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Abstract

BACOL is a software package for the numerical solution of systems
of one-dimensional parabolic partial differential equations (PDEs) that
has been shown to be superior to other similar packages, especially for
problems exhibiting sharp spatial layer regions where a stringent toler-
ance is imposed. BACOL, based on a method-of-lines algorithm, features
adaptive control of a high order estimate of the spatial error. (Adap-
tive control of the temporal error in the numerical solution of the system
of differential-algebraic equations (DAEs), arising from a B-spline Gaus-
sian collocation spatial discretization, is provided by the underlying DAE
solver, DASSL.) The spatial error estimate for the collocation solution
computed by the code is obtained by computing a second collocation so-
lution, which involves a substantial cost - the execution time and memory
usage are almost doubled.

In this report we discuss BACOLI, a new version of BACOL that com-
putes only one collocation solution and uses efficient interpolation-based
approaches to obtain a spatial error estimate. These approaches have re-
cently been shown to provide spatial error estimates of comparable quality
to those computed by BACOL. We describe the substantial modification
of the BACOL code that was required in order to obtain BACOLI and
provide numerical results to compare BACOL and BACOLI. We show
that BACOLI is about twice as efficient as BACOL.
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1 Introduction

In this report, we consider systems of PDEs with NPDE components having the
form

ut(x, t) = f (t, x, u(x, t), ux(x, t), uxx(x, t)) , a ≤ x ≤ b, t ≥ t0, (1)

with initial conditions

u(x, t0) = u0(x), a ≤ x ≤ b, (2)

and separated boundary conditions

bL (t, u(a, t), ux(a, t)) = 0, bR (t, u(b, t), ux(b, t)) = 0, t ≥ t0. (3)

The method-of-lines (MOL) approach for the numerical solution of the above
problem class involves the discretization of the spatial domain using a numerical
method such as a finite difference method, a finite element method, or a colloca-
tion method. (We will consider a detailed discussion of the use of a collocation
method for the spatial discretization in the next section of this report.) The
spatial discretization process reduces the PDEs to a system of time-dependent
ordinary differential equations (ODEs). When this system of ODEs is com-
bined with the boundary conditions, the result is a system of time-dependent
differential-algebraic equations (DAEs). The DAE system is solved using high
quality DAE software such as DASSL [9] or RADAU5 [20].

The computation of a numerical solution using error control means that
the computation is adapted so that a high order estimate of the error in the
approximate solution is less than a user-provided tolerance, i.e., an approximate
solution is not returned by the code unless the error estimate satisfies the user
tolerance. Control of the temporal error in an MOL solver is handled by the
underlying DAE solver that computes the solution to the time-dependent DAE
system. An MOL solver that provides spatial error control also computes a
high order estimate of the spatial error of the approximate solution and then
adapts the spatial discretization in an attempt to compute an approximate
solution whose spatial error estimate is less than the user-provided tolerance.
Examples of MOL codes of this type are HPNEW [23], and BACOL/BACOLR
[32, 30, 31, 33].

In previous studies, [31, 33], the BACOL/BACOLR packages were shown
to be comparable to and in some cases superior to other available packages for
the above problem class, especially for problems exhibiting sharp spatial layer
regions, with a high accuracy requirement. These packages employ adaptive
B-spline collocation for the spatial discretization; BACOL uses DASSL for the
solution of the DAEs resulting from the spatial discretization; BACOLR uses
RADAU5 for this task. Given a spatial mesh which partitions [a, b], the col-
location algorithm employed by BACOL/BACOLR expresses the approximate
solution at a given time as a linear combination of known spatial basis func-
tions (B-splines)[12] - piecewise polynomials of a given degree p - with unknown
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time dependent coefficients, determined from the solution of the DAE system.
In BACOL/BACOLR, the spatial error estimate for the collocation solution is
obtained through the computation of a second global collocation solution; the
same general approach is used but the second collocation solution is expressed
in terms of piecewise polynomials of degree p + 1. The difference between the
two collocation solutions gives an estimate of the spatial error in the lower order
collocation solution. (We will refer to the collocation solution of degree p as the
lower order solution and the collocation solution of degree p + 1 as the higher
order solution.) The computation of a second global collocation solution in order
to obtain a spatial error estimate clearly involves a major computational cost,
essentially doubling the cost of the overall computation.

There is of course a substantial body of literature on error estimation for
the numerical solution of PDEs - see, e.g., [1] and [15] and references within.
Other examples of related work on error estimation for PDEs include [6], [7],
[29], [25, 28]. See also the recent book [8] and references within. The recent
work most closely related to the spatial error estimation schemes employed in
the software we discuss in this report is that of Moore [23, 24, 27, 26], in which
interpolation error based spatial error estimates for 1D parabolic PDEs are
discussed.

In this report we consider two approaches for the modification of BACOL
that preserve its ability to compute and control a high order estimate of the
spatial error of the collocation solution but avoid the computation of a second
collocation solution. The two approaches involve the replacement of one of the
two collocation solutions computed by BACOL with an appropriately designed
interpolant of the same order:

• In one of the approaches we replace the higher order collocation solution
with a piecewise polynomial interpolant that is based on evaluation of the
lower order collocation solution at certain special points where it is known
to be superconvergent; an interpolant based on these values can then be
constructed so that it has the same order of accuracy as the higher order
solution and hence can replace it in the computation of the spatial error
estimate.

• In the other approach we replace the lower order collocation solution with
an interpolant that is based on evaluation of the higher order collocation
solution at certain points that ensure that the leading order term in the
interpolation error for this interpolant is asymptotically equivalent to the
leading order term in the collocation error for the lower order collocation
solution. This interpolant can then replace the lower collocation solution
in the computation of the spatial error estimate.

See [2, 4] for further details; a summary is provided in this report in Section 3.
One important goal of this report is to describe the development of the

new code, BACOLI, that employs these new spatial error estimates. BACOLI
was developed through a substantial modification of the BACOL package to
allow it to use either of the above interpolation-based spatial error estimation
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schemes. (Since BACOL and BACOLR employ the same spatial discretization
scheme, the software modification process described in this report could also
be applied, with minor modifications, to BACOLR; however, in this report we
focus on BACOL.) A second important goal is to provide an extensive numerical
comparison of the efficiency of the original BACOL code vs. the new BACOLI
code.

This report is organized as follows. Section 2 reviews the BACOL algo-
rithm and its spatial error estimation scheme. In Section 3, we provide a brief
review of the two interpolation-based schemes for spatial error estimation in
BACOLI. Section 4 provides a detailed discussion of the software modifications
undertaken to develop BACOLI from BACOL. Section 5 presents and discusses
numerical results for the comparison of the efficiency of BACOL vs. BACOLI.
Our conclusions and suggestions for future work are provided in Section 6.

2 Overview of BACOL and its Spatial Error Es-

timation Scheme

Let the points, a = x0 < x1 < · · · < xNINT = b, define a spatial mesh consisting
of NINT subintervals partitioning the problem domain, [a, b]. In BACOL,
the approximate solution is a C1-continuous piecewise polynomial in x, of a
given degree p (3 ≤ p ≤ 11) on each subinterval. This piecewise polynomial is
represented as a linear combination of C1-continuous B-spline basis functions
[12] with time dependent coefficients. That is, the approximate solution, U(x, t),
has the form

U(x, t) =

NCp
∑

i=1

y
p,i

(t)Bp,i(x), (4)

where y
p,i

(t) is the (unknown) time dependent coefficient of the i-th B-spline

basis function, Bp,i(x), and NCp = NINT (p − 1) + 2.
The unknown coefficients appearing in (4) are determined by imposing cer-

tain conditions on the approximate solution, U(x, t): we require U(x, t) to satisfy
the PDEs at certain points on each subinterval (the collocation conditions) and
the boundary conditions at x = a and x = b. The collocation conditions have
the form

d

dt
U(ξl, t) = f (t, ξl, U(ξl, t), Ux(ξl, t), Uxx(ξl, t)) , (5)

for l = 2, . . . , NCp − 1, where the collocation points are

ξl = xi−1 + hiρj , where l = 1 + (i − 1)(p − 1) + j,

for i = 1, . . . , NINT, j = 1, . . . , p− 1, (6)

and {ρi}
p−1
i=1 , are the set of p−1 Gauss points on [0, 1] - see, e.g., [5]. The points,

ξ1 = a and ξNCp
= b are associated with requiring the approximate solution to

satisfy the boundary conditions:

bL (t, U(a, t), Ux(a, t)) = 0, bR (t, U(b, t), Ux(b, t)) = 0. (7)
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The collocation conditions (5) are a system of ODEs (in time). These ODEs,
coupled with the boundary conditions, (7), give a system of DAEs; this DAE
system is treated using a modified version of the DAE solver DASSL. After
DASSL has computed approximations for the y

p,i
(t) coefficients at time t, these

can be employed together with the known B-spline basis functions, Bp,i(x),
within (4), to obtain values of the approximate solution at desired x values (in
[a, b]), at time t. The most expensive part of the DASSL execution involves
linear algebra computations. The modified version of DASSL that is employed
by BACOL takes into account the special almost block diagonal (ABD) [13]
structure of the linear systems that arise. See [30] for further details.

The collocation solution, U(x, t), at the current time, t, is accepted if its
spatial error estimate satisfies a given user tolerance. In BACOL, the spatial
error estimate is obtained through the computation of a second (higher order)
collocation solution on the same spatial mesh for the same time t. This approx-
imate solution, Ū(x, t), is a C1-continuous, piecewise polynomial in x of degree
p + 1 on a given subinterval; it has the form

Ū(x, t) =

NCp+1
∑

i=1

y
p+1,i

(t)Bp+1,i(x), (8)

where y
p+1,i

(t) is the unknown time dependent coefficient for the ith B-spline

basis polynomial, Bp+1,i(x), of degree p + 1 on each subinterval, and NCp+1 =
NINT · p + 2. The unknowns, y

p+1,i
(t), are determined by requiring Ū(x, t) to

satisfy the PDEs at the images of the p Gauss points on [0, 1] mapped onto each
subinterval and the boundary conditions at x = a and x = b. This leads to a
second system of DAEs whose solution gives the y

p+1,i
(t) coefficients. In order

to ensure that the two approximate solutions, U(x, t) and Ū(x, t), are available
at the same time t, the two DAE systems are provided to DASSL as one larger
DAE system so that DASSL treats both systems of DAEs with the same time-
stepping strategy. (However, the linear systems are treated separately in order
to take advantage of the ABD structure of the matrices that arise.)

Based on U(x, t) and Ū(x, t), BACOL computes a set of NPDE spatial error
estimates over the whole spatial domain of the form

Es(t) =

√

∫ b

a

(

Us(x, t)− Ūs(x, t)

ATOLs + RTOLs|Us(x, t)|

)2

dx, s = 1, . . . , NPDE, (9)

where Us(x, t) is the sth component of U(x, t), Ūs(x, t) is the sth component of
Ū(x, t), and ATOLs and RTOLs are the (user-provided) absolute and relative
tolerances for the sth component of the spatial error estimate. BACOL also
computes a second set of NINT spatial error estimates, one for each spatial
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mesh subinterval, of the form,

Êi(t) =

√

√

√

√

NPDE
∑

s=1

∫ xi

xi−1

(

Us(x, t)− Ūs(x, t)

ATOLs + RTOLs|Us(x, t)|

)2

dx, i = 1, . . . , NINT.

(10)
Note that Es(t), s = 1, . . . , NPDE, and Êi(t), i = 1, . . . , NINT , are estimates
of the spatial error associated with the lower degree solution, U(x, t). At the
current time, t, U(x, t) is accepted if

max
1≤s≤NPDE

Es(t) ≤ 1.

If this condition is satisfied, BACOL attempts to take the next time step.
Otherwise, the step is rejected and BACOL uses the spatial error estimates,
Êi(t), i = 1, . . . , NINT , to perform a spatial remeshing; that is, BACOL at-
tempts to construct a new mesh that will have as many mesh points as neces-
sary to yield an approximate solution whose estimated spatial error satisfies the
user tolerances and that will approximately equidistribute the estimated spatial
error over the subintervals of the new mesh.

The theoretical basis for the above spatial error estimates follows from stan-
dard convergence results for Gaussian collocation applied to 1D parabolic PDEs,
obtained in [14] and [10]: over the entire spatial domain, the collocation solu-
tion, based on piecewise polynomials of degree p, with p − 1 collocation points
per subinterval, has a spatial error that is O(hp+1), where h is the maximum
spatial mesh subinterval size. Thus Ū(x, t) is one order higher than U(x, t).

The temporal tolerance employed in DASSL is equal to the spatial tolerance
and in numerical experiments performed with BACOL, this has been observed
to (generally) be sufficient to insure that the temporal error does not dominate
the spatial error, which in turn allows the spatial error estimates to be effective.

Once a new mesh is determined, DASSL requires current and past solu-
tion information (corresponding to several past time steps) associated with the
new mesh points for both the lower order and higher order collocation solutions.
(This is because DASSL employs a family of multi-step methods - the Backward
Differentiation Formulas.) In BACOL this information for both collocation so-
lutions is obtained through high order interpolation of the higher order solution
information associated with the previous mesh. Once this interpolated informa-
tion has been computed, both collocation solutions are propagated forward in
time. This is referred to as a warm start since it allows the time integration to
continue using the same time step size and same time integration method that
was used prior to the remeshing. However, in some cases after it has encoun-
tered several rejected steps due to repeated failures of the spatial error tests, (9),
BACOL will restart DASSL using only solution information from the current
time. The time integration will then proceed from the current time using a low
order, one-step, time stepping method and a small stepsize. Such a restart is
known as a cold start. See [32, 30] for further details.
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3 Interpolation-based Spatial Error Estimation

It is clear that the computation by BACOL of the second collocation solu-
tion represents a significant computational overhead. A key feature of the
interpolation-based spatial error estimation schemes we consider in this report is
that they compute only one collocation solution and then perform an auxiliary
computation, involving an interpolant associated with the collocation solution,
in order to obtain an estimate of the spatial error.

Since BACOL computes two collocation solutions, there are two natural
viewpoints that can be taken regarding the computation of an interpolation-
based spatial error estimate: (i) we can remove the computation of the higher
order collocation solution and replace that solution in the spatial error esti-
mates, (9), (10), with an interpolant of the same order, or (ii) we can remove
the computation of the lower order solution and replace that solution in the
spatial error estimates, (9), (10), with an interpolant of the same order. The
algorithm for the first scheme makes use of the presence of higher order, i.e., su-
perconvergent, values available from the lower order collocation solution and its
first spatial derivative and we will refer to this scheme as the Superconvergent
Interpolant (SCI) scheme. The algorithm for the second approach involves the
construction of an interpolant, based on evaluations of the higher order collo-
cation solution and its first spatial derivative, whose interpolation error agrees
asymptotically with the collocation error of the lower order collocation solution.
We will refer to this scheme as the Lower Order Interpolant (LOI) scheme.

