,j)
π − Y(i,j)

π2
|

1 + |Y(i,j)
π |

, (7)

where p is the order of the MIRK method used to compute these approximate
solutions.

The computation of Yπ2 requires the setup and solution via Newton’s method
of a nonlinear system similar in form to (4) but with approximately twice as
many nonlinear equations and unknowns. In BVP SOLVER this nonlinear sys-
tem is solved using the same modified Newton iteration as described for the
computation of the primary solution, using a Newton tolerance that is half the
size. Because at least one Jacobian matrix must be evaluated and factored,
this scheme can be quite computationally expensive. The initial estimate of
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the solution provided to the Newton iteration for the determination of Yπ2 is
obtained from the evaluation of the continuous numerical solution, S(x), at the
points of the mesh π2.

3 Alternative GE Estimators for BVP SOLVER

In the following we will assume that the defect controlled numerical solution
has been accepted by the solver and that we wish to compute an a posteriori
estimate of the GE of the defect controlled solution. Subsection 3.1 describes a
GE estimation technique based on the direct use of higher order MIRK formu-
las. Subsection 3.2 describes an approach for GE estimation based on the use
of higher order MIRK formulas within a deferred correction framework. Sub-
section 3.3 examines defect control from a backward error analysis viewpoint
and describes a GE bound based on the norm of the defect and an estimate of
a conditioning constant for the BVODE. Subsection 3.4 discusses an improved
implementation of the RE algorithm described in the previous section.

Except for the approach based on the conditioning constant, the other ap-
proaches mentioned above are all examples of well known techniques for the
estimation of the GE. The paper [13] considers mesh adaptation based on a
number of error estimation schemes and looks at relationships between them;
the focus is on collocation methods for the discretization but the authors indi-
cate that the conclusion of the paper may be relevant to other approaches.

3.1 Direct Use of a Higher Order MIRK Formula for GE
Estimation (HO)

Assuming that the primary solution is obtained using a MIRK method of order
p on some final mesh, we obtain a second numerical solution of order p+2 on the
same mesh by constructing and solving a nonlinear system of the form (4) using
a MIRK method of order p + 2. We choose a method 2 orders higher (rather
than only 1) because it is important to employ symmetric Runge–Kutta methods
when solving a BVODE, and such symmetric methods have only even orders;
see, e.g., [12]. This computation yields only a discrete solution approximation.

BVP SOLVER can solve BVODEs using a second, fourth, or sixth order MIRK
method; see [12] for the tableaux that define these formulas and their associated
interpolants. Thus for primary solutions obtained using a second or fourth order
MIRK formula, there is a natural MIRK formula available for the computation
of the higher order numerical solution. For the case when the primary solution is
obtained by using the sixth order MIRK formula, we have added an eighth order
MIRK method [8] to BVP SOLVER. Although the formulas included in BVP SOLVER
are optimal in a certain sense (see [12]), there is no reason to expect that the
eighth order formula from [8] is also optimal. Although further work could be
done to develop an optimal eighth order MIRK formula, because the formula is
only used on the final mesh, it is not clear that the use of an optimized eighth
order formula would lead to much improvement overall.
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For completeness, we provide here the tableau for the ten stage, eighth order
MIRK formula from [8] that we have implemented in BVP SOLVER:

0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0
1
4

5
32

9
64

− 3
64

0 0 0 0 0 0 0 0
3
4

27
32

3
64

−9
64

0 0 0 0 0 0 0 0
1
2

1
2

− 5
24

5
24

2
3

− 2
3

0 0 0 0 0 0
1
8 β a1 a2 a3 a4 0 0 0 0 0 0
7
8 1 − β −a2 −a1 −a4 −a3 0 0 0 0 0 0

7−
√

21
14 Θ a5 a6 0 0 0 a7 a8 0 0 0

7+
√

21
14 1 − Θ −a6 −a5 0 0 0 −a8 −a7 0 0 0
1
2

1
2

29
896

− 29
896

0 0 0 −2
21

2
21

7
√

21
128

− 7
√

21
128

0
1
20

1
20 0 0 0 0 0 49

180
49
180

16
45

where β is a free parameter, and

a1 =
757
9216

−
β

18
, a2 =

43
9216

−
β

18
, a3 =

235
4608

−
4β

9
,

a4 = − 59
4608

− 4β

9
, a5 =

3451 + 717
√

21
139258

, a6 =
−3451 + 717

√
21

139258
,

a7 =
64

1029
+

1024
√

21
69629

, a8 =
−64
1029

+
1024

√
21

69629
, Θ =

1
2

+
2211

√
21

19894
.

This MIRK formula contains embedded formulas of orders 2, 4, and 6, but if the
embedded sixth order formula is not required, stage five can be ignored. We do
not make use of the embedded formulas, and thus we implement this formula
as a nine stage method. We also choose the free parameter β of this eighth
order formula to be 0, which is a reasonable approximation to the optimal value
β ≈ 0.006970 that we have computed that minimizes the 2-norm of the principal
error function (see, e.g., [12]) for this eighth order method. (The corresponding
values for the norms of the ninth and tenth order principal error coefficients are
6.9950× 10−6 and 6.9751× 10−6, respectively.)

Let Yp be the primary solution of order p, evaluated at the mesh points of
the final mesh and let Yp+2 be the solution of order p+2, evaluated at the same
set of points. Let Y(i,j)

p be the jth component of Yp at the ith mesh point and

let Y(i,j)
p+2 be the corresponding component of Yp+2. Then the estimate of the

GE for Yp in this case is

max
i,j

|Y(i,j)
p −Y(i,j)

p+2 |
1 + |Y(i,j)

p |
. (8)

When implementing this scheme, several observations were exploited in order
to obtain substantial savings in computation time.
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1. From our numerical experiments, we have observed that the primary so-
lution, Yp, proves to be an effective initial guess for the solution of the
system of nonlinear equations based on the higher order MIRK formula.
Because Yp is saved in the solution structure employed by BVP SOLVER,
it is available for use as the initial guess at no additional computational
cost.

2. From our numerical experiments, we have observed that the Jacobian
matrix from the primary solution computation is a good approximation
to the Jacobian associated with the nonlinear system based on the higher
order MIRK formula. This matrix is also available within one of the arrays
used by BVP SOLVER during the computation of the primary solution. We
are therefore able to avoid the expensive evaluation and factorization of
this matrix during the Newton iteration for the determination of Yp+2.

3. We initially employed the same form of Newton iteration for the determi-
nation of Yp+2 that is used in the computation of the primary solution;
this meant that full and damped Newton steps were allowed, and the
iteration terminated when an appropriately scaled norm of the Newton
correction was less than the user tolerance. However, we have experi-
mented with a simpler version of the iteration in which only one Newton
correction is performed. Our experiments showed that the resultant es-
timates were essentially the same as those obtained by the full Newton
iteration scheme. Accordingly, we perform only one Newton correction
for the computation of Yp+2.

By making use of the (factored) Jacobian from the primary computation and by
employing only one Newton iteration, the implementation of this GE estimate
involves only one backward substitution, based on one evaluation of Φ in (4).

3.2 GE Estimation based on Deferred Correction (DC)

When the MIRK method upon which (4) is based is of order p, we rewrite (4)
as

Φp(Yp) = 0,

where the pth order discrete solution, obtained by solving this system, is Yp. In
[5], the authors describe a deferred correction method based on MIRK formulas.
They demonstrate how solutions of orders four, six, and eight can be computed
by solving the systems

Φ4(Y4) = 0, Φ4(Y6) = −Φ6(Y4), Φ4(Y8) = Φ4(Y6) − Φ8(Y6), (9)

for Y4,Y6, and Y8. In [5], the authors first compute a solution of order four
and then use two steps of deferred correction to efficiently compute the solutions
of orders six and eight. The fourth order solution Y4 is computed using the
first equation from (9), and the sixth and eighth order solutions, Y6 and Y8,
are obtained by solving the second and third equations from (9).
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BVP SOLVER uses MIRK formulas and thus we can use an approach similar
to that of [5]; however, we use only one step of deferred correction to obtain a
higher order solution. When BVP SOLVER solves a BVODE it returns a primary
solution of order two, four, or six, depending on what the user has selected.
Assume that the primary solution is of order p; i.e., we have Yp available from
the primary defect controlled computation, and that the deferred correction
equation that allows us to obtain a higher order solution, Yp+2, is

Φp(Yp+2) = −Φp+2(Yp).

That is, we need to solve the nonlinear system

Φp(z) + Φp+2(Yp) = 0, (10)

for z = Yp+2. The primary expense is the construction and factorization of the
Jacobian matrix of this nonlinear system. However, the system,

Φp(z) = 0, (11)

is the one that was just solved during the primary computation to get Yp. The
corresponding Jacobian (evaluated at Yp or an approximation to it) was com-
puted and factored for use in that iteration; a significant advantage of employing
(10) to determine Yp+2 is that it has the same Jacobian matrix as (11), and
thus the Jacobian and its factorization are available at no cost. Furthermore, a
natural initial guess for Yp+2 to start the Newton iteration for (10) is Yp. As
in the approach described in Section 3.1, we also apply only one Newton step
to obtain an estimate of Yp+2.

Once Yp+2 is available, the estimate of the norm of the GE for Yp is com-
puted as in (8). The computational costs incurred in this approach involve the
computation of the correction term, Φp+2(Yp), one evaluation of Φp(z), and
one backward substitution associated with applying Newton’s method to (10).

3.3 A GE Bound based on Estimating the BVODE Con-
ditioning Constant (CO)

The third GE estimation approach we consider is based on a backward error
analysis for the numerical solution of a BVODE. Here we briefly review the
main points; see, e.g., [14] for further details.

We consider a linear BVODE and assume that the exact solution, y(x),
satisfies

y′(x) = A(x)y(x) + q(x), Bay(a) + Bby(b) = β. (12)

In (12), A(x),Ba,Bb ∈ Rn×n and q(x),y(x), β ∈ Rn.
Then the approximate solution, S(x), exactly satisfies the perturbed BVODE

and BCs

S′(x) = A(x)S(x) + q(x) + δ(x), BaS(a) + BbS(b) = β + σ,
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where δ(x) = S′(x) − A(x)S(x) − q(x) and σ = BaS(a) + BbS(b) − β are the
defects associated with the ODE and the BCs, respectively.

The main result is that

||y(x) − S(x)||W3 ≤ κ max(||δ(x)||W1 , ||σ||W2 ) , (13)

where κ is a conditioning constant for the BVODE and the weighted norms are
defined as follows:

||δ(x)||W1 = max
a≤x≤b

||W−1
1 (x)δ(x)||∞, ||σ||W2 = ||W−1

2 σ||∞,

||S(x) − y(x)||W3 = max
a≤x≤b

||W−1
3 (x) (S(x) − y(x)) ||∞.

Here W1(x), W2, and W3(x) are n×n diagonal matrices with positive entries.
The matrix W3(x) is associated with the scaling of the defect (6); the matrix
W1(x) is associated with the scaling for the GE (8). Because we do not scale
the BCs, W2 is taken to be the identity matrix.

The conditioning constant, κ, depends on the fundamental solution of the
corresponding homogeneous BVODE and the boundary condition matrices Ba

and Bb. (The conditioning constant is given by κ = max(κ1, κ2), where κ1 is
the conditioning constant for the BCs and κ2 is the conditioning constant for
the ODEs. However, in BVP SOLVER, the BCs are solved much more accurately
than the ODEs; so in fact only κ2 is relevant in the present context.)

The paper [14] also explains how to compute an estimate of κ. Let

W12 = diag{W1(x1), . . . ,W1(xN ),W2}, W3 = diag{W3(x0), . . . ,W3(xN )}.

Then in [14], it is shown that, for a sufficiently fine mesh,

κ ≈ ||W−1
3 J−1

Φ W12||∞,

where JΦ is the Jacobian matrix (5). The paper [14] suggests the use of the
Higham–Tisseur algorithm [9] for the efficient estimation of this norm.

Because the factored Newton matrix from the primary solution computa-
tion is available, once the primary solution is accepted, the Higham–Tisseur
algorithm can be used to obtain the estimate for κ using only a few additional
back solves involving the matrix W

−1
12 JΦW3. (The right hand sides involved

in these backward substitutions are generated by the software based on the
Higham–Tisseur algorithm and represent no significant computational cost.)

We have modified BVP SOLVER to provide an option to efficiently estimate κ
after the primary solution is accepted. The product of κ and the estimate of the
maximum norm of the defect is then used to obtain an upper bound on the GE
as in (13). However, it is worth noting that, especially for a defect control solver,
it may be useful to estimate and return κ itself because this quantity gives a
measure of the sensitivity of the solution to small changes in the problem.
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3.4 Modification of the Implementation of the RE based
GE Estimate (RE)

Based on numerical experiments, we found that the treating the nonlinear sys-
tem associated with the RE approach by performing only one full Newton step
yielded error estimates that compared well with those obtained from a full tol-
erance controlled Newton iteration. We therefore employ a more efficient im-
plementation of the RE based GE estimate that computes and factors a new
Jacobian matrix and then performs only one full Newton step.

4 Comparison of the GE Estimates

With the implementations described in the previous section, BVP SOLVER now
has four possible methods for estimating the GE. In this section, we discuss
accuracy and computational efficiency results for these four estimators. All
GE estimates are for the scaled norms specified earlier. We consider three
test problems and examine the performance of the GE estimators for the three
MIRK formula order options (2, 4, and 6) and for the range of tolerance values
10−4, 10−5, . . . , 10−8. All test problems were converted to first order systems as
required by BVP SOLVER.

Each problem is solved a number of times in succession in order to obtain
cumulative timings that are large enough to be reliable, i.e., on the order of 10
seconds. Each problem also depends on a positive parameter ε, where the prob-
lem difficulty increases as ε decreases. Values of ε are chosen according to those
suggested by their sources in the literature unless this led to excessively large
solution times, in which case the value of ε was increased slightly. Consequently,
the number of timing runs varies according to the problem solved and the order
of the discretization. The minimum time from three timing runs is reported.

The computations were performed using an Intel Xeon w3520 quad core
processor running at 2.667 GHz. The RAM consisted of 16GB of DDR3 memory
running at 1.333 GHz. The operating system was 64-bit Ubuntu 10.04.2 LTS
with kernel 2.6.32-32-generic and the Fortran compiler was gfortran with gcc
4.4.3-4ubuntu5.

4.1 Test Problems

1. The first problem is
εy′′ + (y′)2 = 1, (14a)

with BCs

y(0) = 1 + ε ln cosh
(
−0.745

ε

)
, y(1) = 1 + ε ln cosh

(
0.255

ε

)
, (14b)

and exact solution

y(x) = 1 + ε ln cosh
(

x − 0.745
ε

)
.
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Figure 1: Solution y(x) of problem (14) for ε = 0.05, 0.01, and 0.0035.

This is Problem 20 from www.ma.ic.ac.uk/∼jcash/BVP software; see
also [4]. For MIRK order 2, we use ε = 0.05. For MIRK orders 4 and 6,
we use ε = 0.0035; in Section 5 we also use ε = 0.01. The solutions y(x)
for these values of ε are displayed in Figure 1. We use an initial guess of
y(x) ≡ 1

2 , y′(x) ≡ 0. Timing results are the average of 500 runs.

2. The second problem is

εy′′ = y + y2 − exp
(
−2x√

x

)
, (15a)

with BCs,

y(0) = 1, y(1) = exp
(
−1√

ε

)
, (15b)

and exact solution

y(x) = exp
(
−x√

ε

)
.

This is Problem 21 from www.ma.ic.ac.uk/∼jcash/BVP software. For
MIRK order 2, we use ε = 10−7. For MIRK order 4, we use ε = 5× 10−8.
For MIRK order 6, we use ε = 10−8. The solutions y(x) for these values
of ε are displayed in Figure 2. (Note that, in order to make visible the
differences between the solutions associated with different ε values, the
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Figure 2: Zoom-in of solution y(x) of problem (15) for ε = 1 × 10−7, 5 × 10−8,
and 1 × 10−8.

horizontal axis in Figure 2 includes only the region [0, 0.003].) We use an
initial guess of y(x) ≡ 1

2 , y′(x) ≡ 0. Timing results are the average of 100
runs.

3. The third problem is

εf ′′′′ + ff ′′′ + gg′ = 0, εg′′ + fg′ − f ′g = 0, (16a)

with BCs,

f(0) = f(1) = f ′(0) = f ′(1) = 0, g(0) = Ω0, g(1) = Ω1, (16b)

where Ω0 = −1, Ω1 = 1, and ε = 9 × 10−5; in Section 5 we also use
ε = 5×10−3. This is Example 1.20 of [2]. Because no exact solution for this
problem is known, a reference solution was computed by BVP SOLVER using
the sixth order MIRK method with a tolerance of 10−11. The solutions
f(x) and g(x) for these values of ε are displayed in Figure 3. We use an
initial guess of f(x) = f ′(x) = f ′′(x) = f ′′′(x) = 0 and g(x) = 2x − 1,
g′(x) = 2. Timing results are the average of 3000 runs.

4.2 Results for Second Order

There is generally good agreement between the true GE and the estimated GE
from RE, the approach based on the use of a higher order method (HO), and
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Figure 3: Solutions f(x) and g(x) of problem (16) for ε = 5×10−3 and 9×10−5.

the approach based on deferred correction (DC). All results from the use of the
conditioning constant estimate (CO) give a substantial overestimate of the GE,
however, typically by several orders of magnitude. Tables 1, 2, and 3 provide
results for second order for the three test problems. “% Total” is the time for the
computation of the error estimate expressed as a percentage of the time taken
to obtain the original defect controlled solution. “τ” is the absolute difference
between the actual error and the estimated error.