As mentioned in the previous section, while BACOL computes and propa-
gates both collocation solutions forward in time, the spatial error estimate it
computes gives an estimate of the collocation error for only the lower order
collocation solution. This means that both the lower order and higher order col-
location solutions are propagated based on a spatial error estimate appropriate
for the lower order collocation solution. Thus, if we focus on the lower order
collocation solution computed by BACOL, we see that BACOL advances this
solution based on an estimate of the spatial error appropriate for that solution.
This perspective makes the SCI scheme appear to be the most natural approach
since it provides an estimate of the spatial error appropriate for the collocation
solution that is computed. However, if we focus on the higher order collocation
solution computed by BACOL, we see that this solution is propagated based
on a spatial error estimate that is appropriate for a collocation solution of one
order lower. (This is similar to an approach involving Runge-Kutta formula
pairs applied in the numerical integration of initial value ODEs - see, e.g., [19]
- in which numerical solutions based on two Runge-Kutta formulas, differing
by one order of accuracy, are computed on each time step and the difference
between the two provides an estimate of the local error in the lower order so-
lution. In standard (ST) mode, the lower order solution is propagated based
on this estimate. However, it is natural to think about propagating the higher
order solution, since it is expected to be more accurate, and in this case, the
higher order solution is propagated based on a spatial error estimate that is
appropriate for the lower order solution. This is known as local extrapolation
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(LE) mode.) The original BACOL code returns the lower order collocation so-
lution to the user and thus can be viewed as operating in ST mode. However,
it would require only a small modification of the code to have it return the
higher order solution and in that case the code could be viewed as operating in
LE mode. The SCI scheme is similar to the scheme currently implemented in
BACOL and operates in ST error control mode. The LOI scheme employs LE
mode; the collocation solution is propagated based on a spatial error estimate
that is appropriate for a collocation solution of one order lower.

3.1 The SCI Spatial Error Estimation Scheme

Here we provide a brief review of the SCI spatial error estimation scheme. Fur-
ther details are available in [2]. Since BACOL in fact takes as input the number
of collocation points per subinterval (kcol) rather than the degree of the piece-
wise polynomial on each subinterval (p), in the remainder of this report we will
use kcol rather than p to specify a particular order of collocation scheme; the
degree of the piecewise polynomials will be p = kcol + 1. Since the limit on p
assumed by BACOL is 3 ≤ p ≤ 11, the limit on kcol is 2 ≤ kcol ≤ 10.

For a given input value for kcol, we compute the corresponding collocation
solution, as described in the previous section. Then, based on evaluations of this
collocation solution at certain special (superconvergent) points within [a, b] (see
below) we construct an interpolant that is one order higher than the collocation
solution. The collocation solution and the SCI are then used to compute spatial
error estimates, similar to (9) and (10). (The quantity, Ūs(x, t), in (9) and (10)
is replaced by the SCI.)

As mentioned in the previous section, standard convergence results for Gaus-
sian collocation applied to 1D parabolic PDEs state that over the entire spatial
domain, the collocation solution spatial error is O(hkcol+2), where h is the max-
imum spatial mesh subinterval size. These papers also prove that at the spatial
mesh points, both the collocation solution and its first spatial derivative have
spatial errors that are O(h2×kcol). Thus the mesh point values are superconver-
gent when kcol > 2. (For kcol = 2, the mesh point collocation solution errors are
the same order as elsewhere in the subinterval and thus the collocation solution
values at the mesh points are not superconvergent in this case.)

Similar results were proved around the same time for Gaussian collocation
applied to boundary value ODEs - see, e.g., [5]. However, the boundary value
ODE results provide further details regarding the leading order term in the
collocation error for each subinterval. These results show that (for kcol ≥ 3)
there are kcol − 2 points, internal to each subinterval, where the collocation
error is O(hkcol+3), one order higher than the standard collocation error. To
our knowledge, the corresponding result for the PDE case has not been proved.
However [3] provides experimental evidence demonstrating that, for the spatial
discretization of a 1D parabolic PDE by Gaussian collocation, the same kcol−2
points within each spatial mesh subinterval have an order of convergence consis-
tent with that for the BVODE case, i.e., for the collocation solution computed
by BACOL that employs kcol ≥ 3 collocation points per subinterval, there

8



are kcol − 2 points internal to each subinterval where this collocation solution
(which generally has a spatial error that is O(hkcol+2)) is superconvergent, i.e.,
the spatial error is O(hkcol+3). Thus simply evaluating this collocation solution
at the mesh points and at these known special points within each subinterval
and evaluating the first spatial derivative of the collocation solution at the mesh
points provides the required superconvergent data.

The SCI is a C1-continuous piecewise polynomial interpolant determined as
follows. Since the interpolation error should not interfere with the overall er-
ror of the interpolated values, the polynomial that represents the SCI on each
subinterval interpolates the 4 superconvergent solution and first spatial deriva-
tive mesh point values at the left and right endpoints of the subinterval, the
kcol − 2 superconvergent solution values that are internal to each subinterval,
and the two closest superconvergent values internal to each adjacent subinterval.
(For the leftmost and rightmost subintervals, the SCI interpolates the two clos-
est superconvergent solution values available in the lone adjacent subinterval.)
This gives a total of kcol + 4 interpolation points and, from standard interpo-
lation theory, implies that the interpolation error will be O(hkcol+4). Thus the
interpolation error is dominated by the spatial error of the superconvergent data
values (i.e., the spatial error of the superconvergent data values is, asymptoti-
cally, larger than the interpolation error of the SCI), implying that the spatial
error of the SCI is O(hkcol+3), one order higher than that of the collocation
solution.

Because the SCI will depend on a combination of solution and derivative val-
ues, a Hermite-Birkhoff form for the interpolant is appropriate. The paper [16]
discusses the general forms for the Hermite-Birkhoff basis polynomials upon
which the SCI is based and also provides results that can be used to obtain
an explicit expression for the interpolation error of the Hermite-Birkhoff inter-
polant representing the SCI on a given subinterval; see [2]. From this expression
it can be seen that, for a given subinterval, the interpolation error depends on
the ratios of the size of that subinterval to the sizes of the immediately adjacent
subintervals. In the case of the leftmost or rightmost subinterval, the interpola-
tion error depends on the square of the ratio of the size of that subinterval to the
size of the lone adjacent subinterval. When any of these ratios is large, the inter-
polation error can become large and this can lead to a substantial overestimate
of the spatial error estimate by the SCI scheme. The paper [2] provides ex-
perimental results demonstrating that while the SCI scheme generally provides
estimates of the spatial error that are of comparable quality to those provided
by the original BACOL code, for highly nonuniform meshes, the SCI scheme
can sometimes give spatial error estimates that significantly overestimate the
true spatial error.

As mentioned earlier, when BACOLI uses the SCI spatial error estimation
scheme, it computes a collocation solution for which the number of collocation
points used per subinterval is specified by the input kcol value and it controls
an estimate of the spatial error of that collocation solution. Thus, in this case,
the code employs ST error control mode.

Note also, as explained above, that the SCI scheme requires kcol ≥ 3 and
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thus the range of allowed kcol values for BACOLI using the SCI scheme will be
3 ≤ kcol ≤ 10, while the original BACOL allows 2 ≤ kcol ≤ 10.

3.2 The LOI spatial error estimation scheme

Here we provide a brief review of the LOI spatial error estimation scheme. The
paper [4] provides further details. For a given input value for kcol, we compute
the corresponding collocation solution, as described in the previous section.
Then, based on evaluations of this collocation solution at selected points within
[a, b] (see below) we construct an interpolant that is of one order lower than
the collocation solution. The collocation solution and the LOI are then used to
compute spatial error estimates, similar to (9) and (10). (The quantity, Ūs(x, t),
appearing in (9) and (10), is replaced by the LOI.)

From the collocation theory outlined in the previous subsection, it is clear
that evaluation of a collocation solution that is based on the use of kcol col-
location points per subinterval yields a solution approximation for which the
spatial error is O(hkcol+2). Thus evaluation of this collocation solution at any
point within the subinterval yields a solution approximation for which the spa-
tial error is O(hkcol+2). On a given subinterval, the polynomial that represents
the LOI is defined by requiring it to interpolate kcol + 1 values of this colloca-
tion solution or its first spatial derivative. This will yield an interpolant whose
interpolation error is O(hkcol+1). (Thus the interpolation error will dominate
the collocation error; i.e., for sufficiently small h, the interpolation error will be
larger than the data error associated with the collocation solution and deriva-
tive values.) The values chosen for interpolation are the collocation solution
and its first spatial derivative at the endpoints of the subinterval (4 values) and
kcol − 3 collocation solution values at points internal to the subinterval. The
internal points are chosen so that the interpolation error for the LOI on the
given subinterval will be asymptotically equivalent to the collocation error for a
collocation solution based on the use of kcol − 1 collocation points per subinter-
val. (For a given subinterval, this turns out to require the internal interpolation
points to be the internal superconvergent points of a collocation solution that
uses kcol−1 collocation points per subinterval.) The explicit form of the leading
term in the collocation error is known from the basic theory for collocation and
it is then possible to choose the interpolation points so that the leading term in
the interpolation error matches the leading term in the collocation error. See
[4] for further discussion.

Because the polynomial interpolant representing the LOI on a given subin-
terval uses a combination of derivative and solution values, a Hermite-Birkhoff
representation for the polynomial interpolant is again appropriate and we again
use the general forms for the Hermite-Birkhoff basis polynomials given in [16].
Since all of the interpolated values are associated with points contained within
the given subinterval, the corresponding interpolation error expression does not
involve adjacent subinterval size ratios, as in the SCI case, and thus the spatial
error estimates for the LOI scheme are not sensitive to the presence of adjacent
subintervals of significantly different sizes when nonuniform meshes arise.
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The paper [4] provides experimental results comparing the spatial error es-
timates of the original BACOL code with those computed by the SCI and LOI
schemes. These results show that the three schemes generally provide error esti-
mates of comparable accuracy (except in the case of the SCI scheme when there
are adjacent subintervals differing greatly in size, as mentioned in the previous
subsection.)

As mentioned earlier, when BACOLI uses the LOI scheme for spatial error
estimation, it returns a collocation solution which is based on the use of kcol
collocation points per subinterval, with spatial error control based on a spatial
error estimate that agrees asymptotically with that of a collocation solution of
one lower order. This means that, in this case, the code is operating in LE error
control mode.

BACOLI, when using the LOI scheme, will restrict kcol so that 3 ≤ kcol ≤
10. This will mean that the LOI scheme will generate an error estimate corre-
sponding to a collocation solution for which the kcol range will be 2 ≤ kcol ≤ 9.
The collocation solution returned by BACOLI in this case will have a kcol value
in the range 3 ≤ kcol ≤ 10.

3.3 Collocation Solutions and Spatial Error Control Modes

In this subsection, we summarize the four combinations of collocation solu-
tion/spatial error control modes reviewed earlier in this section. (Assume that
the input value for the number of collocation points per subinterval is kcol and
let p = kcol + 1.):

• BACOL with ST Error Control (BAC/ST): The original BACOL
code returns a collocation solution of degree p, obtained by controlling
a spatial error estimate for that collocation solution. (The spatial error
estimate is obtained by comparing the collocation solution with another
collocation solution of degree p + 1.) The allowed range for kcol is 2 ≤
kcol ≤ 10.

• BACOL with LE Error Control (BAC/LE): A modified version of
BACOL that returns a collocation solution of degree p + 1, obtained by
controlling a spatial error estimate for a collocation solution of degree
p. (The spatial error estimate is obtained by comparing the collocation
solution with another collocation solution of degree p.) The allowed range
for kcol is 3 ≤ kcol ≤ 11.

• BACOLI with the SCI scheme - ST Error Control (SCI/ST):
BACOLI returns a collocation solution of degree p, obtained by controlling
a spatial error estimate for that collocation solution. (The spatial error
estimate is obtained by comparing the collocation solution with an SCI.)
The allowed range for kcol is 3 ≤ kcol ≤ 10.

• BACOLI with the LOI scheme - LE Error Control (LOI/LE):
BACOLI returns a collocation solution of degree p, obtained by controlling
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a spatial error estimate for a collocation solution of degree p − 1. (The
spatial error estimate is obtained by comparing the collocation solution
with an LOI whose interpolation error agrees asymptotically with the
collocation error of a collocation solution of degree p − 1.) The allowed
range for kcol is 3 ≤ kcol ≤ 10.

We mention as an aside that it would be possible to modify BACOLI so that
it (i) uses the SCI scheme but operates in LE Error Control mode, or (ii) uses
the LOI scheme but operates in ST Error Control mode. In case (i) the code
would have to be modified to return the SCI as the approximate solution; in
case (ii) the code would have to return the LOI as the approximate solution.
We do not investigate this point any further in this report.

4 Modification of BACOL to obtain BACOLI

Modifications to a number of important components of the BACOL package
were required in order to obtain BACOLI. We refer the reader to Figure 1 of
[30] which provides a detailed structure diagram of all of the program modules
that make up the BACOL package.

The modifications required to obtain BACOLI from BACOL proceeded in
four phases:

1. The primary part of this phase involved the modification of ERREST,
the routine that computes the spatial error estimate. New code was in-
troduced to implement the SCI and LOI schemes; this involved writing
new subroutines, SCINT and LOWINT, that are called within ERREST.
No effort was made in this phase to remove the computation of the second
collocation solution. The resultant code had the options of generating a
spatial error estimate based on the computation of (i) a second colloca-
tion solution (as in the original code), (ii) the SCI scheme, or (iii) the LOI
scheme. This allowed the code to be run using any of the three spatial
error estimation schemes and thus the quality of the spatial error esti-
mates and the performance of the code could be compared in these three
cases. These results were reported in the papers [2] and [4], as mentioned
earlier. These studies experimentally examined the accuracy of the three
spatial error estimation schemes but did not investigate potential efficiency
improvements. In this phase, we did not pay close attention to attempt-
ing to optimize the efficiency of the implementations of the SCINT and
LOWINT routines.