We next consider the relative efficiency of the estimators by considering plots
of execution time of each estimator (relative to the time required to compute the
primary solution) vs. the tolerance. Typically, the execution time for the RE
estimator is a much higher percentage of the primary solution computation time
than the other estimators; see Figure 4. For problem (14), the relative costs of
the RE estimator are approximately between 23% and 40% for all tolerances.
The relative costs for the HO scheme are about 4% to 5%; the relative costs
for the DC scheme are somewhat larger, ranging from about 4% to 10%; the
CO scheme costs range from about 4% to 8%. Similar results are obtained for
test problem (15); see Figure 5. The relative costs of the RE estimator are
approximately between 10% and 15%. The relative costs for the HO scheme are
about 2% to 3%; the DC costs are about 4% to 5%; the CO costs are about 2%.
For problem (16), we see slightly different results; see Figure 6. The relative
cost of the RE estimator increases as the tolerance becomes sharper. The cost of
the RE estimator is approximately 4% for Tol = 10−4 and steadily increases to
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Tol Time % Total Actual Error Estimated Error τ

RE 1E–4 1.90× 10−3 23.46 % 1.237× 10−5 1.239× 10−5 1.679× 10−8

1E–5 5.70× 10−3 40.14 % 1.406× 10−6 1.406× 10−6 1.384× 10−10

1E–6 1.41× 10−2 27.24 % 1.360× 10−7 1.362× 10−7 2.344× 10−10

1E–7 4.35× 10−2 32.68 % 1.720× 10−8 1.724× 10−8 4.255× 10−11

1E–8 1.63× 10−1 26.85 % 1.324× 10−9 1.324× 10−9 4.921× 10−13

CO 1E–4 5.40× 10−4 6.67 % 1.237× 10−5 2.073 2.073
1E–5 1.20× 10−3 8.45 % 1.406× 10−6 6.557× 10−1 6.557× 10−1

1E–6 2.26× 10−3 4.37 % 1.360× 10−7 1.501× 10−1 1.501× 10−1

1E–7 7.68× 10−3 5.77 % 1.720× 10−8 5.650× 10−2 5.650× 10−2

1E–8 2.92× 10−2 4.80 % 1.324× 10−9 1.616× 10−2 1.616× 10−2

HO 1E–4 3.00× 10−4 3.70 % 1.237× 10−5 1.264× 10−5 2.704× 10−7

1E–5 6.00× 10−4 4.23 % 1.406× 10−6 1.406× 10−6 5.855× 10−10

1E–6 3.34× 10−3 6.46 % 1.360× 10−7 1.364× 10−7 4.206× 10−10

1E–7 8.48× 10−3 6.37 % 1.720× 10−8 1.728× 10−8 7.989× 10−11

1E–8 3.18× 10−2 5.23 % 1.324× 10−9 1.326× 10−9 2.389× 10−12

DC 1E–4 4.60× 10−4 5.68 % 1.237× 10−5 1.264× 10−5 2.704× 10−7

1E–5 6.20× 10−4 4.37 % 1.406× 10−6 1.406× 10−6 5.855× 10−10

1E–6 5.12× 10−3 9.91 % 1.360× 10−7 1.364× 10−7 4.206× 10−10

1E–7 1.35× 10−2 10.17 % 1.720× 10−8 1.728× 10−8 7.989× 10−11

1E–8 5.16× 10−2 8.49 % 1.324× 10−9 1.326× 10−9 2.389× 10−12

Table 1: GE Estimates applied to (14), MIRK order 2. Number of points in the
final mesh for each tolerance, respectively: 394, 1162, 3722, 10459, and 37853.

approximately 27% as when Tol = 10−8. The relative costs for the HO scheme
are about 1% to 4%; the costs for the DC scheme are about 1% to 5%; the costs
for the CO estimator are higher and range from about 2% to about 15%.

4.3 Results for Fourth Order

In this case, we again find that there is excellent agreement between the true
GE and the estimated GE from the RE, HO, and DC approaches. For all cases,
the CO approach gives a significant overestimate of the GE. Tables 4, 5, and 6
provide results for fourth order for the three test problems. “% Total” is the
time for the computation of the error estimate expressed as a percentage of the
time taken to obtain the original defect controlled solution. “τ” is the absolute
difference between the actual error and the estimated error.

We next consider the relative efficiency of the estimators by considering plots
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Tol Time % Total Actual Error Estimated Error τ

RE 1E–4 4.22× 10−2 11.89 % 1.560× 10−6 1.560× 10−6 3.122× 10−11

1E–5 4.23× 10−2 11.44 % 1.501× 10−6 1.501× 10−6 3.851× 10−13

1E–6 4.25× 10−2 10.43 % 1.470× 10−6 1.470× 10−6 1.330× 10−13

1E–7 1.45× 10−1 14.00 % 1.350× 10−7 1.350× 10−7 6.569× 10−16

1E–8 4.28× 10−1 14.87 % 1.744× 10−8 1.744× 10−8 2.192× 10−16

CO 1E–4 6.80× 10−3 1.92 % 1.560× 10−6 1.279× 104 1.279× 104

1E–5 5.80× 10−3 1.57 % 1.501× 10−6 5.819× 103 5.819× 103

1E–6 6.60× 10−3 1.62 % 1.470× 10−6 5.581× 103 5.581× 103

1E–7 2.22× 10−2 2.14 % 1.350× 10−7 2.950× 103 2.950× 103

1E–8 6.47× 10−2 2.25 % 1.744× 10−8 9.741× 102 9.741× 102

HO 1E–4 8.70× 10−3 2.45 % 1.560× 10−6 1.560× 10−6 2.651× 10−10

1E–5 8.40× 10−3 2.27 % 1.501× 10−6 1.501× 10−6 6.467× 10−11

1E–6 8.50× 10−3 2.09 % 1.470× 10−6 1.470× 10−6 9.650× 10−12

1E–7 2.93× 10−2 2.83 % 1.350× 10−7 1.350× 10−7 7.125× 10−15

1E–8 8.55× 10−2 2.97 % 1.744× 10−8 1.744× 10−8 3.708× 10−16

DC 1E–4 1.41× 10−2 3.97 % 1.560× 10−6 1.560× 10−6 3.592× 10−10

1E–5 1.45× 10−2 3.92 % 1.501× 10−6 1.501× 10−6 6.625× 10−11

1E–6 1.43× 10−2 3.51 % 1.470× 10−6 1.470× 10−6 9.657× 10−12

1E–7 4.74× 10−2 4.57 % 1.350× 10−7 1.350× 10−7 7.125× 10−15

1E–8 1.35× 10−1 4.70 % 1.744× 10−8 1.744× 10−8 3.708× 10−16

Table 2: GE Estimates applied to (15), MIRK order 2. Number of points in the
final mesh for each tolerance, respectively: 9217, 9217, 9217, 30166, and 83883.

of execution time of each estimator (relative to the time required to compute
the primary solution) vs. the tolerance. Figure 7 shows results for test problem
(14). The cost of the RE estimator is somewhat larger than those of all other
error estimators. However, in all cases, the cost of the GE estimate is small
compared to that of the primary computation. Figure 8 shows results for test
problem (15). Relative costs for the RE scheme range from about 9% to 12%;
the HO scheme costs are about 2%; the DC costs range from 3% to 4%; the
CO costs are about 1%. For test problem (16), the cost of the RE estimator
steadily increases as the tolerance becomes sharper (approximately between 8%
and 21%). The HO scheme costs are about 1% to 4%; the DC costs are about
1% to 2%; the CO costs are about 2% to 6%. Figure 9 shows results for test
problem (16).
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Tol Time % Total Actual Error Estimated Error τ

RE 1E–4 2.87× 10−2 4.04 % 1.095× 10−2 1.101× 10−2 5.999× 10−5

1E–5 9.07× 10−2 9.47 % 7.255× 10−4 7.240× 10−4 1.462× 10−6

1E–6 2.74× 10−1 15.47 % 6.967× 10−5 6.963× 10−5 3.559× 10−8

1E–7 8.35× 10−1 21.53 % 7.759× 10−6 7.758× 10−6 4.924× 10−10

1E–8 2.48 26.92 % 8.083× 10−7 8.082× 10−7 4.168× 10−11

CO 1E–4 1.25× 10−2 1.76 % 1.095× 10−2 3.683× 108 3.683× 108

1E–5 3.97× 10−2 4.14 % 7.255× 10−4 8.577× 107 8.577× 107

1E–6 1.54× 10−1 8.72 % 6.967× 10−5 2.607× 107 2.607× 107

1E–7 4.69× 10−1 12.09 % 7.759× 10−6 8.056× 106 8.056× 106

1E–8 1.39 15.11 % 8.083× 10−7 2.718× 106 2.718× 106

HO 1E–4 5.33× 10−3 0.75 % 1.095× 10−2 1.148× 10−2 5.281× 10−4

1E–5 1.29× 10−2 1.35 % 7.255× 10−4 7.306× 10−4 5.050× 10−6

1E–6 4.24× 10−2 2.40 % 6.967× 10−5 6.975× 10−5 7.952× 10−8

1E–7 1.26× 10−1 3.26 % 7.759× 10−6 7.760× 10−6 9.911× 10−10

1E–8 3.78× 10−1 4.10 % 8.083× 10−7 8.083× 10−7 1.407× 10−11

DC 1E–4 4.89× 10−3 0.69 % 1.095× 10−2 1.148× 10−2 5.281× 10−4

1E–5 1.88× 10−2 1.96 % 7.255× 10−4 7.306× 10−4 5.050× 10−6

1E–6 5.47× 10−2 3.09 % 6.967× 10−5 6.975× 10−5 7.952× 10−8

1E–7 1.66× 10−1 4.29 % 7.759× 10−6 7.760× 10−6 9.912× 10−10

1E–8 4.97× 10−1 5.39 % 8.083× 10−7 8.083× 10−7 1.407× 10−11

Table 3: GE estimation applied to (16), MIRK order 2. Number of points in
the final mesh for each tolerance, respectively: 2372, 7330, 21856, 65445, and
193040.

4.4 Results for Sixth Order

We again find that the accuracy of the error estimates for the RE, HO, and DC
approaches is excellent. As in the previous cases, the CO estimates are several
orders of magnitude too large. Tables 7, 8, and 9 provide results for sixth order
for the three test problems. “% Total” is the time for the computation of the
error estimate expressed as a percentage of the time taken to obtain the original
defect controlled solution. “τ” is the absolute difference between the actual
error and the estimated error.

We next consider the relative efficiency of the estimators by considering plots
of execution time of each estimator (relative to the time required to compute the
primary solution) vs. the tolerance. Figure 10 shows results for test problem
(14). For problem (14), the costs of the RE estimator are small (approximately
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Figure 4: Relative execution time of GE estimators vs. − log10 of defect tolerance
with second order MIRK formula for test problem (14).

between 1% and 3%). The relative costs of the other error estimators are less
than approximately 1%. Figure 11 shows results for test problem (15). For
problem (15), the costs of the RE estimator are larger (approximately between
8% and 17%). The HO costs are 2% to 3%; the DC costs are 3% to 6%; the CO
costs are 1% to 2%. For problem (16), the relative cost of RE increases from
approximately 8% to 26% as the tolerance grows sharper. The relative costs of
the CO estimator are less than 5%. The relative costs the HO scheme are 1%
to 2%; the DC costs are 1% to 4% approximately. See Figure 12.

5 BVP SOLVER with Defect/Global Error Control

5.1 Comparison of Defect/GE Control Schemes

The version of BVP SOLVER that we consider in this section provides an option
for the computation of a GE controlled numerical solution. This version of
the code performs the same basic computation to obtain a discrete numerical
solution at the mesh points of a given mesh as does the original. Once this
discrete numerical solution is obtained, the new version of the solver can then
compute an estimate of the (scaled) GE of that solution using one of the GE
estimation algorithms analyzed in the previous section. That is, this version of
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Figure 5: Relative execution time of GE estimators vs. − log10 of defect tolerance
with second order MIRK formula for test problem (15).

BVP SOLVER is able to compute an estimate of the GE for the discrete numerical
solution obtained on each intermediate mesh rather than only at the end of the
computation, as considered in the previous section. In this version of the code,
if the estimate of the GE does not satisfy the tolerance, the GE estimates for
each subinterval are passed to the mesh adaptation algorithm, where they are
used to construct a new mesh.

The mesh adaptation algorithm is identical to what is used in the defect
control case except for one parameter setting, which we now describe. Two
important quantities that are computed in the BVP SOLVER mesh adaptation
routine are related to the maximum GE or defect over all subintervals and the
average GE or defect over all subintervals. The ratio of the former quantity
to the latter is computed and compared to a parameter called ρ. If the ratio
is greater than or equal to ρ, a new mesh is constructed based on equidistri-
bution of the GE or defect. Otherwise, a new mesh is constructed by halving
each subinterval of the current mesh. In the original version of BVP SOLVER,
ρ = 1, and this forces an equidistribution process for the construction of every
new mesh. When we tried to use ρ = 1 for the new GE controlled version of
BVP SOLVER, we found that it was impossible to obtain a solution for any of the
test problems, even using meshes with millions of points. It was necessary to use
a larger value of ρ (we chose ρ = 2, a common choice in the literature) in order
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Figure 6: Relative execution time of GE estimators vs. − log10 of defect tolerance
with second order MIRK formula for test problem (16).

to force an occasional global refinement (via mesh halving) of the mesh. This
was necessary to reduce the size of non-local contributions to the GE on each
subinterval. See [6] for further details regarding the mesh adaptation algorithm
employed in BVP SOLVER and [2] for further discussion of mesh adaptation based
on error estimates.

In this section we present some results that represent a preliminary investi-
gation of the use of the GE control mode in the new version of BVP SOLVER. We
have considered numerical experiments employing the test problems (14) with
ε = 0.01 (see Figure 1) and (16) with ε = 0.005 (see Figure 3), for all three
orders, and for a range of tolerances. In each table presented here, we report,
for each tolerance, the required CPU time, the number of points used in the
final mesh (N ), the estimated and true maximum GE, and the estimated and
true maximum defect. (The true maximum GE and defect were obtained by
sampling them at 10 points per subinterval.) The DC algorithm of the previous
section was used to estimate the GE. BVP SOLVER is run in each of four control
modes: defect control (DefC), GE control (GEC), and sequential and parallel
combinations of defect and GE control, which we now describe.

• In sequential combination control (SCC) mode, a defect controlled solution
is computed, and it and its corresponding mesh are passed as the initial
data to a GE controlled computation. When the BVODE is poorly condi-
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Tol Time % Total Actual Error Estimated Error τ

RE 1E–4 6.30× 10−3 2.55 % 6.491× 10−6 6.492× 10−6 5.702× 10−10

1E–5 2.82× 10−3 1.15 % 8.836× 10−10 8.836× 10−10 1.448× 10−14

1E–6 2.38× 10−3 0.97 % 8.656× 10−10 8.656× 10−10 1.391× 10−14

1E–7 2.38× 10−3 0.96 % 8.654× 10−10 8.654× 10−10 1.365× 10−14

1E–8 1.96× 10−3 0.79 % 8.653× 10−10 8.653× 10−10 1.393× 10−14

CO 1E–4 7.80× 10−4 0.32 % 6.491× 10−6 4.245× 101 4.245× 101

1E–5 3.00× 10−4 0.12 % 8.836× 10−10 1.914× 10−2 1.914× 10−2

1E–6 4.20× 10−4 0.17 % 8.656× 10−10 1.788× 10−2 1.788× 10−2

1E–7 2.80× 10−4 0.11 % 8.654× 10−10 1.807× 10−2 1.807× 10−2

1E–8 2.40× 10−4 0.10 % 8.653× 10−10 1.785× 10−2 1.785× 10−2

HO 1E–4 1.24× 10−3 0.50 % 6.491× 10−6 6.627× 10−6 1.354× 10−7

1E–5 6.60× 10−4 0.27 % 8.836× 10−10 8.836× 10−10 2.544× 10−14

1E–6 4.00× 10−4 0.16 % 8.656× 10−10 8.656× 10−10 2.406× 10−14

1E–7 3.60× 10−4 0.14 % 8.654× 10−10 8.654× 10−10 2.356× 10−14

1E–8 5.20× 10−4 0.21 % 8.653× 10−10 8.653× 10−10 2.406× 10−14

DC 1E–4 1.80× 10−3 0.73 % 6.491× 10−6 6.595× 10−6 1.038× 10−7

1E–5 1.02× 10−3 0.42 % 8.836× 10−10 8.836× 10−10 2.284× 10−14

1E–6 6.60× 10−4 0.27 % 8.656× 10−10 8.656× 10−10 2.145× 10−14

1E–7 6.40× 10−4 0.26 % 8.654× 10−10 8.654× 10−10 2.088× 10−14

1E–8 9.40× 10−4 0.38 % 8.653× 10−10 8.653× 10−10 2.145× 10−14

Table 4: GE Estimates applied to (14), MIRK order 4. Number of points in the
final mesh for each tolerance, respectively: 1153, 577, 577, 577, and 577.

tioned, the conditioning constant is large and (from (13)) we can expect
the GE to be larger than the defect. It will thus be easier to compute a de-
fect controlled numerical solution than a GE controlled numerical solution,
potentially making it more efficient in such cases to first compute a defect
controlled solution rather than directly compute a GE controlled numeri-
cal solution. When the defect controlled solution is passed to BVP SOLVER
in GE control mode, the solver first estimates the GE of that solution.
If this estimate does not satisfy the tolerance, then a new mesh is con-
structed based on the GE estimate and the GE control mode computation
begins.

• In parallel combination control (PCC) mode, both the (scaled) defect and
the (scaled) GE estimate are obtained for each numerical solution, and
a linear combination of the two is used as input to the mesh refinement
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Tol Time % Total Actual Error Estimated Error τ

RE 1E–4 2.84× 10−2 12.00 % 3.350× 10−12 3.355× 10−12 5.496× 10−15

1E–5 2.88× 10−2 11.63 % 3.078× 10−12 3.078× 10−12 3.755× 10−16

1E–6 2.90× 10−2 10.85 % 2.949× 10−12 2.948× 10−12 6.299× 10−16

1E–7 2.88× 10−2 10.30 % 2.888× 10−12 2.887× 10−12 5.757× 10−16

1E–8 2.80× 10−2 9.34 % 2.842× 10−12 2.841× 10−12 6.191× 10−16

CO 1E–4 2.10× 10−3 0.89 % 3.350× 10−12 1.956× 102 1.956× 102

1E–5 2.90× 10−3 1.17 % 3.078× 10−12 7.233 7.233
1E–6 2.10× 10−3 0.79 % 2.949× 10−12 2.605× 10−1 2.605× 10−1

1E–7 3.60× 10−3 1.29 % 2.888× 10−12 5.180× 10−2 5.180× 10−2

1E–8 2.00× 10−3 0.67 % 2.842× 10−12 1.043× 10−1 1.043× 10−1

HO 1E–4 5.60× 10−3 2.37 % 3.350× 10−12 3.349× 10−12 5.684× 10−16

1E–5 5.90× 10−3 2.38 % 3.078× 10−12 3.078× 10−12 3.129× 10−16

1E–6 6.20× 10−3 2.32 % 2.949× 10−12 2.948× 10−12 4.757× 10−16

1E–7 6.30× 10−3 2.25 % 2.888× 10−12 2.888× 10−12 4.059× 10−16

1E–8 6.10× 10−3 2.03 % 2.842× 10−12 2.841× 10−12 4.722× 10−16

DC 1E–4 1.03× 10−2 4.35 % 3.350× 10−12 3.441× 10−12 9.167× 10−14

1E–5 1.00× 10−2 4.04 % 3.078× 10−12 3.079× 10−12 3.129× 10−16

1E–6 1.00× 10−2 3.74 % 2.949× 10−12 2.948× 10−12 4.757× 10−16

1E–7 1.01× 10−2 3.61 % 2.888× 10−12 2.888× 10−12 3.807× 10−16

1E–8 1.02× 10−2 3.40 % 2.842× 10−12 2.841× 10−12 4.722× 10−16

Table 5: GE Estimates applied to (15), MIRK order 4. Number of points in the
final mesh for each tolerance is 4609 in all cases.

process and the termination criterion. For this preliminary investigation,
we consider only the simple sum of the scaled defect and the scaled GE es-
timate. In this case, the resultant numerical solution has a defect estimate
and a GE estimate that both satisfy the user tolerance, and the numerical
solution can also be said to be the exact solution to a BVODE that is a
perturbation (on the order of the tolerance) of the original BVODE.