2. This phase involved the important step of removing the computation of
the second collocation solution. Three significant changes were required:

• In the original BACOL code, after a warm restart, both the lower
order and higher order collocation solutions on the new mesh were
reinitialized using the higher order solution. Since BACOLI com-
putes only one solution, the code had to be modified so that after a
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remeshing, the reinitialization process would make use of this solu-
tion. This involved changes to the parameters passed to the SUCSTP
and REINIT routines. The REINIT routine is now called only once
after a remeshing. Similarly, the INIY and INIYP routines are now
each called only once whenever the B-spline coefficients and their
derivatives need to be initialized. Also, the COLPNT routine, which
computes the collocation points for the current spatial mesh, and the
DIVDIF routine, which is called to compute past time step values
required by DASSL, are now called only once.

• In the original BACOL code, we recall that the two DAE systems
associated with the computation of the lower and higher order col-
location solutions are passed to DASSL simultaneously as one “dou-
ble” (but uncoupled) DAE system in order to ensure synchroniza-
tion of the time-stepping for the two collocation solutions. Thus, for
BACOLI, the parameters passed to DASSL had to be modified so
that only the data for the one collocation solution being computed
was passed. This involved changes to the ‘NEQ’, ‘RPAR’, ‘IPAR’,
‘RWORK’, and ‘IWORK’ parameters of DASSL. We also had to mod-
ify the DDASLV and DDAJAC routines (called by DASSL) so that
only the computations for one collocation solution are performed. In
particular only one call each to the ABD matrix factorization rou-
tine, CRDCMP, and ABD linear system solve routine, CRSLVE, are
required. Similarly, only one call to each of the CALJAC and CAL-
RES routines that compute, respectively, the coefficient matrix for
the Newton system and the right hand side of the Newton system that
arise during the computations performed by DASSL, are required.

• Additional modification of the ERREST routine was required so that
it no longer accessed information associated with two collocation so-
lutions in order to obtain a spatial error estimate. This routine was
modified so that it accessed only the information for the single avail-
able collocation solution and then used that information to generate a
spatial error estimate based on either the SCI or LOI scheme, through
a call to either the SCINT or LOWINT routine.

• Communication between the user’s main program and BACOL or
BACOLI is handled through a communication vector called ‘MFLAG’.
In BACOLI an extra entry was added to this vector to allow the user
to select the spatial error estimation/control scheme: ‘MFLAG(8) =
0’ for the LOI scheme, ‘MFLAG(8) = 1’ for the SCI scheme. Alter-
natively, we can say that these choices correspond to, respectively,
LE error control mode and ST error control mode.

Upon completion of these modifications we obtained a new version of BA-
COL (BACOLI) that no longer computed a second collocation solution
and was able to use either of the two interpolation-based spatial error
estimation schemes to compute a spatial error estimate which could then
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be used to drive the mesh refinement/spatial error control process. The
resultant version of BACOLI, for a given test problem, had performance
generally comparable to that of BACOL in terms of the number of mesh-
points it used, the number of remeshings it required, and the total number
of time steps it took. We provide results in the next section to demonstrate
this machine independent performance of BACOL vs. BACOLI.

However, preliminary machine dependent timing results showed that BA-
COLI, for some problems, actually ran more slowly than the original BA-
COL code! Thus, a third phase was undertaken, in which the efficiency
of the implementations of the SCINT and LOWINT algorithms was ad-
dressed.

3. The work undertaken in this phase was primarily guided by execution
time profiling of the code. We used the ‘gprof’ utility [18] in order to
identify routines which took the significant amounts of execution time. See
Figures 75 and 76 for examples of the profiling of BACOL and BACOLI.
These figures were obtained using the Gprof2Dot [17] utility.

• The execution time analysis showed that the calls from within the
SCINT and LOWINT to the B-spline evaluation routines BSPVLD
and BSPVLN required relatively large amounts of time. We were able
to substantially improve the efficiency of the SCINT and LOWINT
routines by modifying them to save the B-spline evaluations between
remeshings. These values were saved in the ‘RPAR’ array. This
change also involved modification of the ERREST routine since in
the original BACOL code B-spline package routines were not called
directly, but rather through the routine called VALUES. In BACOLI,
we make direct calls to the B-spline routines BSPLVN and BSPLVD
in order to improve the efficiency of the evaluation of the B-spline
basis polynomials.

• Further savings in execution time for the SCINT and LOWINT rou-
tines were obtained by making a similar change in the way the co-
efficients of the Hermite-Birkhoff polynomials representing the inter-
polants were handled. The Hermite-Birkhoff coefficients are saved
and reused between remeshings. These coefficients are also stored in
the ‘RPAR’ array.

• Another efficiency gain was made by employing a Barycentric form
for the Hermite-Birkhoff interpolants; see, e.g., [11] and references
within. To be specific, this involved factoring common factors from
the basis polynomials that appear in the representation of the Hermite-
Birkhoff interpolants we employ - see [2].

• Another efficiency gain, revealed by some experimentation with dif-
ferent compiler optimization settings, involved a slight modification
to the EVAL routine to improve the computation of array indices.
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4. This last phase focused on the SCI implementation and was motivated by
an observation we made while testing the performance of BACOLI when
it uses the SCI scheme.

• As discussed earlier, the SCI scheme can overestimate the spatial
error for a given subinterval when the ratio of the size of that subin-
terval to the size of either adjacent subinterval is large. Since it is
easy to compute these ratios we can predict when the spatial error
estimate from the SCI scheme will be too large and then attempt to
address the issue. We therefore modified BACOLI by scaling the
SCI spatial error estimates for each subinterval by the reciprocal of
the product of the adjacent subinterval size ratios. (In the case of
the leftmost and rightmost subintervals, we scale by the square of
the ratio of the size of that subinterval to the size of the lone ad-
jacent subinterval.) This scaling is motivated by the appearance of
these ratios in the expressions for the SCI spatial error estimates,
mentioned in Section 3.1 (and discussed in more detail in [2]). The
scaling reduces the size of the SCI spatial error estimates when they
overestimate the spatial error, leading to closer agreement between
the true error and the estimated spatial error and thus better adap-
tation of the spatial mesh, which in turn improves the efficiency of
the BACOLI/SCI computation.

We also made a number of small changes involving small bug fixes that
became apparent during the modification process. These are documented within
the source code of BACOLI.

The BACOLI parameter list is the same as that of BACOL except for two
differences:

• As noted above, the ‘MFLAG’ vector now has an extra (eighth) component
used to specify the error estimation/error control mode.

• We also generalized the interface to BACOLI to allow the user to specify
the names of the routines corresponding to the PDEs and their deriva-
tives, and the boundary conditions and their derivatives, and the initial
conditions. To be specific, seven new parameters have been added to the
end of the BACOLI parameter list: f, derivf, bndxa, difbxa, bndxb, difbxb,
uinit, corresponding to the above routines.

See [30] for a detailed description of the use of BACOL, and in particular
its associated online Appendix. The BACOLI webpage, where the source code
for BACOLI and a number of examples are posted, is
http://cs.smu.ca/∼muir/BACOLI Webpage.htm.

5 Numerical Comparison: BACOL vs. BACOLI

In this section we provide experimental results which allow a comparison of the
efficiency of BACOL with BACOLI using the SCI scheme or the LOI scheme.
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5.1 Test problems

Test Problem I:
The One Layer Burgers equation (OLBE) - see, e.g., [31]:

ut = εuxx − uux, (11)

with boundary conditions at x = 0 and x = 1 (t > 0) and an initial condition
at t = 0 (0 ≤ x ≤ 1) taken from the exact solution

u(x, t) =
1

2
−

1

2
tanh

(

x − t
2
− 1

4

4ε

)

,

where ε is a problem dependent parameter. We will consider ε = 10−3 and
ε = 10−4. For ε = 10−4, the exact solution is plotted in Figure 1. (This plot
and all subsequent plots presented in this report were prepared using matplotlib
software package [21].)
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Figure 1: Solution of the One Layer Burgers equation with ε = 10−4. There is
a sharp layer region at x ≈ 0.25 when t = 0. As t goes from 0 to 1, the layer
moves to the right and is located at x ≈ 0.75 when t = 1.

Test Problem II:
The Catalytic Surface Reaction Model (CSRM) - see, e.g., [31]:

(u1)t = −(u1)x + n(D1u3 − A1u1γ) + (u1)xx/Pe1,

(u2)t = −(u2)x + n(D2u4 − A2u2γ) + (u2)xx/Pe1,

(u3)t = A1u1γ − D1u3 − Ru3u4γ
2 + (u3)xx/Pe2,

(u4)t = A2u2γ − D2u4 − Ru3u4γ
2 + (u4)xx/Pe2, (12)
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where γ = 1 − u3 − u4, and n, r, P e1, P e2, D1, D2, R, A1, and A2 are problem
dependent parameters. The initial conditions at t = 0 (0 ≤ x ≤ 1) are

u1(x, 0) = 2 − r, u2(x, 0) = r, u3(x, 0) = u4(x, 0) = 0,

and the boundary conditions at x = 0 and x = 1 (t > 0) are

(u1)x(0, t) = −Pe1(2 − r − u1(0, t)), (u2)x(0, t) = −Pe1(r − u2(0, t)),

(u3)x(0, t) = (u4)x(0, t) = 0,

(u1)x(1, t) = (u2)x(1, t) = (u3)x(1, t) = (u4)x(1, t) = 0.

(To our knowledge, this problem does not have a closed form solution.) With
Pe1 = Pe2 = 10000, D1 = 1.5, D2 = 1.2, R = 1000, r = 0.96, n = 1, and
A1 = A2 = 30, a plot of the approximate solution components are shown in
Figures 2-5.
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Figure 2: Solution component, u1(x, t), for the Catalytic Surface Reaction
Model.

Test Problem III:
The Two Layer Burgers equation (TLBE) - see, e.g., [31] - has the same PDE
as the One Layer Burgers equation - Test Problem I, above. However, it has
different initial and boundary conditions; the boundary conditions at x = 0 and
x = 1 (t > 0) and the initial condition at t = 0 (0 ≤ x ≤ 1) are taken from the
exact solution,

u(x, t) =
0.1e−A + 0.5e−B + e−C

e−A + e−B + e−C
,

where,

A =
0.05

ε
(x − 0.5 + 4.95t), B =

0.25

ε
(x − 0.5 + 0.75t), C =

0.5

ε
(x − 0.375),
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Figure 3: Solution component, u2(x, t), for the Catalytic Surface Reaction
Model.

where ε is a problem dependent parameter. We will consider ε = 10−3 and
ε = 10−4. A plot of the solution to this problem with ε = 10−4 is given in
Figure 6.
Test Problem IV:
A PDE system consisting of 6 copies of the Two Layer Burgers equation (TLBE×6).
We consider ε = 10−3 and ε = 10−4.
Test Problem V:
A PDE system consisting of 12 copies of the Two Layer Burgers equation
(TLBE×12). We consider ε = 10−3 and ε = 10−4.

There are thus a total of nine test problems: I (with ε = 10−3 or ε = 10−4), II,
III (with ε = 10−3 or ε = 10−4), IV (with ε = 10−3 or ε = 10−4), and V (with
ε = 10−3 or ε = 10−4).

5.2 Machine Independent Efficiency Tests

In this subsection, we will compare the efficiency of BAC/ST, BAC/LE, SCI/ST,
and LOI/LE with respect to machine independent measures. (These code com-
binations were identified in Section 3.3.)

For all tests, we will choose the input kcol value so that we are comparing
computations that return collocation solutions based on the same number of col-
location points per subinterval; only the spatial error estimation/control schemes
are different.

This collection of tests provides machine independent results that will allow
us to compare the number of subintervals used in the spatial mesh at the final
time (Final Nint), the total number of accepted time steps taken (Accepted
Time Steps), the total number of spatial remeshings undertaken throughout the
computation (Remeshings), the total number of cold starts (Cold Starts), and
the total number of factorizations and backsolves of an ABD system (calls to
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Figure 4: Solution component, u3(x, t), for the Catalytic Surface Reaction
Model.

CRDCMP, CRSLVE). These quantities all contribute significantly to the total
amount of work performed by the code and thus allow for good machine in-
dependent comparisons of the codes. We consider kcol = 3, 4, 6, 8, tolerances,
ATOLs = RTOLs = tol = 10−4, 10−6, 10−8, and all nine test problems iden-
tified in the previous subsection. (As mentioned earlier, BAC/ST can be run
with 2 ≤ kcol ≤ 10, BAC/LE with 3 ≤ kcol ≤ 11, while the range for both
SCI/ST and LOI/LE is 3 ≤ kcol ≤ 10. Results for BAC/LE with kcol = 3 are
equivalent to BAC/ST results for kcol = 2 so we can use the former to also
examine the performance of BAC/ST with kcol = 2.)

Results are given in Tables 1-9. A missing table entry means that the code
failed during the test run. In each case the failure occurred at the beginning of
the computation when the code was unable, within 20 attempts, to adapt to a
satisfactory initial spatial mesh, such that an approximate solution, satisfying
the user tolerance, was obtained.

We see from these tables that the relative performances of BAC/ST, BAC/LE,
SCI/ST, and LOI/LE exhibit some variation from problem to problem and tol-
erance to tolerance as kcol varies. Considering all test cases, we observe that
there are isolated cases where one code performs worse than the others in terms
of one of the machine independent measures, but, generally, these are not con-
sistent trends. The codes are generally comparable with respect to all machine
independent measures, over the full range of test problems, except for the to-
tal number of ABD matrix factorizations (i.e., calls to CRDCMP) and ABD
system solves (i.e., calls to CRSLVE). An observation that holds for a large ma-
jority of the tests is that the number of factorizations and solves performed by
BAC/ST or BAC/LE is roughly about twice as many as performed by SCI/ST
or LOI/LE.