In Table 10 we report results for test problem (14) with ε = 0.01 and using
MIRK formula order 2. In Table 11 we report results for test problem (14) with
ε = 0.01 and using MIRK formula order 4. In Table 12 we report results for
test problem (14) with ε = 0.01 and using MIRK formula order 6. In all three
cases, the cost of computing a defect controlled solution is greater than the cost
of computing a GE controlled solution for coarser tolerances and only slightly
smaller for sharper tolerances. The estimated GE for the defect controlled
solution is less than the tolerance, and thus in SCC mode the code does no
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Tol Time % Total Actual Error Estimated Error τ

RE 1E–4 2.00× 10−3 7.82 % 7.339× 10−4 8.108× 10−4 7.686× 10−5

1E–5 3.52× 10−3 12.14 % 3.215× 10−5 3.218× 10−5 3.453× 10−8

1E–6 5.37× 10−3 13.86 % 9.032× 10−5 8.975× 10−5 5.669× 10−7

1E–7 1.09× 10−2 19.95 % 1.071× 10−5 1.070× 10−5 1.504× 10−8

1E–8 1.94× 10−2 21.34 % 7.346× 10−7 7.341× 10−7 5.033× 10−10

CO 1E–4 4.30× 10−4 1.68 % 7.339× 10−4 3.524× 106 3.524× 106

1E–5 1.07× 10−3 3.70 % 3.215× 10−5 7.554× 105 7.554× 105

1E–6 2.13× 10−3 5.50 % 9.032× 10−5 2.572× 105 2.572× 105

1E–7 1.74× 10−3 3.17 % 1.071× 10−5 6.239× 104 6.239× 104

1E–8 3.72× 10−3 4.09 % 7.346× 10−7 4.743× 103 4.743× 103

HO 1E–4 1.70× 10−4 0.67 % 7.339× 10−4 7.143× 10−4 1.955× 10−5

1E–5 4.43× 10−4 1.53 % 3.215× 10−5 3.269× 10−5 5.413× 10−7

1E–6 3.17× 10−4 0.82 % 9.032× 10−5 9.159× 10−5 1.265× 10−6

1E–7 1.22× 10−3 2.23 % 1.071× 10−5 1.075× 10−5 3.693× 10−8

1E–8 3.56× 10−3 3.92 % 7.346× 10−7 7.354× 10−7 7.140× 10−10

DC 1E–4 2.93× 10−4 1.15 % 7.339× 10−4 7.143× 10−4 1.956× 10−5

1E–5 5.47× 10−4 1.89 % 3.215× 10−5 3.269× 10−5 5.413× 10−7

1E–6 8.76× 10−4 2.26 % 9.032× 10−5 9.159× 10−5 1.265× 10−6

1E–7 1.02× 10−3 1.86 % 1.071× 10−5 1.075× 10−5 3.693× 10−8

1E–8 9.19× 10−4 1.01 % 7.346× 10−7 7.354× 10−7 7.140× 10−10

Table 6: GE estimation applied to (16), MIRK order 4. Number of points in
the final mesh for each tolerance, respectively: 125, 224, 345, 595, and 1105.

extra adaptation — it simply stops after determining that the estimated GE
is less than the tolerance. We observe that the final mesh is the same as the
final mesh used in the defect control case. The cost of running in SCC mode
is greater than the cost of running in GE control mode for coarser tolerances
and only slightly smaller for sharper tolerances. For this test problem, there is
thus no significant advantage to using SCC mode. The costs for PCC mode are
slightly higher than those for either defect control mode or GE control mode.

In Table 13 we report results for test problem (16) with ε = 0.005 and MIRK
formula order 2. In this case, the cost of computing a defect controlled solution
is significantly less than the cost of computing a GE controlled solution. As
well, the estimated GE for the defect controlled solutions is greater than the
corresponding tolerance. In the SCC case, substantial additional computation is
required to go from the defect controlled solution to the GE controlled solution,
and the costs are greater than for direct GE control. On the other hand, except

23



4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.5

1

1.5

2

2.5

3

−log
10

(Defect Tolerance)

E
xe

cu
tio

n 
Ti

m
e 

re
la

tiv
e 

to
 P

rim
ar

y 
S

ol
ut

io
n 

(%
)

Richardson Extrapolation
Higher Order Formula
Deferred Correction
Conditioning Constant

Figure 7: Relative execution time of global error estimators vs. − log10 of defect
tolerance with fourth order MIRK formula for test problem (14).

for the sharpest tolerance, the solution obtained through PCC control costs less
than the computation in which only the GE estimate is controlled, suggesting
that the inclusion of information about the defect is of some benefit to GE
control. In Table 14 we report results for test problem (16) with ε = 0.005 and
MIRK formula order 4. The cost of computing a defect controlled solution is less
than or equal to the cost of computing a GE controlled solution. The estimated
GE for the defect controlled solutions is less than the tolerance. In SCC mode,
except for the two coarsest tolerances, the costs for obtaining a GE controlled
solution are less than for the direct GE control case. The solution obtained
through PCC control costs somewhat more than the other cases. In Table 15
we report results for test problem (16) with ε = 0.005 and MIRK formula
order 6. The cost of computing a defect controlled solution is somewhat less
than the cost of computing a GE controlled solution. Except for the sharpest
tolerance, the estimated GE for the defect controlled solutions is less than the
corresponding tolerance. In SCC mode, except for the coarsest tolerance, the
costs for obtaining a GE controlled solution are less than for the direct GE
control case. The solution obtained through PCC control costs approximately
the same as the computation in which only the GE estimate is controlled.
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Figure 8: Relative execution time of global error estimators vs. − log10 of defect
tolerance with fourth order MIRK formula for test problem (15).

5.2 Use of BVP SOLVER in GE Control Mode on a Problem
with a Pseudosolution

In this subsection we briefly consider the application of BVP SOLVER in GE con-
trol mode to a problem that has a pseudosolution.

The BVODE [14]

y′′(x) + |y(x)| = 0, 0 < x < π, y(0) = 0, y(π) = yπ, (17)

has a unique solution for yπ < 0, infinitely many solutions for yπ = 0, and no
solution for yπ > 0. We first run BVP SOLVER in its original defect control mode
and are able to obtain two pseudosolutions when yπ = 0.001. We obtain one
pseudosolution with the second order MIRK method and a second pseudosolu-
tion with the fourth order MIRK method. In both cases, a tolerance of 10−6

is used and an initial guess of y(x) = 1.0 and y′(x) = 0.0 for 0 ≤ x ≤ π is
provided. For both orders, BVP SOLVER indicates that it finds a solution with a
defect norm well below the tolerance. However, if we employ the option within
BVP SOLVER to compute an a posteriori GE estimate (using RE) we find that
for both MIRK orders the estimated GE is quite large, signaling the presence of
a pseudosolution; see Table 16. When we attempt to use BVP SOLVER in defect
control mode using the sixth order MIRK method to solve (17) with yπ = 0.001,
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Figure 9: Relative execution time of global error estimators vs. − log10 of defect
tolerance with fourth order MIRK formula for test problem (16).

the Newton iteration fails to converge and even a defect controlled numerical
solution cannot be obtained.

We next tried using BVP SOLVER in GE control mode to solve (17) with
yπ = 0.001, using second and fourth order MIRK methods, with a tolerance
of 10−6, i.e., the cases that yield pseudosolutions in defect control mode. We
found that BVP SOLVER in GE control mode was unable to significantly reduce
the GE even using a million mesh points and thus, appropriately, is not able to
obtain a GE controlled numerical solution.

6 Conclusions

6.1 Conclusions: Alternative GE Estimators

In this report we have discussed the efficient implementation of three well known
approaches to estimating the GE of the numerical solution of a BVODE within
a defect control solver. We have also considered an approach for obtaining a
bound on the GE that is based on an estimate of the defect and an estimate of a
conditioning constant for the BVODE. The approaches based on the HO scheme
and the DC scheme are generally less expensive than the approach based on the
RE scheme while achieving a GE estimate with the same overall quality. The CO
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Tol Time % Total Actual Error Estimated Error τ

RE 1E–4 9.04× 10−3 2.45 % 1.072× 10−7 1.087× 10−7 1.526× 10−9

1E–5 9.34× 10−3 2.51 % 1.826× 10−8 1.831× 10−8 5.280× 10−11

1E–6 8.76× 10−3 2.35 % 1.502× 10−8 1.500× 10−8 1.759× 10−11

1E–7 4.26× 10−3 1.15 % 1.525× 10−12 1.530× 10−12 4.845× 10−15

1E–8 4.78× 10−3 1.28 % 1.521× 10−12 1.526× 10−12 4.804× 10−15

CO 1E–4 6.60× 10−4 0.18 % 1.072× 10−7 1.926 1.926
1E–5 7.60× 10−4 0.20 % 1.826× 10−8 1.056× 10−1 1.056× 10−1

1E–6 8.00× 10−4 0.21 % 1.502× 10−8 1.041× 10−1 1.041× 10−1

1E–7 3.60× 10−4 0.10 % 1.525× 10−12 2.724× 10−5 2.724× 10−5

1E–8 4.40× 10−4 0.12 % 1.521× 10−12 2.783× 10−5 2.783× 10−5

HO 1E–4 2.20× 10−3 0.60 % 1.072× 10−7 1.050× 10−7 2.175× 10−9

1E–5 1.90× 10−3 0.51 % 1.826× 10−8 1.780× 10−8 4.649× 10−10

1E–6 3.10× 10−3 0.83 % 1.502× 10−8 1.485× 10−8 1.635× 10−10

1E–7 1.08× 10−3 0.29 % 1.525× 10−12 1.530× 10−12 4.616× 10−15

1E–8 9.80× 10−4 0.26 % 1.521× 10−12 1.526× 10−12 4.770× 10−15

DC 1E–4 2.16× 10−3 0.59 % 1.072× 10−7 2.070× 10−7 9.978× 10−8

1E–5 2.86× 10−3 0.77 % 1.826× 10−8 1.973× 10−8 1.470× 10−9

1E–6 2.30× 10−3 0.62 % 1.502× 10−8 1.386× 10−8 1.163× 10−9

1E–7 1.40× 10−3 0.38 % 1.525× 10−12 1.525× 10−12 2.810× 10−16

1E–8 9.80× 10−4 0.26 % 1.521× 10−12 1.521× 10−12 2.004× 10−16

Table 7: GE Estimates applied to (14), MIRK order 6. Number of points in the
final mesh for each tolerance, respectively: 1153, 1153, 1153, 577, and 577.

approach generally has a low cost but does not have good accuracy. Nonetheless,
a bound on the conditioning constant may be useful for the detection of ill-
conditioning for a given BVODE [14].

We can draw the following conclusions from the results presented in this
report:

(i) The a posteriori GE estimation employed by BVP SOLVER should be based
on the HO or DC estimate rather than the RE estimate.

(ii) The CO approach provides a less accurate estimate of the GE because
the estimate of the conditioning constant does not provide a tight upper
bound. When one employs BVP SOLVER with the option to compute an
estimate of the GE, our results suggest that one can then obtain a better
estimate of the conditioning constant by using the GE estimate and the
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Tol Time % Total Actual Error Estimated Error τ

RE 1E–4 1.46× 10−1 17.14 % 7.694× 10−5 7.697× 10−5 2.942× 10−8

1E–5 1.45× 10−1 16.72 % 1.058× 10−5 1.058× 10−5 2.015× 10−9

1E–6 7.27× 10−2 8.64 % 7.411× 10−16 3.750× 10−16 3.661× 10−16

1E–7 7.68× 10−2 8.42 % 1.108× 10−15 2.125× 10−16 8.959× 10−16

1E–8 7.62× 10−2 7.84 % 1.055× 10−15 2.246× 10−16 8.308× 10−16

CO 1E–4 1.87× 10−2 2.20 % 7.694× 10−5 3.807× 107 3.807× 107

1E–5 1.74× 10−2 2.01 % 1.058× 10−5 5.708× 106 5.708× 106

1E–6 4.90× 10−3 0.58 % 7.411× 10−16 1.200× 10−2 1.200× 10−2

1E–7 4.50× 10−3 0.49 % 1.108× 10−15 1.618× 10−4 1.618× 10−4

1E–8 5.50× 10−3 0.57 % 1.055× 10−15 1.309× 10−4 1.309× 10−4

HO 1E–4 3.22× 10−2 3.78 % 7.694× 10−5 7.755× 10−5 6.109× 10−7

1E–5 3.10× 10−2 3.57 % 1.058× 10−5 1.063× 10−5 4.578× 10−8

1E–6 1.64× 10−2 1.95 % 7.411× 10−16 4.217× 10−16 3.194× 10−16

1E–7 1.73× 10−2 1.90 % 1.108× 10−15 2.149× 10−16 8.936× 10−16

1E–8 1.77× 10−2 1.82 % 1.055× 10−15 2.173× 10−16 8.381× 10−16

DC 1E–4 4.99× 10−2 5.86 % 7.694× 10−5 7.755× 10−5 6.109× 10−7

1E–5 4.90× 10−2 5.65 % 1.058× 10−5 1.063× 10−5 4.578× 10−8

1E–6 2.42× 10−2 2.87 % 7.411× 10−16 4.409× 10−16 3.003× 10−16

1E–7 2.60× 10−2 2.85 % 1.108× 10−15 2.218× 10−16 8.867× 10−16

1E–8 2.62× 10−2 2.70 % 1.055× 10−15 2.218× 10−16 8.336× 10−16

Table 8: GE Estimates applied to (15), MIRK order 6. Number of points in the
final mesh for each tolerance, respectively: 15213, 15424, 7752, 7787, and 7825.

defect estimate; i.e., rewriting (13), we get

||y(x) − S(x)||W3

max(||δ(x)||W1 , ||σ||W2)
≤ κ,

giving a lower bound on κ.

(iii) The results presented in this report may also be relevant for BVODE GE
control solvers. In particular, it may be possible to improve the efficiency
of the GE estimation approach employed by COLSYS[1] or COLNEW[3] be-
cause these solvers employ RE for one type of GE estimation. It may be
worthwhile to investigate the use of the HO or DC approach, with appro-
priate modifications, within these solvers. It may be possible to obtain a
higher order approximate solution using a higher order collocation method
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Tol Time % Total Actual Error Estimated Error τ

RE 1E–4 8.17× 10−4 8.21 % 6.175× 10−4 6.226× 10−4 5.102× 10−6

1E–5 1.01× 10−3 9.77 % 1.536× 10−5 1.530× 10−5 6.543× 10−8

1E–6 2.98× 10−3 22.83 % 9.056× 10−7 9.061× 10−7 5.469× 10−10

1E–7 3.20× 10−3 23.17 % 3.393× 10−7 3.393× 10−7 1.961× 10−11

1E–8 6.01× 10−3 26.05 % 9.737× 10−8 9.734× 10−8 3.197× 10−11

CO 1E–4 1.03× 10−4 1.04 % 6.175× 10−4 1.073× 105 1.073× 105

1E–5 2.50× 10−4 2.41 % 1.536× 10−5 9.898× 103 9.898× 103

1E–6 4.00× 10−4 3.07 % 9.056× 10−7 1.459× 103 1.459× 103

1E–7 5.50× 10−4 3.99 % 3.393× 10−7 5.966× 102 5.966× 102

1E–8 9.80× 10−4 4.24 % 9.737× 10−8 3.206× 102 3.206× 102

HO 1E–4 7.67× 10−5 0.77 % 6.175× 10−4 6.305× 10−4 1.302× 10−5

1E–5 1.00× 10−4 0.96 % 1.536× 10−5 1.525× 10−5 1.128× 10−7

1E–6 2.23× 10−4 1.71 % 9.056× 10−7 9.076× 10−7 2.007× 10−9

1E–7 3.70× 10−4 2.68 % 3.393× 10−7 3.395× 10−7 1.491× 10−10

1E–8 4.93× 10−4 2.14 % 9.737× 10−8 9.731× 10−8 6.310× 10−11

DC 1E–4 6.00× 10−5 0.60 % 6.175× 10−4 6.305× 10−4 1.302× 10−5

1E–5 1.37× 10−4 1.32 % 1.536× 10−5 1.525× 10−5 1.128× 10−7

1E–6 4.03× 10−4 3.09 % 9.056× 10−7 9.076× 10−7 2.007× 10−9

1E–7 4.99× 10−4 3.62 % 3.393× 10−7 3.395× 10−7 1.491× 10−10

1E–8 8.03× 10−4 3.48 % 9.737× 10−8 9.731× 10−8 6.310× 10−11

Table 9: GE estimation applied to (16), MIRK order 6. Number of points in
the final mesh for each tolerance, respectively: 50, 76, 104, 136, and 213.

applied on the final mesh from the computation of the primary collocation
solution.