Comparing the performance of each of the codes when kcol = 3 with itself
using higher kcol values, we generally see inferior performance (or at best com-
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Figure 5: Solution component, u4(x, t), for the Catalytic Surface Reaction
Model.

parable performance) in the kcol = 3 case. Similar comments apply when we
consider the BAC/ST kcol = 2 results (obtained from the BAC/LE kcol = 3
results, as mentioned above). It is usually the case that when kcol = 3, the
codes require more meshpoints than for higher kcol values. The SCI/ST code
has a failure rate that is significantly higher than the other codes; all of the fail-
ures that arise in this set of tests except for one are attributable to the SCI/ST
code (the other failure occurs with the LOI/LE code (kcol = 6, tol = 10−8)).
Most of the SCI/ST code failures occur for the kcol = 3 case; the rest occur
for the kcol = 4 case. (The reason for this poor performance by the SCI/ST
code for low kcol values may be related to the fact that the collocation error ex-
pression for each subinterval includes a local term (which generally dominates),
as well as a global term. There may be non-local contributions to the colloca-
tion error on a given subinterval that are comparable in size to the local term
and in this case the internal collocation solution values employed by the SCI
scheme may not be sufficiently accurate, implying that the SCI scheme will not
be sufficiently accurate to be effective in the error estimate.) Given the high
proportion of failures, it appears to be the case that the SCI/ST code should
not be used with kcol = 3. For the kcol = 3 case, the LOI/LE code requires
significantly more remeshings than the other codes; this adds significantly to the
costs for this code. (This poorer performance may be related to a poor quality
approximation of the collocation error of the kcol = 2 collocation solution by
the LOI scheme due to contributions to the error from higher order terms that
are comparable in size to the leading order interpolation error term.) Given
the additional costs associated with the extra remeshings, it appears that the
LOI/LE code should not be run with kcol = 3.
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Figure 6: Solution of Two Layer Burgers equation with ε = 10−4. When t = 0,
there are two sharp layers at x ≈ 0.25 and x ≈ 0.5. As t increases, these layers
move to the right and merge, forming a single layer at x ≈ 0.7 when t ≈ 0.5.
As time increases further, the single layer continues to move to the right, and
is located at x ≈ 0.9 when t = 1.

5.3 Machine Dependent Efficiency Tests

This collection of tests provide machine dependent results that will allow us to
compare execution times for BAC/ST, BAC/LE, SCI/ST, and LOI/LE. These
tests were performed on an HP Compaq 6005 Pro SFF PC with a Quad core
AMD Phenom II X4 B95 processor (clock speed 3000.00 MHz). The operating
system was Arch Linux (3.9.4-1-ARCH); the compiler was gfortran (4.8.0) with
optimization level set to -O2. (As in the previous set of tests, we will choose the
input kcol value so that we are comparing computations that return collocation
solutions based on the same number of collocation points per subinterval.)

5.3.1 Timing Tables

The first set of results give tables of timings (in seconds). Each test was run
three times and the reported time is the average of the three tests. We compare
the codes over a selected set of kcol-tolerance combinations over the nine test
problems specified in Section 5.1. We consider kcol = 3, . . . , 10 and tolerances,
ATOLs = RTOLs = tol = 10−4, 10−6, 10−8. Results are given in Tables 10-18.
A missing table entry means that the code failed during the test run. In most
of the cases in which there was a failure, the difficulty occurred at the beginning
of the computation when the code was unable, within 20 attempts, to adapt to
a satisfactory initial spatial mesh. In the remaining cases, all of which arise in
Table 12, the failures arise because DASSL terminates its computation due to
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the time stepsize becoming too small. Almost all the failures occurring in all
the tables are associated with the SCI/ST code, especially for the kcol = 3 case;
over all test cases, the LOI/LE code has only two failures and the BAC/ST and
BAC/LE codes have only one failure each.

From Tables 10-18, we can make a number of general observations:

• The execution times for SCI/ST and LOI/LE are generally significantly
lower than the corresponding times for BAC/ST and BAC/LE. With the
exception of the LOI/LE code for kcol = 3, BAC/ST is slower than
SCI/ST or LOI/LE, for smaller kcol values, by a factor of about 1.5.
For larger kcol values, it is slower by a factor of almost 2.

• BAC/LE is generally about 20% faster than BAC/ST. The SCI/ST and
LOI/LE codes are generally faster than BAC/LE (except for the LOI/LE,
kcol = 3 case) but the speedup factors are somewhat smaller than for the
BAC/ST code.

• SCI/ST and LOI/LE are generally of comparable speed (except for the
LOI/LE, kcol = 3 case)

• The SCI/ST code has a higher failure rate than the other codes; the failure
rate for the kcol = 3 case is particularly high.

• For kcol = 3, the LOI/LE code has poorer performance than the other
codes (due to the larger number of remeshings that it performs).

Another general observation from the tables is that all codes are faster for
smaller kcol values (with the exception of the LOI/LE code for kcol = 3) when
the tolerance is not too sharp. (Generally, kcol = 3 gives the best times for
coarse or intermediate tolerance values, with the exception of the LOI/LE code
for kcol = 3.) When tol = 10−8, higher kcol values yield the fastest perfor-
mances. The most extreme case appears in Table 10, when tol = 10−8; the
LOI/LE code is fastest when kcol = 8. (Generally kcol = 4 or 5 gives the
best results for the sharpest tolerance.) The codes generally run slowest for the
higher kcol values.

5.3.2 Timing Ratio Tables

In Tables 19 and 20, we summarize the timing results from Tables 10-18. For
each reported timing result appearing as a table entry in each of the Tables 10-
18, we compute the ratio of that time to the corresponding BAC/ST time.
We also compute the ratio of the LOI/LE time to the corresponding SCI/ST
time. In Table 19 we report the average of these ratios over all kcol values and
tolerances, for each problem. In Table 20 we report the average of the timing
ratios over all problems and tolerances, for each kcol value.

From Table 19 we observe that the BAC/LE
BAC/ST ratio averages range from slightly

over 0.90 to about 0.80. The SCI/ST
BAC/ST and LOI/LE

BAC/ST ratio averages range from
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about 0.60 to about 0.50. The LOI/LE
SCI/ST ratio averages range from about 1.3 to

slightly less than 1.0. From Table 20, we observe that the
BAC/LE
BAC/ST ratio averages

range from slightly more than 1.0 for the smallest kcol value to around 0.84 for

the larger kcol values. The SCI/ST
BAC/ST

ratio averages are slightly above 0.5. For

the two smallest kcol values the LOI/LE
BAC/ST ratio averages are 0.92 and 0.61; for

higher kcol values these ratio averages are slightly above 0.5. The
LOI/LE
SCI/ST ratio

averages range from 1.66 for kcol = 3 down to about 0.95 for the larger kcol
values. Over all problems, kcol values, and tolerances the ratio averages are
BAC/LE
BAC/ST = 0.88, SCI/ST

BAC/ST = 0.53, LOI/LE
BAC/ST = 0.58, and LOI/LE

SCI/ST = 1.06.

5.3.3 Work vs. Accuracy Plots by Problem

The previous results compared the execution time of the four codes when they
were given the same tolerance. Here we compare the execution times of the
codes with respect to the accuracy they achieve. We consider the One Layer
and Two Layer Burgers equations with ε = 10−3 and 10−4, since both have
known exact solutions. We consider kcol values from 3 to 10. The results were
obtained by running the codes with a range of 91 tolerance values from 10−1 to
10−10. See Figures 7-38.

These figures show that, generally, the SCI/ST and LOI/LE codes are faster
than the BAC/ST and BAC/LE codes over the range of problems and kcol
values considered. The BAC/LE code is slightly faster than the BAC/ST code
and the SCI/ST and LOI/LE codes have comparable performance. The perfor-
mance of the LOI/LE code for kcol = 3 is significantly poorer than for higher
kcol values.

5.3.4 Work vs. Accuracy Plots by Code

Figures 39-42 provide plots (four per figure) comparing each code over the range
of kcol values on the One Layer and Two Layer Burgers equations with ε = 10−3

and 10−4. That is, for each problem, each code is compared with itself over a
range of kcol values. These plots also include a table recording, for each kcol
value, the number of failures, the number of times when the actual error in
the returned final solution was greater than the requested tolerance, and the
number of times when the returned final solution was greater than 10 times the
requested tolerance.

From these figures, a general observation is that, for low accuracy, the codes
are more efficient when kcol is small, while for high accuracy, a higher choice of
kcol provides the most efficient computation. For higher accuracy, low kcol val-
ues lead to substantially poorer results than do higher kcol values. The LOI/LE
code with kcol = 3 is especially inefficient for high accuracy computations.

From the embedded tables that show the number of failures and number of
times that the tolerance is exceeded, we see that the BAC/ST, BAC/LE, and
SCI/ST codes are more reliable (i.e., the actual error is within the requested
tolerance) for higher kcol values. The SCI/ST code exhibits substantially more
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failures for the kcol = 3 case. The LOI/LE code is relatively more reliable than
the other codes across all kcol values. These trends are more pronounced for
the more difficult problems (in which ε = 10−4). All codes have more failures
and the actual error exceeds the tolerance more often for low kcol values but
reliability is improved in all codes for larger kcol values. The SCI/ST code shows
a number of instances when the actual error exceeds 10 times the tolerance; this
never happens with the other codes.

5.3.5 Relative Work vs. Accuracy Plots by Problem

These plots are obtained from the data that was used to generate the work-
accuracy plots discussed earlier. Rather than report execution times, these
plots consider the execution times of the BAC/LE, SCI/ST, and LOI/LE codes
relative to a corresponding BAC/ST code execution time. The data was ana-
lyzed and the plots developed as follows. We describe this process first for the
BAC/LE data.

• We first perform a linear fit to the log of the error vs. log of time data
associated with the BAC/ST code in order to obtain a continuous repre-
sentation of the baseline BAC/ST data.

• Then, for each (error,time) ordered pair from the BAC/LE data set, we use
the linear fit associated with the BAC/ST data to obtain a corresponding
time estimate for the BAC/ST code (i.e., an estimate of how much time
the BAC/ST code would take to compute a solution with the same error
as the BAC/LE code).

• We then compute the ratio of the actual BAC/LE time to this estimated
time. This yields a set of ordered pairs of the form (error, time ratio) that
we can associate with the BAC/LE code.

• Finally we fit a line to the log of the error and the time ratios and plot
this line on a semi-log scale.

This process is repeated for the SCI/ST data and the LOI/LE data. For
reference the BAC/ST line is also shown in these plots.

Figures 43-74 show that, generally, the SCI/ST and LOI/LE codes are sub-
stantially faster (almost 50% faster in some cases) than the BAC/ST code,
and that the BAC/LE code is generally somewhat faster than the BAC/ST
code, although the difference between the two codes diminishes as the accu-
racy increases. (In fact, Figure 52 shows that for intermediate to high accura-
cies, BAC/LE is substantially slower than BAC/ST.) The performance of the
LOI/LE code for kcol = 3 also departs from the general pattern described above.
While it is faster than the other codes for low accuracy, it loses this advantage
for higher accuracy.
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6 Summary, Conclusions and Future Work

6.1 Summary and Conclusions

This report describes the modifications that were applied to the BACOL soft-
ware package in order to obtain the new package, BACOLI, that replaces the
expensive computation of a second collocation solution with the construction of
a low cost interpolant for use in the spatial error estimate. The interpolants are
described in detail in [2] and [4]. The former paper describes an algorithm (the
SCI scheme) in which the higher order collocation solution is replaced by a su-
perconvergent piecewise polynomial interpolant; error control is standard (ST)
mode in this case: the spatial error estimate is appropriate for the collocation
solution that is returned to the user. The latter paper describes an algorithm
(the LOI scheme) in which the lower order collocation solution is replaced by a
lower order interpolant whose interpolation error agrees asymptotically with the
collocation error of the lower order collocation solution; error control in this case
is local extrapolation (LE) mode: the spatial error estimate is for a collocation
solution that is of one lower order than that which is returned to the user. The
new code BACOLI provides an option for the selection of either of these spatial
error estimation/error control schemes. The choice of the SCI scheme specifies
ST error control; the choice of the LOI scheme specifies LE error control mode.

This report also provides extensive numerical results that compare the orig-
inal BACOL code with BACOLI running in each of the above modes. For each
test, the input value for kcol, the number of collocation points per subinterval,
is chosen so that a collocation solution of the same order is returned. Machine
independent and machine dependent test results are provided for several test
problems. The test results show that the BACOLI code (using either the SCI
or LOI scheme) is substantially faster than BACOL; this is mainly due to the
avoidance of the computation of two collocation solutions performed by BACOL.
In some cases, BACOLI is shown to be about twice as fast as BACOL.

Comparing BACOL and BACOLI in ST or LE error control mode, the test
results showed that all codes are generally faster for lower kcol values when the
tolerance is coarse to intermediate (with the exception of BACOLI/LE with
kcol = 3.) When the tolerance is sharp, higher kcol values, e.g. kcol = 4, 5, or
6, lead to faster computations. On the other hand, the BACOL code in either
error control mode and the BACOLI code in ST error control mode do a better
job of returning solutions for which the actual error meets the tolerance when
larger kcol values are employed. BACOLI in LE error control mode, however,
provides more reliable control of the error, across all tolerance ranges.

When kcol = 3, both the SCI/ST code (due to a high failure rate) and the
LOI/LE code (due to a large number of remeshings) exhibit poor performance.

6.2 Future Work

There are a number of directions for future work. In earlier work, BACOLR
was shown to be superior to BACOL; thus it would appear to be worthwhile to
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investigate applying the ideas discussed in this report to BACOLR. Other ideas
for future work include the development a Fortran95 version of BACOLI and a
parallel version of BACOLI. Another possibility is to investigate a spatial error
estimation scheme that would involve computing both of the interpolation-based
spatial error estimates (perhaps some sharing of the intermediate computations
can occur) and comparing them. It is possible that the two spatial error esti-
mates could be used to guide an increase or decrease kcol in a remeshing while
allowing a warm start. This would mean that BACOLI would then have a p-
refinement capability. A related comment is that, since the numerical results
presented here show that better efficiency for problems with coarse or intermedi-
ate level tolerances is obtained when smaller kcol values are used, it may also be
appropriate to have BACOLI select the kcol value based on the user tolerance
rather than leaving the choice of kcol up to the user. It is interesting to compare
the results on the current paper with those in [31]. That paper considers, for
BACOL, p = 3 and p = 6 (which correspond to kcol = 2 and kcol = 5) and
the results of that paper show that kcol = 2 is better for very coarse tolerances
(10−2 or 10−3) but for sharper tolerances kcol = 5 is comparable or better.

Another significant direction for future work is the generalization of the
approach to two-dimensional problems. Some preliminary work in this direction
has been reported in [22].

In addition to the above future work projects, a number of other issues
associated with BACOLI might also be investigated:

• When the SCI spatial error estimates are scaled to adjust for large mesh
ratios (as discussed in Section 4), the performance of the SCI/ST version
of BACOLI is improved. Currently, BACOLI uses the product of the
adjacent subinterval ratios for internal intervals (and the square of the
lone adjacent subinterval ratio for boundary subintervals) but another
reasonable alternative would employ, for the internal subintervals, the
maximum of the adjacent subinterval ratios. A more careful investigation
of the interpolation error expression associated with the SCI scheme may
be worthwhile.

• The L2-norm used in the error estimates could be replaced with a max
norm. This would remove the need to use a quadrature formula to compute
the integral that arises in the L2-norm. It may be that the knowledge we
have of the specific polynomials that represent the approximate solution
and interpolant on each subinterval could be used to select the best point
to sample the spatial error estimate on each subinterval.