6.2 Conclusions: GE/Defect Control Modes

Because both the GE and the defect provide valid measures of solution quality,
the results presented here suggest that it may be worthwhile to have a BVODE
solver that can employ either GE control, defect control, or a hybrid GE/defect
control strategy. In particular, some of the results indicate that a hybrid control
scheme can yield a GE controlled numerical solution more efficiently than a
scheme that controls only the GE.
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Figure 10: Relative execution time of global error estimators vs. − log10 of defect
tolerance with sixth order MIRK formula for test problem (14).
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DefC

Tol CPU Times (s) N Est. Defect True Defect Est. GE True GE
1 × 10−4 1.128× 10−2 662 4.233× 10−5 5.597× 10−5 7.953× 10−6 7.872× 10−6

1 × 10−5 3.550× 10−2 2193 5.279× 10−6 6.980× 10−6 7.163× 10−7 7.091× 10−7

1 × 10−6 7.780× 10−2 6015 9.289× 10−7 1.228× 10−6 9.365× 10−8 9.380× 10−8

1 × 10−7 1.440× 10−1 16067 9.852× 10−8 1.303× 10−7 1.334× 10−8 1.312× 10−8

1 × 10−8 4.759× 10−1 51236 6.326× 10−9 8.366× 10−9 1.297× 10−9 1.287× 10−9

GEC

Tol CPU Times (s) N Est. Defect True Defect Est. GE True GE

1 × 10−4 1.030× 10−2 541 6.380× 10−3 8.408× 10−3 4.045× 10−5 2.774× 10−5

1 × 10−5 3.004× 10−2 1859 1.035× 10−3 1.366× 10−3 3.408× 10−6 3.540× 10−6

1 × 10−6 3.938× 10−2 2709 1.152× 10−4 1.523× 10−4 8.999× 10−7 8.565× 10−7

1 × 10−7 5.236× 10−2 5069 1.309× 10−5 1.730× 10−5 9.750× 10−8 9.751× 10−8

1 × 10−8 2.816× 10−1 31165 4.780× 10−7 6.320× 10−7 2.565× 10−9 2.565× 10−9

SCC

Tol CPU Times (s) N Est. Defect True Defect Est. GE True GE

1 × 10−4 1.188× 10−2 662 4.233× 10−5 5.597× 10−5 7.953× 10−6 7.872× 10−6

1 × 10−5 3.724× 10−2 2193 5.279× 10−6 6.980× 10−6 7.163× 10−7 7.091× 10−7

1 × 10−6 8.630× 10−2 6015 9.289× 10−7 1.228× 10−6 9.365× 10−8 9.380× 10−8

1 × 10−7 1.662× 10−1 16067 9.852× 10−8 1.303× 10−7 1.334× 10−8 1.312× 10−8

1 × 10−8 5.500× 10−1 51236 6.326× 10−9 8.366× 10−9 1.297× 10−9 1.287× 10−9

PCC

Tol CPU Times (s) N Est. Defect True Defect Est. GE True GE

1 × 10−4 1.498× 10−2 1291 8.098× 10−5 1.071× 10−4 1.705× 10−6 1.706× 10−6

1 × 10−5 5.044× 10−2 4293 3.783× 10−6 5.002× 10−6 1.600× 10−7 1.600× 10−7

1 × 10−6 1.212× 10−1 7470 7.699× 10−7 1.018× 10−6 4.345× 10−8 4.252× 10−8

1 × 10−7 3.116× 10−1 33647 4.738× 10−8 6.265× 10−8 2.345× 10−9 2.386× 10−9

1 × 10−8 1.359 147457 4.514× 10−9 5.969× 10−9 2.433× 10−10 2.393× 10−10

Table 10: Error control methods applied to (14) with ε = 0.01, MIRK order 2.
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DefC

Tol CPU Time (s) N Est. Defect True Defect Est. GE True GE
10−4 4.657× 10−3 62 4.434× 10−5 8.908× 10−5 4.381× 10−6 4.750× 10−6

10−5 6.566× 10−3 106 2.385× 10−6 5.813× 10−6 3.594× 10−7 3.930× 10−7

10−6 6.927× 10−3 191 6.012× 10−7 1.208× 10−6 2.703× 10−8 2.874× 10−8

10−7 8.178× 10−3 281 9.429× 10−8 1.894× 10−7 5.358× 10−9 5.651× 10−9

10−8 9.947× 10−3 485 9.264× 10−9 1.861× 10−8 5.649× 10−10 5.831× 10−10

GEC

Tol CPU Time (s) N Est. Defect True Defect Est. GE True GE

10−4 3.660× 10−3 47 8.676× 10−4 1.648× 10−3 4.309× 10−5 4.931× 10−5

10−5 4.310× 10−3 83 9.105× 10−5 1.757× 10−4 4.237× 10−6 4.729× 10−6

10−6 5.243× 10−3 145 1.266× 10−5 2.452× 10−5 4.513× 10−7 4.857× 10−7

10−7 9.898× 10−3 303 2.675× 10−5 5.374× 10−5 5.942× 10−8 1.207× 10−7

10−8 1.009× 10−2 529 2.037× 10−6 4.093× 10−6 4.668× 10−9 9.050× 10−9

SCC

Tol CPU Time (s) N Est. Defect True Defect Est. GE True GE

10−4 5.480× 10−3 62 4.434× 10−5 8.908× 10−5 4.381× 10−6 4.750× 10−6

10−5 6.699× 10−3 106 2.385× 10−6 5.813× 10−6 3.594× 10−7 3.930× 10−7

10−6 8.236× 10−3 191 6.012× 10−7 1.208× 10−6 2.703× 10−8 2.874× 10−8

10−7 9.631× 10−3 281 9.429× 10−8 1.894× 10−7 5.358× 10−9 5.651× 10−9

10−8 9.997× 10−3 485 9.264× 10−9 1.861× 10−8 5.649× 10−10 5.831× 10−10

PCC

Tol CPU Time (s) N Est. Defect True Defect Est. GE True GE

10−4 4.800× 10−3 110 2.544× 10−5 4.665× 10−5 1.916× 10−6 2.122× 10−6

10−5 5.403× 10−3 145 8.356× 10−6 1.614× 10−5 6.310× 10−7 6.685× 10−7

10−6 9.759× 10−3 235 4.847× 10−7 9.737× 10−7 5.700× 10−9 5.780× 10−9

10−7 9.955× 10−3 403 4.278× 10−8 8.594× 10−8 6.297× 10−10 6.347× 10−10

10−8 1.084× 10−2 1047 7.168× 10−9 1.440× 10−8 1.376× 10−11 3.628× 10−11

Table 11: Error control methods applied to (14) with ε = 0.01, MIRK order 4.
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DefC

Tol CPU Times (s) N Est. Defect True Defect Est. GE True GE
1 × 10−4 5.133× 10−3 32 2.392× 10−5 7.236× 10−5 1.194× 10−6 1.594× 10−6

1 × 10−5 4.850× 10−3 40 7.391× 10−6 8.207× 10−6 4.671× 10−7 4.700× 10−7

1 × 10−6 6.419× 10−3 68 2.470× 10−7 2.728× 10−7 1.529× 10−8 1.622× 10−8

1 × 10−7 6.238× 10−3 81 1.991× 10−8 2.308× 10−8 1.441× 10−9 1.569× 10−9

1 × 10−8 7.042× 10−3 116 7.742× 10−9 7.910× 10−9 1.464× 10−10 1.516× 10−10

GEC

Tol CPU Times (s) N Est. Defect True Defect Est. GE True GE

1 × 10−4 4.797× 10−3 19 2.197× 10−2 2.217× 10−2 2.788× 10−5 5.660× 10−5

1 × 10−5 4.917× 10−3 25 6.023× 10−4 6.078× 10−4 5.129× 10−6 5.191× 10−6

1 × 10−6 5.193× 10−3 40 2.713× 10−5 2.820× 10−5 2.644× 10−7 2.898× 10−7

1 × 10−7 5.396× 10−3 51 5.954× 10−6 6.225× 10−6 5.824× 10−8 6.416× 10−8

1 × 10−8 4.446× 10−3 75 5.409× 10−7 5.727× 10−7 5.477× 10−9 6.394× 10−9

SCC

Tol CPU Times (s) N Est. Defect True Defect Est. GE True GE

1 × 10−4 5.340× 10−3 32 2.392× 10−5 7.236× 10−5 1.194× 10−6 1.594× 10−6

1 × 10−5 4.967× 10−3 40 7.391× 10−6 8.207× 10−6 4.671× 10−7 4.700× 10−7

1 × 10−6 6.675× 10−3 68 2.470× 10−7 2.728× 10−7 1.529× 10−8 1.622× 10−8

1 × 10−7 6.531× 10−3 81 1.991× 10−8 2.308× 10−8 1.441× 10−9 1.569× 10−9

1 × 10−8 7.521× 10−3 116 7.742× 10−9 7.910× 10−9 1.464× 10−10 1.516× 10−10

PCC

Tol CPU Times (s) N Est. Defect True Defect Est. GE True GE

1 × 10−4 5.607× 10−3 42 9.438× 10−6 1.278× 10−5 2.686× 10−7 3.093× 10−7

1 × 10−5 6.073× 10−3 58 8.441× 10−7 8.911× 10−7 3.786× 10−8 3.824× 10−8

1 × 10−6 6.752× 10−3 82 1.048× 10−7 1.245× 10−7 4.577× 10−9 4.806× 10−9

1 × 10−7 7.674× 10−3 116 1.430× 10−8 1.563× 10−8 5.476× 10−10 5.465× 10−10

1 × 10−8 8.543× 10−3 145 3.796× 10−9 3.893× 10−9 1.396× 10−10 1.393× 10−10

Table 12: Error control methods applied to (14) with ε = 0.01, MIRK order 6.
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DefC