• There is an issue in the original BACOL with respect to underestimation
of the spatial error in the sharp layer regions. This is also an issue for
the SCI and LOI estimates. Further investigation of the error estimation
schemes and the mesh refinement strategy is required.
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tol 10−4 10−6 10−8

kcol 3
BAC/ST 15, 1152, 83 23, 2526, 117 55, 6203, 110

(0) [380, 3984] (0) [564, 7866] (0) [754, 17086]
BAC/LE 16, 1144, 122 42, 2471, 109 111, 5708, 137

(1) [554, 4408] (0) [496, 7102] (0) [602, 13846]

SCI/ST 14, 1285, 71 — 54, 6970, 135
(0) [188, 2151] — (0) [1123, 10541]

LOI/LE 17, 1102, 131 45, 2197, 150 124, 5715, 468
(0) [280, 2218] (0) [329, 3504] (0) [963, 9905]

kcol 4

BAC/ST 14, 1160, 66 16, 3058, 127 32, 6578, 131
(0) [310, 3896] (0) [682, 9546] (1) [944, 18894]

BAC/LE 15, 1152, 83 23, 2526, 117 55, 6203, 110
(0) [380, 3984] (0) [564, 7866] (0) [754, 17086]

SCI/ST 13, 1196, 66 18, 2932, 115 35, 6509, 129
(0) [163, 1982] (0) [524, 4783] (0) [1200, 9981]

LOI/LE 15, 1153, 91 23, 2462, 143 50, 5845, 151
(0) [203, 2021] (0) [325, 4000] (0) [416, 8144]

kcol 6
BAC/ST 10, 1479, 49 14, 3159, 76 15, 6644, 163

(0) [376, 4810] (2) [542, 9108] (1) [2256, 20770]

BAC/LE 14, 1122, 63 15, 3045, 87 22, 6192, 160
(0) [288, 3730] (0) [538, 8918] (0) [1396, 18438]

SCI/ST 12, 1283, 51 14, 3132, 70 19, 6279, 126
(0) [128, 2031] (0) [436, 4864] (0) [1120, 9658]

LOI/LE 11, 1253, 66 15, 3145, 110 22, 6637, 164
(0) [154, 2042] (1) [390, 4912] (2) [686, 9718]

kcol 8

BAC/ST 10, 1530, 45 15, 2763, 63 13, 6447, 108
(0) [302, 5008] (0) [378, 7814] (1) [2128, 19302]

BAC/LE 10, 1617, 47 15, 2751, 65 14, 5947, 111
(0) [372, 5168] (0) [462, 7832] (1) [1838, 17494]

SCI/ST 10, 1715, 42 14, 3223, 62 14, 6771, 103
(0) [219, 2740] (0) [440, 4887] (0) [1071, 9938]

LOI/LE 10, 1366, 56 15, 2861, 68 15, 6381, 128
(0) [150, 2214] (0) [198, 3989] (0) [1049, 9709]

Table 1: Machine independent results for the One Layer Burgers equation with
ε = 10−3. We consider kcol = 3, 4, 6, 8 and tol = 10−4, 10−6, 10−8. Table
entries are of the form Final Nint, Accepted Time Steps, Remeshings (Cold
Starts) [Calls to CRDCMP, CRSLVE].
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tol 10−4 10−6 10−8

kcol 3
BAC/ST 13, 13321, 753 22, 33345, 1188 46, 68868, 1245

(2) [4054, 46242] (2) [6182, 101576] (0) [10758, 191580]
BAC/LE 17, 12475, 907 37, 27789, 1074 88, 70200, 1247

(1) [4186, 45014] (0) [4862, 84942] (0) [7956, 196708]

SCI/ST 16, 13127, 741 — —
(2) [2370, 23726] — —

LOI/LE 20, 10870, 1213 40, 24481, 1414 116, 45139, 3998
(2) [2551, 21540] (0) [3002, 38537] (1) [8061, 81210]

kcol 4

BAC/ST 14, 13148, 585 18, 33814, 1215 27, 60633, 1322
(2) [3324, 43788] (4) [12196, 112460] (3) [15030, 178116]

BAC/LE 13, 13321, 753 22, 33345, 1188 46, 68868, 1245
(2) [4054, 46242] (2) [6182, 101576] (0) [10758, 191580]

SCI/ST 14, 13819, 655 — —
(0) [2445, 24439] — —

LOI/LE 15, 18120, 997 23, 29705, 1161 48, 65420, 1301
(12) [2385, 23825] (2) [2821, 45541] (1) [4308, 94426]

kcol 6
BAC/ST 13, 14012, 473 15, 32398, 675 18, 78698, 1473

(0) [2868, 45246] (5) [8526, 97292] (5) [27404, 223812]

BAC/LE 15, 12112, 558 15, 34594, 1117 25, 64011, 1411
(0) [2762, 39984] (4) [13030, 115922] (3) [21898, 198946]

SCI/ST 15, 14141, 429 14, 36481, 967 22, 67213, 1169
(0) [1397, 22721] (1) [7231, 59718] (1) [11332, 101223]

LOI/LE 15, 12780, 637 15, 56124, 1215 22, 77296, 1372
(4) [1781, 21623] (7) [6576, 58230] (11) [9142, 92835]

kcol 8

BAC/ST 14, 14096, 452 14, 34498, 535 14, 67504, 921
(1) [2922, 45800] (1) [8694, 103136] (1) [20058, 195896]

BAC/LE 13, 15843, 416 14, 33700, 588 15, 74574, 1491
(0) [3442, 50752] (4) [8868, 101146] (3) [29160, 237118]

SCI/ST 14, 15041, 386 15, 36965, 579 15, 71911, 1312
(0) [1434, 23982] (0) [5518, 55984] (2) [12869, 109570]

LOI/LE 14, 12835, 548 15, 33800, 633 15, 93326, 1670
(0) [1437, 21268] (0) [4713, 51899] (23) [15500, 119843]

Table 2: Machine independent results for the One Layer Burgers equation with
ε = 10−4. We consider kcol = 3, 4, 6, 8 and tol = 10−4, 10−6, 10−8. Table
entries are of the form Final Nint, Accepted Time Steps, Remeshings (Cold
Starts) [Calls to CRDCMP, CRSLVE].
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tol 10−4 10−6 10−8

kcol 3
BAC/ST 19, 3537, 282 50, 14089, 430 81, 25690, 581

(3) [1296, 12796] (6) [2122, 34638] (3) [3010, 69910]
BAC/LE 32, 3307, 311 86, 11704, 611 215, 24412, 647

(4) [1352, 12306] (4) [2716, 36896] (4) [3154, 65636]

SCI/ST 19, 5691, 173 43, 11876, 332 92, 24745, 413
(0) [478, 8591] (0) [890, 17254] (0) [1547, 33524]

LOI/LE 50, 3669, 432 97, 11665, 755 262, 24625, 1221
(3) [931, 7386] (4) [1655, 19207] (8) [2652, 36259]

kcol 4

BAC/ST 15, 4715, 256 33, 12815, 421 55, 25475, 555
(2) [1248, 15770] (0) [2128, 38080] (0) [3040, 72150]

BAC/LE 19, 3537, 282 50, 14089, 430 81, 25690, 581
(3) [1296, 12796] (6) [2122, 34638] (3) [3010, 69910]

SCI/ST 15, 6708, 167 29, 12655, 327 50, 27507, 454
(0) [500, 9804] (0) [975, 18571] (0) [2107, 37984]

LOI/LE 19, 4276, 240 40, 12352, 394 88, 23947, 427
(3) [574, 7097] (8) [1040, 17831] (0) [1166, 31314]

kcol 6
BAC/ST 14, 7260, 226 22, 13964, 375 27, 27773, 504

(3) [1548, 22650] (0) [3358, 43428] (0) [5280, 80144]

BAC/LE 14, 5801, 230 24, 12554, 391 34, 25636, 490
(2) [1316, 18636] (0) [2332, 38204] (1) [3558, 72622]

SCI/ST 16, 7505, 116 20, 14881, 328 26, 29066, 425
(0) [496, 10724] (0) [1684, 22580] (0) [2720, 41327]

LOI/LE 14, 5822, 179 22, 19282, 389 33, 25331, 451
(0) [542, 9003] (5) [1218, 18657] (0) [1522, 35250]

kcol 8

BAC/ST 13, 12816, 183 16, 18277, 425 22, 32963, 530
(7) [2232, 30304] (1) [6078, 58248] (0) [8482, 97036]

BAC/LE 13, 8500, 200 18, 16415, 438 23, 31197, 531
(0) [1784, 26134] (3) [5388, 52938] (3) [7628, 91156]

SCI/ST 15, 9863, 136 17, 17572, 301 17, 31947, 438
(0) [792, 14213] (0) [2214, 26395] (0) [3700, 45985]

LOI/LE 15, 8196, 152 15, 16060, 390 20, 29630, 518
(5) [805, 12054] (1) [2560, 25747] (1) [3319, 43516]

Table 3: Machine independent results for the Catalytic Surface Reaction Model.
We consider kcol = 3, 4, 6, 8 and tol = 10−4, 10−6, 10−8. Table entries are of
the form Final Nint, Accepted Time Steps, Remeshings (Cold Starts) [Calls to
CRDCMP, CRSLVE].
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tol 10−4 10−6 10−8

kcol 3
BAC/ST 14, 892, 68 22, 1866, 96 53, 4656, 91

(0) [306, 3108] (0) [448, 5638] (0) [542, 12398]
BAC/LE 15, 833, 86 39, 1918, 93 120, 3300, 91

(0) [378, 3180] (0) [406, 5546] (0) [412, 8244]

SCI/ST — — —
— — —

LOI/LE 18, 792, 88 42, 1688, 121 134, 3384, 414
(0) [190, 1560] (0) [259, 2679] (0) [852, 7088]

kcol 4

BAC/ST 15, 865, 56 15, 2068, 92 30, 4620, 100
(0) [258, 2902] (0) [482, 6408] (0) [624, 12784]

BAC/LE 14, 892, 68 22, 1866, 96 53, 4656, 91
(0) [306, 3108] (0) [448, 5638] (0) [542, 12398]

SCI/ST 15, 868, 55 19, 2230, 72 34, 4777, 90
(0) [129, 1444] (0) [265, 3375] (0) [685, 6978]

LOI/LE 13, 883, 75 22, 1838, 104 48, 4087, 104
(0) [165, 1586] (0) [234, 2841] (0) [262, 5293]

kcol 6
BAC/ST 13, 963, 47 15, 2272, 76 15, 5103, 120

(0) [234, 3094] (0) [444, 6886] (0) [1282, 15176]

BAC/LE 15, 899, 48 15, 2256, 75 20, 5021, 115
(0) [220, 2868] (0) [414, 6514] (0) [846, 14248]

SCI/ST 13, 940, 38 15, 2398, 75 18, 4639, 97
(0) [93, 1478] (0) [366, 3777] (0) [749, 7036]

LOI/LE 15, 887, 52 15, 2184, 83 21, 4732, 105
(0) [119, 1441] (0) [223, 3311] (0) [375, 6730]

kcol 8

BAC/ST 15, 891, 34 15, 2262, 49 15, 5014, 80
(0) [160, 2804] (0) [382, 6456] (0) [1396, 14664]

BAC/LE 13, 985, 42 15, 2223, 58 14, 4760, 99
(0) [206, 3132] (0) [418, 6402] (0) [1422, 14260]

SCI/ST 11, 1124, 37 14, 2558, 52 15, 5298, 86
(0) [135, 1801] (0) [314, 3758] (0) [840, 7943]

LOI/LE 12, 964, 45 15, 2267, 65 15, 4922, 107
(0) [106, 1570] (0) [234, 3391] (0) [677, 7295]

Table 4: Machine independent results for the Two Layer Burgers equation with
ε = 10−3. We consider kcol = 3, 4, 6, 8 and tol = 10−4, 10−6, 10−8. Table
entries are of the form Final Nint, Accepted Time Steps, Remeshings (Cold
Starts) [Calls to CRDCMP, CRSLVE].
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tol 10−4 10−6 10−8

kcol 3
BAC/ST 15, 871, 64 22, 1846, 92 50, 4509, 102

(0) [282, 2972] (0) [426, 5528] (0) [618, 12506]
BAC/LE 15, 834, 87 39, 1918, 93 120, 3300, 93

(0) [388, 3214] (0) [406, 5542] (0) [420, 8280]

SCI/ST 14, 882, 80 — —
(0) [197, 1629] — —

LOI/LE 17, 756, 93 45, 1561, 119 136, 3384, 418
(0) [199, 1541] (0) [260, 2559] (0) [860, 7125]

kcol 4

BAC/ST 13, 906, 59 14, 2156, 97 28, 4520, 98
(0) [276, 3096] (0) [490, 6634] (0) [644, 12754]

BAC/LE 15, 871, 64 22, 1846, 92 50, 4509, 102
(0) [282, 2972] (0) [426, 5528] (0) [618, 12506]

SCI/ST 15, 870, 54 18, 2168, 78 35, 4621, 82
(1) [129, 1445] (0) [279, 3347] (0) [625, 6622]

LOI/LE 15, 854, 74 24, 1793, 94 51, 4125, 112
(1) [166, 1538] (0) [213, 2709] (0) [272, 5430]

kcol 6
BAC/ST 13, 951, 46 15, 2183, 70 15, 4849, 113

(0) [228, 3114] (0) [436, 6490] (0) [1272, 14588]

BAC/LE 15, 884, 51 15, 2159, 72 20, 4803, 112
(0) [232, 2890] (0) [420, 6352] (0) [872, 13888]

SCI/ST 13, 945, 36 11, 2329, 65 17, 4882, 116
(0) [85, 1434] (0) [295, 3522] (0) [881, 7758]

LOI/LE 15, 884, 54 15, 2215, 80 22, 4816, 120
(0) [125, 1448] (0) [227, 3349] (0) [410, 6862]

kcol 8

BAC/ST 15, 917, 37 15, 2229, 51 14, 4940, 86
(0) [188, 2788] (0) [418, 6310] (0) [1520, 14766]

BAC/LE 14, 952, 42 14, 2443, 64 14, 4894, 100
(0) [214, 3028] (0) [524, 7160] (0) [1404, 14630]

SCI/ST 11, 1141, 33 14, 2496, 51 14, 5468, 93
(0) [114, 1779] (0) [325, 3749] (0) [901, 8290]

LOI/LE 11, 1012, 44 15, 2177, 64 15, 4879, 109
(0) [120, 1650] (1) [219, 3185] (1) [647, 7248]

Table 5: Machine independent results for the Two Layer Burgers equation×6
with ε = 10−3. We consider kcol = 3, 4, 6, 8 and tol = 10−4, 10−6, 10−8. Table
entries are of the form Final Nint, Accepted Time Steps, Remeshings (Cold
Starts) [Calls to CRDCMP, CRSLVE].
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tol 10−4 10−6 10−8

kcol 3
BAC/ST 14, 855, 63 20, 1883, 101 46, 4438, 93

(0) [288, 2940] (0) [474, 5842] (0) [550, 11870]
BAC/LE 15, 833, 87 39, 1918, 93 125, 3365, 91

(0) [382, 3198] (0) [406, 5544] (0) [410, 8344]

SCI/ST — — —
— — —

LOI/LE 19, 760, 95 44, 1738, 122 136, 3384, 411
(0) [203, 1581] (0) [265, 2766] (0) [846, 7062]

kcol 4

BAC/ST 15, 882, 54 14, 2137, 95 28, 4781, 103
(0) [246, 2932] (0) [482, 6520] (0) [642, 13404]

BAC/LE 14, 855, 63 20, 1883, 101 46, 4438, 93
(0) [288, 2940] (0) [474, 5842] (0) [550, 11870]

SCI/ST 14, 901, 51 20, 2215, 73 31, 4869, 90
(0) [126, 1481] (0) [247, 3336] (0) [695, 7125]

LOI/LE 15, 844, 72 24, 1841, 99 52, 4105, 106
(0) [158, 1504] (0) [228, 2817] (0) [267, 5385]

kcol 6
BAC/ST 15, 934, 46 15, 2272, 69 15, 4905, 114

(0) [224, 3020] (0) [434, 6752] (0) [1272, 14746]

BAC/LE 14, 884, 49 14, 2149, 77 20, 4844, 113
(0) [226, 2858] (0) [476, 6548] (0) [864, 13938]

SCI/ST 13, 926, 38 14, 2357, 73 18, 4731, 105
(0) [92, 1460] (0) [382, 3748] (0) [803, 7288]

LOI/LE 15, 825, 51 15, 2207, 78 20, 4906, 110
(0) [117, 1373] (0) [219, 3290] (0) [411, 6957]

kcol 8

BAC/ST 15, 891, 36 14, 2265, 54 14, 4954, 88
(0) [176, 2832] (0) [488, 6696] (0) [1572, 14882]

BAC/LE 13, 1008, 42 15, 2164, 56 14, 5036, 101
(0) [198, 3210] (0) [378, 6296] (0) [1454, 15042]

SCI/ST 11, 1123, 35 15, 2409, 50 15, 5285, 78
(0) [115, 1784] (0) [233, 3472] (0) [777, 7747]

LOI/LE 12, 1000, 46 14, 2351, 66 14, 5037, 102
(0) [129, 1654] (0) [247, 3429] (0) [721, 7533]

Table 6: Machine independent results for the Two Layer Burgers equation×12
with ε = 10−3. We consider kcol = 3, 4, 6, 8 and tol = 10−4, 10−6, 10−8. Table
entries are of the form Final Nint, Accepted Time Steps, Remeshings (Cold
Starts) [Calls to CRDCMP, CRSLVE].
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tol 10−4 10−6 10−8

kcol 3
BAC/ST 13, 9178, 602 22, 21422, 904 43, 45483, 947

(3) [2848, 32226] (0) [4116, 65290] (0) [6754, 127594]
BAC/LE 18, 8841, 809 36, 19283, 1017 84, 44775, 1063

(2) [3478, 33640] (0) [4384, 60834] (0) [5700, 122680]

SCI/ST — 27, 29909, 750 51, 47229, 801
— (3) [3140, 35920] (0) [6354, 68648]

LOI/LE 19, 7978, 969 40, 16843, 1202 105, 38520, 3361
(0) [1984, 16370] (0) [2459, 27173] (2) [6767, 68697]

kcol 4

BAC/ST 15, 9426, 521 17, 23743, 954 28, 46574, 1039
(4) [2510, 32096] (4) [6638, 76484] (3) [8866, 134230]

BAC/LE 13, 9178, 602 22, 21422, 904 43, 45483, 947
(3) [2848, 32226] (0) [4116, 65290] (0) [6754, 127594]

SCI/ST 15, 9678, 489 — 33, 48678, 781
(0) [1348, 16543] — (0) [6607, 70499]

LOI/LE 15, 9090, 775 22, 20116, 954 43, 46580, 1090
(2) [1715, 17141] (0) [2125, 30923] (1) [3104, 65542]

kcol 6
BAC/ST 15, 10782, 432 14, 26090, 796 16, 79020, 1159

(11) [2418, 34582] (0) [8498, 84682] (4) [18122, 163304]

BAC/LE 15, 13009, 481 15, 25207, 943 20, 47812, 1045
(5) [2344, 32586] (0) [8502, 84048] (2) [12044, 141438]

SCI/ST 14, 10938, 402 14, 26095, 718 19, 54477, 905
(0) [1250, 17857] (0) [4561, 41787] (3) [8332, 78009]

LOI/LE 15, 9792, 547 15, 24572, 971 22, 48019, 1079
(2) [1321, 16744] (7) [4211, 40997] (5) [5474, 70210]

kcol 8

BAC/ST 14, 12410, 316 15, 27032, 608 15, 52275, 874
(0) [2716, 38194] (3) [8148, 83486] (0) [16988, 158874]

BAC/LE 13, 12995, 329 15, 26849, 672 15, 78789, 1166
(7) [3016, 39850] (0) [8356, 84464] (8) [20350, 175078]

SCI/ST 14, 12513, 362 14, 29192, 615 15, 81994, 975
(0) [1635, 20163] (0) [4728, 45133] (2) [9682, 84781]

LOI/LE 14, 12062, 424 15, 42373, 743 16, 63511, 1231
(1) [1652, 19852] (23) [4460, 42732] (13) [10352, 89036]

Table 7: Machine independent results for the Two Layer Burgers equation with
ε = 10−4. We consider kcol = 3, 4, 6, 8 and tol = 10−4, 10−6, 10−8. Table
entries are of the form Final Nint, Accepted Time Steps, Remeshings (Cold
Starts) [Calls to CRDCMP, CRSLVE].
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tol 10−4 10−6 10−8

kcol 3
BAC/ST 15, 9365, 634 23, 21616, 914 46, 48641, 937

(5) [3048, 33282] (3) [4188, 65854] (0) [6480, 138236]
BAC/LE 17, 8884, 796 36, 19203, 982 101, 44323, 991

(2) [3470, 33842] (0) [4214, 59722] (0) [4912, 117634]

SCI/ST 14, 9319, 660 — 47, 47607, 827
(1) [1651, 17262] — (2) [6724, 69671]

LOI/LE 21, 8257, 940 38, 16466, 1179 103, 38196, 3247
(0) [1928, 16450] (0) [2424, 26883] (0) [6526, 67435]

kcol 4

BAC/ST 15, 9541, 541 16, 23484, 986 28, 46528, 1012
(4) [2576, 32460] (6) [6852, 76320] (3) [8860, 133872]

BAC/LE 15, 9365, 634 23, 21616, 914 46, 48641, 937
(5) [3048, 33282] (3) [4188, 65854] (0) [6480, 138236]

SCI/ST 14, 9743, 510 19, 23215, 752 30, 48715, 757
(1) [1406, 16804] (0) [3644, 37581] (0) [6612, 70440]

LOI/LE 15, 9132, 754 24, 19792, 937 48, 43528, 1016
(6) [1720, 16958] (1) [2114, 30650] (1) [2793, 60359]

kcol 6
BAC/ST 15, 10969, 440 15, 25450, 757 18, 52028, 1135

(6) [2812, 36024] (3) [7806, 81182] (3) [18394, 164570]

BAC/LE 14, 10341, 471 15, 24356, 836 21, 48205, 1080
(5) [2346, 34086] (3) [7422, 78698] (3) [12766, 143966]

SCI/ST 15, 12749, 439 14, 26075, 704 18, 84396, 955
(2) [1220, 17230] (0) [4527, 41851] (6) [8827, 79550]

LOI/LE 15, 10305, 537 15, 24430, 962 21, 47887, 1072
(3) [1435, 17606] (6) [4187, 40909] (9) [5420, 69248]

kcol 8

BAC/ST 14, 16712, 329 14, 28390, 628 14, 64637, 927
(3) [2976, 40288] (3) [9058, 88188] (4) [18240, 164180]

BAC/LE 15, 11871, 377 15, 26501, 663 15, 55285, 1127
(8) [2800, 37192] (0) [8230, 83514] (4) [19986, 174726]

SCI/ST 15, 11478, 384 15, 28076, 586 16, 55252, 946
(0) [1528, 18778] (0) [4380, 43172] (1) [9467, 83336]

LOI/LE 14, 11704, 422 13, 33795, 777 15, 95550, 1276
(0) [1541, 19211] (10) [4843, 44302] (17) [10630, 89062]

Table 8: Machine independent results for the Two Layer Burgers equation×6
with ε = 10−4. We consider kcol = 3, 4, 6, 8 and tol = 10−4, 10−6, 10−8. Table
entries are of the form Final Nint, Accepted Time Steps, Remeshings (Cold
Starts) [Calls to CRDCMP, CRSLVE].
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tol 10−4 10−6 10−8

kcol 3
BAC/ST 13, 9312, 642 22, 21352, 898 45, 49204, 898

(4) [3004, 33194] (3) [4060, 64710] (0) [6030, 136218]
BAC/LE 17, 8820, 805 33, 20529, 1010 89, 44747, 1003

(2) [3462, 33634] (0) [4348, 63970] (0) [5564, 123658]

SCI/ST 15, 9306, 663 22, 22881, 752 49, 47962, 871
(3) [1683, 17278] (0) [3306, 36669] (2) [6945, 70867]

LOI/LE 20, 8195, 980 42, 16162, 1201 101, 38904, 3247
(0) [2011, 16689] (0) [2450, 26339] (0) [6529, 68168]

kcol 4

BAC/ST 15, 9705, 527 17, 23482, 974 27, 47309, 1032
(7) [2572, 32586] (4) [7100, 76832] (3) [8764, 136006]

BAC/LE 13, 9312, 642 22, 21352, 898 45, 49204, 898
(4) [3004, 33194] (3) [4060, 64710] (0) [6030, 136218]

SCI/ST 15, 9663, 473 — 33, 49073, 793
(3) [1271, 16324] — (0) [6717, 71234]

LOI/LE 13, 9714, 804 25, 23038, 930 46, 45034, 1043
(9) [1839, 17430] (3) [2098, 30532] (2) [2992, 63230]

kcol 6
BAC/ST 13, 11694, 378 15, 29451, 789 17, 82610, 1182

(4) [2846, 37344] (2) [8710, 85112] (5) [18554, 163600]

BAC/LE 15, 9710, 481 14, 25059, 898 21, 48503, 1069
(3) [2242, 32186] (3) [8102, 82074] (3) [12646, 144238]

SCI/ST 15, 10282, 440 15, 26471, 730 20, 51961, 930
(0) [1180, 16984] (0) [4683, 42506] (0) [8750, 79625]

LOI/LE 13, 10469, 554 15, 24484, 1016 —
(3) [1365, 17280] (8) [4398, 41349] —

kcol 8

BAC/ST 15, 16449, 354 15, 40531, 617 14, 54871, 950
(3) [2654, 36104] (2) [8424, 85848] (0) [18726, 167840]

BAC/LE 15, 13997, 375 15, 26589, 692 14, 61185, 1139
(8) [2500, 35796] (0) [8464, 84318] (4) [19914, 173086]

SCI/ST 14, 12371, 351 14, 28385, 590 14, 54571, 949
(1) [1570, 19749] (0) [4455, 43840] (0) [9457, 82689]

LOI/LE 14, 11555, 433 15, 26753, 728 14, 67267, 1249
(0) [1563, 19209] (11) [4351, 42578] (13) [10343, 88006]

Table 9: Machine independent results for the Two Layer Burgers equation×12
with ε = 10−4. We consider kcol = 3, 4, 6, 8 and tol = 10−4, 10−6, 10−8. Table
entries are of the form Final Nint, Accepted Time Steps, Remeshings (Cold
Starts) [Calls to CRDCMP, CRSLVE].
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tol = 10−4/kcol = 3 4 5 6 7 8 9 10
BAC/ST 0.08 0.09 0.12 0.12 0.15 0.18 0.22 0.27
BAC/LE 0.07 0.08 0.09 0.12 0.12 0.15 0.18 0.22

SCI/ST 0.04 0.05 0.06 0.07 0.08 0.10 0.11 0.14
LOI/LE 0.05 0.05 0.06 0.06 0.08 0.09 0.11 0.14

tol = 10−6/kcol = 3 4 5 6 7 8 9 10

BAC/ST 0.22 0.25 0.27 0.30 0.36 0.42 0.50 0.55
BAC/LE 0.26 0.22 0.25 0.27 0.30 0.36 0.42 0.50

SCI/ST — 0.15 0.17 0.17 0.19 0.23 0.27 0.31
LOI/LE 0.19 0.15 0.17 0.17 0.19 0.22 0.25 0.29

tol = 10−8/kcol = 3 4 5 6 7 8 9 10
BAC/ST 1.05 0.87 0.76 0.79 0.77 0.83 0.93 1.07

BAC/LE 1.35 1.05 0.87 0.76 0.79 0.77 0.83 0.93
SCI/ST 0.64 0.51 0.44 0.46 0.50 0.53 0.54 0.60

LOI/LE 1.43 0.60 0.53 0.52 0.51 0.49 0.52 0.57

Table 10: Machine dependent timings (in seconds), One Layer Burgers’ equa-
tion, ε = 10−3, kcol = 3, . . . , 10, tol = 10−4, 10−6, 10−8.
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tol = 10−4/kcol = 3 4 5 6 7 8 9 10
BAC/ST 0.84 0.96 1.21 1.43 1.82 2.24 2.56 3.27

BAC/LE 0.69 0.84 0.96 1.21 1.43 1.82 2.24 2.56
SCI/ST 0.48 0.58 0.65 0.81 0.96 1.21 1.46 1.90

LOI/LE 0.55 0.58 0.66 0.80 0.92 1.14 1.41 1.67

tol = 10−6/kcol = 3 4 5 6 7 8 9 10
BAC/ST 2.82 2.95 3.27 3.34 4.02 4.65 5.62 6.84
BAC/LE 2.61 2.82 2.95 3.27 3.34 4.02 4.65 5.62