Tol CPU Time (s) N Est. Defect True Defect Est. GE True GE
10−4 1.828× 10−2 935 6.430× 10−5 8.232× 10−5 4.303× 10−4 4.303× 10−4

10−5 4.608× 10−2 2621 8.181× 10−6 1.069× 10−5 5.409× 10−5 5.460× 10−5

10−6 1.664× 10−1 8491 6.788× 10−7 8.945× 10−7 5.177× 10−6 5.188× 10−6

10−7 5.794× 10−1 27546 6.140× 10−8 8.110× 10−8 4.922× 10−7 4.924× 10−7

10−8 1.218 71641 9.405× 10−9 1.243× 10−8 7.278× 10−8 7.280× 10−8

GEC

Tol CPU Time (s) N Est. Defect True Defect Est. GE True GE

10−4 2.086× 10−1 9217 1.551× 10−3 1.786× 10−3 5.354× 10−5 5.354× 10−5

10−5 8.790× 10−1 36865 1.117× 10−4 1.417× 10−4 3.333× 10−6 3.333× 10−6

10−6 1.772 73729 2.871× 10−5 3.714× 10−5 8.333× 10−7 8.333× 10−7

10−7 7.218 294913 1.832× 10−6 2.410× 10−6 5.208× 10−8 5.208× 10−8

10−8 2.912× 101 1179649 1.151× 10−7 1.520× 10−7 3.255× 10−9 3.257× 10−9

SCC

Tol CPU Time (s) N Est. Defect True Defect Est. GE True GE

10−4 3.590× 10−1 14697 3.426× 10−5 4.423× 10−5 2.917× 10−5 2.917× 10−5

10−5 1.137 46233 2.812× 10−6 3.697× 10−6 3.074× 10−6 3.074× 10−6

10−6 3.606 145681 2.777× 10−7 3.671× 10−7 3.108× 10−7 3.108× 10−7

10−7 1.145× 101 460041 2.777× 10−8 3.671× 10−8 3.116× 10−8 3.116× 10−8

10−8 3.591× 101 1454553 2.774× 10−9 3.668× 10−9 3.119× 10−9 3.122× 10−9

PCC

Tol CPU Time (s) N Est. Defect True Defect Est. GE True GE

10−4 1.017× 10−1 4355 4.846× 10−5 6.230× 10−5 2.990× 10−5 2.993× 10−5

10−5 5.790× 10−1 20275 2.045× 10−6 2.688× 10−6 1.940× 10−6 1.940× 10−6

10−6 1.372 61907 6.660× 10−7 8.776× 10−7 3.249× 10−7 3.249× 10−7

10−7 6.938 294913 5.342× 10−8 7.058× 10−8 1.943× 10−8 1.943× 10−8

10−8 3.236× 101 1007643 1.622× 10−9 2.144× 10−9 1.547× 10−9 1.549× 10−9

Table 13: Error control methods applied to (16) with ε = 0.005, MIRK order 2.
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DefC

Tol CPU Times (s) N Est. Defect True Defect Est. GE True GE
1 × 10−4 2.433× 10−4 39 9.072× 10−5 2.688× 10−4 3.812× 10−5 3.892× 10−5

1 × 10−5 6.200× 10−4 69 5.324× 10−6 2.540× 10−5 3.384× 10−6 3.388× 10−6

1 × 10−6 1.520× 10−3 119 6.478× 10−7 2.700× 10−6 3.710× 10−7 3.714× 10−7

1 × 10−7 3.585× 10−3 202 9.185× 10−8 2.885× 10−7 4.376× 10−8 4.380× 10−8

1 × 10−8 9.689× 10−3 374 4.934× 10−9 2.204× 10−8 3.717× 10−9 3.719× 10−9

GEC

Tol CPU Times (s) N Est. Defect True Defect Est. GE True GE

1 × 10−4 2.433× 10−4 37 2.965× 10−4 6.397× 10−4 4.552× 10−5 4.547× 10−5

1 × 10−5 6.667× 10−4 73 3.892× 10−5 7.114× 10−5 2.797× 10−6 2.799× 10−6

1 × 10−6 2.383× 10−3 145 4.284× 10−6 6.605× 10−6 1.734× 10−7 1.737× 10−7

1 × 10−7 8.320× 10−3 289 4.031× 10−7 5.299× 10−7 1.082× 10−8 1.083× 10−8

1 × 10−8 1.340× 10−2 577 3.301× 10−8 3.867× 10−8 6.760× 10−10 6.767× 10−10

SCC

Tol CPU Times (s) N Est. Defect True Defect Est. GE True GE

1 × 10−4 3.133× 10−4 39 9.072× 10−5 2.688× 10−4 3.812× 10−5 3.892× 10−5

1 × 10−5 7.667× 10−4 69 5.324× 10−6 2.540× 10−5 3.384× 10−6 3.388× 10−6

1 × 10−6 1.743× 10−3 119 6.478× 10−7 2.700× 10−6 3.710× 10−7 3.714× 10−7

1 × 10−7 4.331× 10−3 202 9.185× 10−8 2.885× 10−7 4.376× 10−8 4.380× 10−8

1 × 10−8 1.042× 10−2 374 4.934× 10−9 2.204× 10−8 3.717× 10−9 3.719× 10−9

PCC

Tol CPU Times (s) N Est. Defect True Defect Est. GE True GE

1 × 10−4 7.200× 10−4 73 3.892× 10−5 7.114× 10−5 2.797× 10−6 2.799× 10−6

1 × 10−5 2.530× 10−3 145 4.284× 10−6 6.605× 10−6 1.734× 10−7 1.737× 10−7

1 × 10−6 8.403× 10−3 289 4.031× 10−7 5.299× 10−7 1.082× 10−8 1.083× 10−8

1 × 10−7 1.457× 10−2 577 3.301× 10−8 3.867× 10−8 6.760× 10−10 6.767× 10−10

1 × 10−8 3.280× 10−2 1153 2.429× 10−9 2.774× 10−9 4.225× 10−11 4.265× 10−11

Table 14: Error control methods applied to (16) with ε = 0.005, MIRK order 4.
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DefC

Tol CPU Time (s) N Est. Defect True Defect Est. GE True GE
10−4 5.000× 10−5 16 3.768× 10−5 9.267× 10−5 8.900× 10−5 1.483× 10−4

10−5 9.000× 10−5 22 5.583× 10−6 1.813× 10−5 8.158× 10−6 2.181× 10−5

10−6 2.967× 10−4 35 2.651× 10−7 9.181× 10−7 6.303× 10−7 9.015× 10−7

10−7 5.933× 10−4 49 3.741× 10−8 1.283× 10−7 9.248× 10−8 1.307× 10−7

10−8 7.933× 10−4 68 7.000× 10−9 2.160× 10−8 1.306× 10−8 1.813× 10−8

GEC

Tol CPU Time (s) N Est. Defect True Defect Est. GE True GE

10−4 8.000× 10−5 19 1.475× 10−5 5.395× 10−5 2.293× 10−5 8.404× 10−5

10−5 3.233× 10−4 37 4.392× 10−7 1.734× 10−6 1.129× 10−6 1.289× 10−6

10−6 1.330× 10−3 73 1.432× 10−8 4.625× 10−8 1.755× 10−8 2.005× 10−8

10−7 1.373× 10−3 73 1.432× 10−8 4.625× 10−8 1.755× 10−8 2.005× 10−8

10−8 5.024× 10−3 145 4.173× 10−10 1.049× 10−9 2.738× 10−10 3.169× 10−10

SCC

Tol CPU Time (s) N Est. Defect True Defect Est. GE True GE

10−4 8.667× 10−5 16 3.768× 10−5 9.267× 10−5 8.900× 10−5 1.483× 10−4

10−5 1.067× 10−4 22 5.583× 10−6 1.813× 10−5 8.158× 10−6 2.181× 10−5

10−6 3.933× 10−4 35 2.651× 10−7 9.181× 10−7 6.303× 10−7 9.015× 10−7

10−7 6.300× 10−4 49 3.741× 10−8 1.283× 10−7 9.248× 10−8 1.307× 10−7

10−8 3.942× 10−3 135 2.003× 10−10 4.755× 10−10 2.417× 10−10 2.833× 10−10

PCC

Tol CPU Time (s) N Est. Defect True Defect Est. GE True GE

10−4 9.000× 10−5 19 1.475× 10−5 5.395× 10−5 2.293× 10−5 8.404× 10−5

10−5 3.700× 10−4 37 4.392× 10−7 1.734× 10−6 1.129× 10−6 1.289× 10−6

10−6 1.287× 10−3 73 1.432× 10−8 4.625× 10−8 1.755× 10−8 2.005× 10−8

10−7 1.423× 10−3 73 1.432× 10−8 4.625× 10−8 1.755× 10−8 2.005× 10−8

10−8 5.268× 10−3 145 4.173× 10−10 1.049× 10−9 2.738× 10−10 3.169× 10−10

Table 15: Error control methods applied to (16) with ε = 0.005, MIRK order 6.
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Order Defect GE

2 6.23× 10−7 5.17
4 7.21× 10−7 164.55

Table 16: Result of solving (17) with BVP SOLVER using defect control with an a
posteriori GE estimate. Order is the order of the MIRK formula, Defect is the
estimated defect max norm, and GE is the estimated GE max norm. We see
that the defect is less than the requested tolerance of 10−6 but the GE is quite
large, signaling the presence of a pseudosolution.
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