SCI/ST — — 1.89 2.23 2.30 2.78 3.21 3.80
LOI/LE 1.79 1.70 1.94 2.21 2.28 2.52 2.92 3.46

tol = 10−8/kcol = 3 4 5 6 7 8 9 10

BAC/ST 10.07 7.69 8.26 9.18 10.25 9.71 10.59 12.10
BAC/LE 13.49 10.07 7.69 8.26 9.18 10.25 9.71 10.59

SCI/ST — — 4.72 5.07 5.48 6.36 6.60 9.07
LOI/LE 10.31 6.40 5.14 5.10 5.87 6.65 6.16 6.66

Table 11: Machine dependent timings (in seconds), One Layer Burgers’ equa-
tion, ε = 10−4, kcol = 3, . . . , 10, tol = 10−4, 10−6, 10−8.

tol = 10−4/kcol = 3 4 5 6 7 8 9 10
BAC/ST 0.03 0.04 0.05 0.06 0.07 0.09 0.10 0.11

BAC/LE 0.02 0.03 0.04 0.05 0.06 0.07 0.09 0.10
SCI/ST 0.01 0.02 0.02 0.02 0.03 0.04 0.05 0.07

LOI/LE 0.02 0.02 0.02 0.04 0.03 0.05 0.05 0.06

tol = 10−6/kcol = 3 4 5 6 7 8 9 10
BAC/ST 0.12 0.14 0.17 0.21 0.24 0.30 0.39 0.42

BAC/LE 0.14 0.12 0.14 0.17 0.21 0.24 0.30 0.39
SCI/ST 0.05 0.06 — 0.08 0.11 0.13 0.17 —
LOI/LE 0.09 0.10 0.09 0.09 0.11 0.13 0.14 0.19

tol = 10−8/kcol = 3 4 5 6 7 8 9 10

BAC/ST 0.50 0.46 0.54 0.53 0.65 0.77 — 0.97
BAC/LE 0.80 0.50 0.46 0.54 0.53 0.65 0.77 —

SCI/ST 0.26 0.23 0.26 0.27 0.30 0.37 0.45 0.50
LOI/LE 0.59 0.38 0.30 0.29 0.30 0.39 0.38 —

Table 12: Machine dependent timings (in seconds), Catalytic Surface Reaction
Model, kcol = 3, . . . , 10, tol = 10−4, 10−6, 10−8.
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tol = 10−4/kcol = 3 4 5 6 7 8 9 10
BAC/ST 0.05 0.06 0.08 0.09 0.11 0.14 0.16 0.18

BAC/LE 0.05 0.05 0.06 0.08 0.09 0.11 0.14 0.16
SCI/ST — 0.03 0.04 0.04 0.05 0.06 0.08 0.10

LOI/LE 0.03 0.03 0.04 0.05 0.05 0.06 0.07 0.11

tol = 10−6/kcol = 3 4 5 6 7 8 9 10

BAC/ST 0.15 0.16 0.18 0.21 0.23 0.27 0.32 0.36
BAC/LE 0.20 0.15 0.16 0.18 0.21 0.23 0.27 0.32

SCI/ST — 0.10 0.11 0.13 0.14 0.16 0.18 0.20
LOI/LE 0.15 0.10 0.11 0.12 0.13 0.16 0.17 0.18

tol = 10−8/kcol = 3 4 5 6 7 8 9 10

BAC/ST 0.72 0.57 0.53 0.55 0.55 0.63 0.68 0.80
BAC/LE 0.89 0.72 0.57 0.53 0.55 0.55 0.63 0.68
SCI/ST — 0.35 0.30 0.32 0.34 0.38 0.39 0.44

LOI/LE 1.16 0.44 0.36 0.33 0.35 0.37 0.38 0.45

Table 13: Machine dependent timings (in seconds), Two Layer Burgers’ equa-
tion, ε = 10−3, kcol = 3, . . . , 10, tol = 10−4, 10−6, 10−8.

tol = 10−4/kcol = 3 4 5 6 7 8 9 10
BAC/ST 0.33 0.40 0.57 0.66 0.86 1.12 1.31 1.53

BAC/LE 0.26 0.33 0.40 0.57 0.66 0.86 1.12 1.31
SCI/ST 0.17 0.20 0.23 0.28 0.36 0.45 0.64 0.72

LOI/LE 0.19 0.22 0.26 0.34 0.35 0.43 0.52 0.77

tol = 10−6/kcol = 3 4 5 6 7 8 9 10
BAC/ST 0.96 1.11 1.28 1.60 2.08 2.36 2.91 3.68

BAC/LE 1.15 0.96 1.11 1.28 1.60 2.08 2.36 2.91
SCI/ST — 0.63 0.78 0.88 1.07 1.31 1.53 1.84
LOI/LE 0.81 0.63 0.69 0.79 0.93 1.13 1.36 1.59

tol = 10−8/kcol = 3 4 5 6 7 8 9 10

BAC/ST 4.71 4.02 4.08 4.66 5.44 6.41 7.50 8.31
BAC/LE 5.34 4.71 4.02 4.08 4.66 5.44 6.41 7.50

SCI/ST — 2.41 2.34 2.89 3.06 3.71 3.98 4.62
LOI/LE 7.03 2.82 2.45 2.51 2.81 3.21 3.88 4.42

Table 14: Machine dependent timings (in seconds), Two Layer Burgers’
equation×6, ε = 10−3, kcol = 3, . . . , 10, tol = 10−4, 10−6, 10−8.
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tol = 10−4/kcol = 3 4 5 6 7 8 9 10
BAC/ST 1.09 1.51 1.95 2.74 3.18 4.43 5.46 6.81

BAC/LE 0.89 1.09 1.51 1.95 2.74 3.18 4.43 5.46
SCI/ST — 0.61 0.81 1.01 1.29 1.72 2.45 2.98

LOI/LE 0.67 0.72 0.95 1.28 1.37 1.91 2.47 3.35

tol = 10−6/kcol = 3 4 5 6 7 8 9 10
BAC/ST 3.31 3.83 4.61 5.84 6.81 9.83 12.15 15.66
BAC/LE 3.58 3.31 3.83 4.61 5.84 6.81 9.83 12.15

SCI/ST — 1.99 2.63 3.57 4.18 4.64 6.97 8.43
LOI/LE 2.70 2.21 2.38 2.84 3.39 4.56 5.21 6.91

tol = 10−8/kcol = 3 4 5 6 7 8 9 10

BAC/ST 14.00 12.73 13.71 17.50 22.92 29.10 35.48 37.28
BAC/LE 17.12 14.00 12.73 13.71 17.50 22.92 29.10 35.48

SCI/ST — 8.42 8.17 10.62 12.43 14.38 16.19 20.89
LOI/LE 24.24 8.25 7.45 8.41 10.84 13.30 15.84 18.99

Table 15: Machine dependent timings (in seconds), Two Layer Burgers’
equation×12, ε = 10−3, kcol = 3, . . . , 10, tol = 10−4, 10−6, 10−8.

tol = 10−4/kcol = 3 4 5 6 7 8 9 10
BAC/ST 0.58 0.72 0.90 1.11 1.35 1.56 1.98 2.35

BAC/LE 0.51 0.58 0.72 0.90 1.11 1.35 1.56 1.98
SCI/ST — 0.38 0.45 0.57 0.71 0.87 1.05 1.21

LOI/LE 0.40 0.42 0.48 0.57 0.73 0.89 1.12 1.22

tol = 10−6/kcol = 3 4 5 6 7 8 9 10
BAC/ST 1.77 2.03 2.43 2.79 3.27 3.78 4.70 5.69

BAC/LE 1.91 1.77 2.03 2.43 2.79 3.27 3.78 4.70
SCI/ST 1.18 — 1.33 1.53 1.82 2.17 2.55 3.01
LOI/LE 1.33 1.17 1.35 1.54 1.84 2.10 2.50 2.87

tol = 10−8/kcol = 3 4 5 6 7 8 9 10

BAC/ST 6.66 5.89 5.89 6.65 7.53 7.75 8.90 10.46
BAC/LE 9.81 6.66 5.89 5.89 6.65 7.53 7.75 8.90

SCI/ST 4.26 3.63 3.51 3.81 4.16 4.68 5.13 5.64
LOI/LE 9.61 4.47 3.96 3.82 4.34 5.12 5.14 5.68

Table 16: Machine dependent timings (in seconds), Two Layer Burgers’ equa-
tion, ε = 10−4, kcol = 3, . . . , 10, tol = 10−4, 10−6, 10−8.
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tol = 10−4/kcol = 3 4 5 6 7 8 9 10
BAC/ST 3.68 4.84 6.41 9.23 12.01 14.56 18.21 22.08

BAC/LE 2.82 3.68 4.84 6.41 9.23 12.01 14.56 18.21
SCI/ST 1.87 2.34 2.87 3.82 5.33 6.69 7.91 10.26

LOI/LE 2.14 2.52 — 4.12 5.47 6.60 8.86 9.81

tol = 10−6/kcol = 3 4 5 6 7 8 9 10

BAC/ST 11.20 14.92 18.51 23.83 30.94 39.78 48.22 61.64
BAC/LE 10.82 11.20 14.92 18.51 23.83 30.94 39.78 48.22

SCI/ST — 7.87 9.71 12.29 15.52 19.33 23.82 29.92
LOI/LE 7.11 7.20 9.14 11.77 14.61 19.31 24.02 27.71

tol = 10−8/kcol = 3 4 5 6 7 8 9 10

BAC/ST 48.25 43.71 50.59 65.73 81.97 87.70 103.05 120.42
BAC/LE 58.79 48.25 43.71 50.59 65.73 81.97 87.70 103.05

SCI/ST 25.79 25.49 27.44 33.45 38.49 45.53 53.05 60.16
LOI/LE 54.96 28.09 28.14 29.27 39.64 47.81 54.39 63.63

Table 17: Machine dependent timings (in seconds), Two Layer Burgers’
equation×6, ε = 10−4, kcol = 3, . . . , 10, tol = 10−4, 10−6, 10−8.

tol = 10−4/kcol = 3 4 5 6 7 8 9 10
BAC/ST 12.51 16.89 22.05 32.94 43.22 56.11 78.78 97.31

BAC/LE 9.11 12.51 16.89 22.05 32.94 43.22 56.11 78.78
SCI/ST 5.79 7.18 9.80 13.55 19.22 26.79 32.78 40.17

LOI/LE 7.27 8.77 11.25 14.54 21.08 26.59 36.28 39.95

tol = 10−6/kcol = 3 4 5 6 7 8 9 10
BAC/ST 35.82 52.98 72.42 99.14 128.22 169.66 226.70 274.55

BAC/LE 33.56 35.82 52.98 72.42 99.14 128.22 169.66 226.70
SCI/ST 21.56 — 34.86 48.95 61.62 81.14 105.12 134.48

LOI/LE 23.92 23.17 31.90 47.00 58.21 77.42 106.24 131.37

tol = 10−8/kcol = 3 4 5 6 7 8 9 10

BAC/ST 146.34 145.06 182.29 268.81 337.51 405.95 494.13 593.82
BAC/LE 165.03 146.34 145.06 182.29 268.81 337.51 405.95 494.13

SCI/ST 83.51 86.47 97.39 128.54 157.00 189.48 233.16 284.21
LOI/LE 171.56 85.32 88.62 — 155.66 203.16 238.82 294.21

Table 18: Machine dependent timings (in seconds), Two Layer Burgers’
equation×12, ε = 10−4, kcol = 3, . . . , 10, tol = 10−4, 10−6, 10−8.
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Timing Ratio Averages for Nine Test Problems

Problem BAC/LE
BAC/ST

SCI/ST
BAC/ST

LOI/LE
BAC/ST

LOI/LE
SCI/ST

OLBE, ε = 10−3 0.93 0.57 0.62 1.06

OLBE, ε = 10−4 0.91 0.59 0.60 0.98
TLBE, ε = 10−3 0.94 0.56 0.64 1.02

TLBE, ε = 10−4 0.90 0.56 0.62 1.10
CSRM 0.90 0.46 0.57 1.29

TLBE×6, ε = 10−3 0.88 0.52 0.56 0.98
TLBE×6, ε = 10−4 0.84 0.49 0.53 1.06
TLBE×12, ε = 10−3 0.84 0.51 0.56 0.97

TLBE×12, ε = 10−4 0.79 0.48 0.52 1.08

Table 19: Averages of ratios of timings for each problem (see Section 5.1) over
kcol = 3, . . . , 10 and tol = 10−4, 10−6, 10−8. Overall averages over all nine

problems are BAC/LE
BAC/ST = 0.88, SCI/ST

BAC/ST = 0.53, LOI/LE
BAC/ST = 0.58, and LOI/LE

SCI/ST =
1.06

Timing Ratio Averages for kcol = 3, . . . , 10

kcol BAC/LE
BAC/ST

SCI/ST
BAC/ST

LOI/LE
BAC/ST

LOI/LE
SCI/ST

3 1.07 0.53 0.92 1.66

4 0.94 0.54 0.61 1.15
5 0.86 0.53 0.55 1.05

6 0.84 0.52 0.53 1.03
7 0.84 0.51 0.51 0.99

8 0.84 0.52 0.51 0.99
9 0.83 0.52 0.50 0.95

10 0.85 0.53 0.50 0.96

Table 20: Averages of ratios of timings for kcol = 3, . . . , 10 over all test problems
(see Section 5.1) and tol = 10−4, 10−6, 10−8. Overall averages over all eight kcol

values are BAC/LE
BAC/ST = 0.88, SCI/ST

BAC/ST = 0.53, LOI/LE
BAC/ST = 0.58, and LOI/LE

SCI/ST = 1.06
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Figure 7: Work vs. Accuracy: One Layer Burgers equation, ε = 10−3, kcol = 3
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Figure 8: Work vs. Accuracy: One Layer Burgers equation, ε = 10−3, kcol = 4
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Figure 9: Work vs. Accuracy: One Layer Burgers equation, ε = 10−3, kcol = 5
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Figure 10: Work vs. Accuracy: One Layer Burgers equation, ε = 10−3, kcol = 6
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Figure 11: Work vs. Accuracy: One Layer Burgers equation, ε = 10−3, kcol = 7
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Figure 12: Work vs. Accuracy: One Layer Burgers equation, ε = 10−3, kcol = 8
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Figure 13: Work vs. Accuracy: One Layer Burgers equation, ε = 10−3, kcol = 9
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Figure 14: Work vs. Accuracy: One Layer Burgers equation, ε = 10−3, kcol =
10
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Figure 15: Work vs. Accuracy: One Layer Burgers equation, ε = 10−4, kcol = 3
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Figure 16: Work vs. Accuracy: One Layer Burgers equation, ε = 10−4, kcol = 4
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Figure 17: Work vs. Accuracy: One Layer Burgers equation, ε = 10−4, kcol = 5
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Figure 18: Work vs. Accuracy: One Layer Burgers equation, ε = 10−4, kcol = 6
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Figure 19: Work vs. Accuracy: One Layer Burgers equation, ε = 10−4, kcol = 7
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Figure 20: Work vs. Accuracy: One Layer Burgers equation, ε = 10−4, kcol = 8
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Figure 21: Work vs. Accuracy: One Layer Burgers equation, ε = 10−4, kcol = 9
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Figure 22: Work vs. Accuracy: One Layer Burgers equation, ε = 10−4, kcol =
10
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Figure 23: Work vs. Accuracy: Two Layer Burgers equation, ε = 10−3, kcol = 3
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Figure 24: Work vs. Accuracy: Two Layer Burgers equation, ε = 10−3, kcol = 4
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Figure 25: Work vs. Accuracy: Two Layer Burgers equation, ε = 10−3, kcol = 5
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Figure 26: Work vs. Accuracy: Two Layer Burgers equation, ε = 10−3, kcol = 6

54



UVWXXUVWXYUVWZUVW[UVW\UVW]UVŴUVW_UVẀUVWaUVWX
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Figure 27: Work vs. Accuracy: Two Layer Burgers equation, ε = 10−3, kcol = 7
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Figure 28: Work vs. Accuracy: Two Layer Burgers equation, ε = 10−3, kcol = 8
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Figure 29: Work vs. Accuracy: Two Layer Burgers equation, ε = 10−3, kcol = 9
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Figure 30: Work vs. Accuracy: Two Layer Burgers equation, ε = 10−3, kcol =
10
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Figure 31: Work vs. Accuracy: Two Layer Burgers equation, ε = 10−4, kcol = 3

uvwxxuvwxyuvwzuvw{uvw|uvw}uvw~uvw�uvw�uvw�uvwxuvy

������������

uvw�

uvw�

uvwx

uvy

uvx

uv�

�
�
�
��
�
�
�
��

������������������� ¡

¢£¤¥¦§̈©¥ª«¬­®̄°±²
¢£¤¥³̈́µ¥ª«¬­®̄°±²
¦¤¶¥¦§̈«©¥ª«¬­®̄°±²
³·¶¥³̧̈́¥ª«¬­®̄°±²

Figure 32: Work vs. Accuracy: Two Layer Burgers equation, ε = 10−4, kcol = 4
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Figure 33: Work vs. Accuracy: Two Layer Burgers equation, ε = 10−4, kcol = 5
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Figure 34: Work vs. Accuracy: Two Layer Burgers equation, ε = 10−4, kcol = 6
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Figure 35: Work vs. Accuracy: Two Layer Burgers equation, ε = 10−4, kcol = 7
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Figure 36: Work vs. Accuracy: Two Layer Burgers equation, ε = 10−4, kcol = 8
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Figure 37: Work vs. Accuracy: Two Layer Burgers equation, ε = 10−4, kcol = 9
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Figure 38: Work vs. Accuracy: Two Layer Burgers equation, ε = 10−4, kcol =
10
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Figure 39: Work vs. Accuracy: One Layer Burgers equation, ε = 10−3; one plot
for each code BAC/ST, BAC/LE, SCI/ST, LOI/LE for kcol = 3, . . . , 10 (also
kcol = 2 for BAC/ST)
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Figure 40: Work vs. Accuracy: One Layer Burgers equation, ε = 10−4; one plot
for each code BAC/ST, BAC/LE, SCI/ST, LOI/LE for kcol = 3, . . . , 10 (also
kcol = 2 for BAC/ST)
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àbcdrr̂]̂

tuvw�tuvwwtuvwxtuvytuvztuv{tuv|tuv}tuv~tuv�tuv�tuvw

������������

tuv�

tuv�

tuvw

tux

tuw

�
�
�
��
�
�
��
�

����¶·

����������� ¡¢£�� ¤¥¦
§̈©ª«­
§̈©ª«®
§̈©ª«̄
§̈©ª«°
§̈©ª«±
§̈©ª«²
§̈©ª«³
§̈©ª«́µ
§̈©ª«́́

QRSTUVWXYQXWWZ[\UQXWWZ]̂_[\U
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àbcdq̂̂̂
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àbcdôº̂
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Figure 41: Work vs. Accuracy: Two Layer Burgers equation, ε = 10−3; one
plot for each code BAC/ST, BAC/LE, SCI/ST, LOI/LE for kcol = 3, . . . , 10
(also kcol = 2 for BAC/ST)

63



ÓÔÕÖ×ØÙÚÛÓÚÙÙÜÝÞ×ÓÚÙÙÜßàáÝÞ×
âãäåæçèéßà
âãäåæêëéßà
âãäåæìíîèà
âãäåæïîîàà
âãäåæðèèëà
âãäåæñíëéà
âãäåæòíëàà
âãäåæóíëàà
âãäåæôõëëàà

ö÷øùùö÷øùúö÷øûö÷øüö÷øýö÷øþö÷øÿö÷ø�ö÷ø�ö÷ø�ö÷øùö÷ú

������	
����

ö÷ø�

ö÷ø�

ö÷øù

ö÷ú

ö÷ù

ö÷�

�
�

��
��
��
�

������

��������� !"#$% !"&'(
)*+,-.
)*+,-/
)*+,-0
)*+,-1
)*+,-2
)*+,-3
)*+,-4
)*+,-5
)*+,-67

ÓÔÕÖ×ØÙÚÛÓÚÙÙÜÝÞ×ÓÚÙÙÜßàáÝÞ×
âãäåæêè89à
âãäåæìë89à
âãäåæïíî:à
âãäåæðîíîà
âãäåæñèë8à
âãäåæòíëéà
âãäåæóí:9à
âãäåæôõí:9à
âãäåæôôëëàà

ö÷øùùö÷øùúö÷øûö÷øüö÷øýö÷øþö÷øÿö÷ø�ö÷ø�ö÷ø�ö÷øùö÷ú

������	
����

ö÷ø�

ö÷ø�

ö÷øù

ö÷ú

ö÷ù

ö÷�

�
�

��
��
��
�

����;<

��������� !"#$% !"&'(
)*+,-/
)*+,-0
)*+,-1
)*+,-2
)*+,-3
)*+,-4
)*+,-5
)*+,-67
)*+,-66

ÓÔÕÖ×ØÙÚÛÓÚÙÙÜÝÞ×ÓÚÙÙÜßàáÝÞ×
âãäåæêëíè9í
âãäåæìßíîßà
âãäåæïîíßà
âãäåæðîèëà
âãäåæñéë:à
âãäåæòíëèà
âãäåæóíëëà
âãäåæôõîëàà

ö÷øùùö÷øùúö÷øûö÷øüö÷øýö÷øþö÷øÿö÷ø�ö÷ø�ö÷ø�ö÷øùö÷ú

������	
����

ö÷ø�

ö÷ø�

ö÷øù

ö÷ú

ö÷ù

ö÷�

�
�

��
��
��
�

��=���

��������� !"#$% !"&'(
)*+,-/
)*+,-0
)*+,-1
)*+,-2
)*+,-3
)*+,-4
)*+,-5
)*+,-67

ÓÔÕÖ×ØÙÚÛÓÚÙÙÜÝÞ×ÓÚÙÙÜßàáÝÞ×
âãäåæêëí8à
âãäåæìîî:à
âãäåæï8èàà
âãäåæðßßíàà
âãäåæñ8èàà
âãäåæòí:éà
âãäåæóî:8à
âãäåæôõî:9à

ö÷øùùö÷øùúö÷øûö÷øüö÷øýö÷øþö÷øÿö÷ø�ö÷ø�ö÷ø�ö÷øù

������	
����

ö÷ø�

ö÷ø�

ö÷øù

ö÷ú

ö÷ù

ö÷�

�
�

��
��
��
�

;>=�;<

��������� !"#$% !"&'(
)*+,-/
)*+,-0
)*+,-1
)*+,-2
)*+,-3
)*+,-4
)*+,-5
)*+,-67

?@ABCDEFDGHFICJKLMNOPQ
RSTU

Figure 42: Work vs. Accuracy: Two Layer Burgers equation, ε = 10−4; one
plot for each code BAC/ST, BAC/LE, SCI/ST, LOI/LE for kcol = 3, . . . , 10
(also kcol = 2 for BAC/ST)
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Figure 43: Rel. Work-Accuracy: One Layer Burgers eqn, ε = 10−3, kcol = 3
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Figure 44: Rel. Work-Accuracy: One Layer Burgers eqn, ε = 10−3, kcol = 4
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Figure 45: Rel. Work-Accuracy: One Layer Burgers eqn, ε = 10−3, kcol = 5
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Figure 46: Rel. Work-Accuracy: One Layer Burgers eqn, ε = 10−3, kcol = 6
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Figure 47: Rel. Work-Accuracy: One Layer Burgers eqn, ε = 10−3, kcol = 7
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Figure 48: Rel. Work-Accuracy: One Layer Burgers eqn, ε = 10−3, kcol = 8
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Figure 49: Rel. Work-Accuracy: One Layer Burgers eqn, ε = 10−3, kcol = 9
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Figure 50: Rel. Work-Accuracy: One Layer Burgers eqn, ε = 10−3, kcol = 10
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Figure 51: Rel. Work-Accuracy: One Layer Burgers eqn, ε = 10−4, kcol = 3
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Figure 52: Rel. Work-Accuracy: One Layer Burgers eqn, ε = 10−4, kcol = 4
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Figure 53: Rel. Work-Accuracy: One Layer Burgers eqn, ε = 10−4, kcol = 5
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Figure 54: Rel. Work-Accuracy: One Layer Burgers eqn, ε = 10−4, kcol = 6

70



VWXYYVWXYZVWX[VWX\VWX]VWX̂VWX_VWX̀VWXaVWXbVWXYVWZ

cdefghijhhgh

W
k
W

W
k
l

W
k
m

W
k
n

W
k
o

V
k
W

V
k
l

V
k
m

pq
r
s
t
su
v
wq
x
s
w
y
z
{
|}
~
p
�
�q
ww
s
�
�

������������������
������������������
������������������
������������������

Figure 55: Rel. Work-Accuracy: One Layer Burgers eqn, ε = 10−4, kcol = 7
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Figure 56: Rel. Work-Accuracy: One Layer Burgers eqn, ε = 10−4, kcol = 8
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Figure 57: Rel. Work-Accuracy: One Layer Burgers eqn, ε = 10−4, kcol = 9
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Figure 58: Rel. Work-Accuracy: One Layer Burgers eqn, ε = 10−4, kcol = 10
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Figure 59: Rel. Work-Accuracy: Two Layer Burgers eqn, ε = 10−3, kcol = 3
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Figure 60: Rel. Work-Accuracy: Two Layer Burgers eqn, ε = 10−3, kcol = 4
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Figure 61: Rel. Work-Accuracy: Two Layer Burgers eqn, ε = 10−3, kcol = 5
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Figure 62: Rel. Work-Accuracy: Two Layer Burgers eqn, ε = 10−3, kcol = 6
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Figure 63: Rel. Work-Accuracy: Two Layer Burgers eqn, ε = 10−3, kcol = 7
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Figure 64: Rel. Work-Accuracy: Two Layer Burgers eqn, ε = 10−3, kcol = 8
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Figure 65: Rel. Work-Accuracy: Two Layer Burgers eqn, ε = 10−3, kcol = 9
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Figure 66: Rel. Work-Accuracy: Two Layer Burgers eqn, ε = 10−3, kcol = 10
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Figure 67: Rel. Work-Accuracy: Two Layer Burgers eqn, ε = 10−4, kcol = 3
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Figure 68: Rel. Work-Accuracy: Two Layer Burgers eqn, ε = 10−4, kcol = 4
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Figure 69: Rel. Work-Accuracy: Two Layer Burgers eqn, ε = 10−4, kcol = 5
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Figure 70: Rel. Work-Accuracy: Two Layer Burgers eqn, ε = 10−4, kcol = 6
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Figure 71: Rel. Work-Accuracy: Two Layer Burgers eqn, ε = 10−4, kcol = 7
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Figure 72: Rel. Work-Accuracy: Two Layer Burgers eqn, ε = 10−4, kcol = 8

79



¿ÀÁÂÂ¿ÀÁÂÃ¿ÀÁÄ¿ÀÁÅ¿ÀÁÆ¿ÀÁÇ¿ÀÁÈ¿ÀÁÉ¿ÀÁÊ¿ÀÁË¿ÀÁÂ

ÌÍÎÏÐÑÒÓÑÑÐÑ

À
Ô
À

À
Ô
Õ

À
Ô
Ö

À
Ô
×

À
Ô
Ø

¿
Ô
À

¿
Ô
Õ

¿
Ô
Ö

ÙÚ
Û
Ü
Ý
ÜÞ
ß
àÚ
á
Ü
à
â
ã
ä
åæ
ç
Ù
è
éÚ
àà
Ü
ê
ë

ìíîïðñòóïôõö÷øùúûü
ìíîïýþòóïôõö÷øùúûü
ðîÿïðñòóïôõö÷øùúûü
ý�ÿïýþò�ïôõö÷øùúûü

Figure 73: Rel. Work-Accuracy: Two Layer Burgers eqn, ε = 10−4, kcol = 9
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Figure 74: Rel. Work-Accuracy: Two Layer Burgers eqn, ε = 10−4, kcol = 10
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Figure 75: Graphical view of profiling results for BACOL (Standard Error Con-
trol Mode) for Two Layer Burgers Equation×12 with ε = 10−4 and tolerance
= 10−8. This graph includes one box for each component of BACOL which
represents a significant percentage of the overall execution time. Within each
box is listed: the name of the software component, the percentage of overall
execution time (including time spent by its children) attributable to the compo-
nent, the percentage of the overall execution time spent specifically within the
component, and the number of times the component is called.
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Figure 76: Graphical view of profiling results for BACOLI-LOI (Local Extrapo-
lation Error Control Mode) for Two Layer Burgers Equation×12 with ε = 10−4

and tolerance = 10−8. This graph includes one box for each component of BA-
COL which represents a significant percentage of the overall execution time.
Within each box is listed: the name of the software component, the percentage
of overall execution time (including time spent by its children) attributable to
the component, the percentage of the overall execution time spent specifically
within the component, and the number of times the component is called.
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