
Saint Mary’s University
Department of Mathematics and Computing Science

Application of Error Control
Software to ODE and PDE-based

Epidemiological Models

Author:
Connor Tannahill

Supervisor:
Dr. Paul Muir

October 18, 2017

Abstract

Epidemiological models provide powerful tools for predicting the
spread of a disease and understanding the dynamics which effect its
transmission through a population. In this report, we describe time
dependent and time-space dependent compartmental epidemic models
and the application of adaptive error control numerical software to
approximate their solutions.

Software that implements adaptive error control returns an approx-
imate solution for which an associated error estimate satisfies a user-
prescribed tolerance; this has two important advantages: (i) the user
can have reasonable confidence that the numerical solution has an er-
ror that is consistent with the requested tolerance, and (ii) the cost of
the computation is consistent with the requested accuracy.

Several examples of time dependent ODE based models are solved
within the Scilab problem solving environment to compute error con-
trolled solutions. A number of time-space PDE based epidemic models
are solved using BACOLI, a recently developed FORTRAN B-spline
collocation software package which provides adaptive spatial and tem-
poral error control. We compare the numerical results from several
previously published models with those obtained using our error con-
trol software based approach. We find that in some cases, the nu-
merical results published are inconsistent with those we obtained, and
that these descrepencies may be due uncontrolled error in the original
numerical solutions.

1

Contents

1 Introduction 3

2 Background Materials 7
2.1 ODE-based Epidemiological Models 7
2.2 PDE-based Epidemiological Models 8
2.3 Numerical Solutions to ODE’s 9
2.4 Numerical Solutions to PDE’s 11

3 Applications of Error Control ODE Software to Time De-
pendent Epidemiological Models 12
3.1 Zombie ODE Model . 12
3.2 Ebola ODE Model . 14
3.3 Dengue Fever ODE Model . 17

4 Applications of Error Controlled PDE Software to Time-
Space Epidemiological Models 20
4.1 Spatial SI Model . 20
4.2 Spatial Influenza Model . 22
4.3 Spatial Cholera Model Applied to 2010-2012 Haiti Outbreak . 26

5 Conclusions/Related Work/Future Work 30
5.1 Conclusion . 30
5.2 Related Work . 31
5.3 Future Work . 32

Appendices 33

List of Figures

1 The SIR Model [1] . 4
2 Zombie Model Original Numerical Results [28]. 13
3 Plot of Human and Zombie Populations Over Time, as Computed

Using the Scilab ode function. 14
4 Plot of Human and Zombie Populations Over Time, as Computed

Using the scipy.integrate ode function. 15
5 Ebola Model - Original Numerical Results [2]. 16
6 Guinea Infected Cases and Deaths. 17
7 Seirra Leone Infected Cases and Deaths. 18
8 Liberia Infected Cases and Deaths. 18
9 Dengue Model - Original Numerical Results [16]. 20
10 Plot of the human populations Susceptible (Hs), Exposed (He),

Infected (Hi), Recovered (Hr), and Total (Ht) Populations. 21

2

11 Plot of the Aedes albopictus Populations Susceptible (Vs), Exposed

(Ve), Infected (Vi), and Total (Vt) Populations. 21
12 Numerical Results for the Reaction Diffusion SI Model (25) - (28). 23
13 Influenza Model - Original Numerical Results [36]. 25
14 Numerical Results for the Reaction Diffusion Influenza Model . . . 26
15 Cholera Model Simulation One - Original Numerical Results

[9]. 28
16 Cholera Model Simulation Two - Original Numerical Results

[9]. 29
17 Numerical Results of Cholera Simulation 1 30
18 Numerical Results of Cholera Simulation 2 31

List of Tables

1 Zombie Model Parameters [28]. 13
2 Ebola Model Parameters For Each Country [2]. 17
3 Dengue Model Parameters [16]. 19
4 Reaction Diffusion SI Model Parameters [27]. 24
5 Reaction Diffusion Influenza Model Parameters [36]. 27
6 Cholera Model Parameters [9]. 32

1 Introduction

It is the goal of epidemiologists to understand how and why diseases are
able to spread through populations, and through this understanding, be
able to make predictions useful in managing current and future outbreaks
[8]. Much of this research is done through the development of mathematical
models to capture the behavior of a disease as it is transmitted through
a host population over time, enabling us to analyze its future behavior.
Dynamic, compartmental models of epidemiology attempt to accomplish
this by dividing a host population into a number of compartments, each
representing a stage of a disease, that are at any point in time occupied by
a particular portion of the population [4, 19]. Individuals transfer between
these compartments based on assumptions about how the transmission of
a disease takes place within its host population, which are informed by the
observed behavior of the disease being studied [8, 4].

A classic example of a compartmental epidemic model is the classic
Kermack-McKendrick susceptible-infectious-recovered, or SIR model [14, 1,
30]. With the SIR model, a host population is divided into three compart-
ments, those who are currently susceptible to infection (S), those who have
been infected and are now able to propagate the infection (I), and the recov-
ered class, who have endured the duration of the illness and are no longer
infected (R) [14, 1, 30]. A visualization of these transmission dynamics

3

can be seen in Figure 1. As a disease progresses, the way the population
transitions between compartments is modeled using the following system
of time-dependent Ordinary Differential Equations (ODE’s), with the pa-
rameters: β, the rate of transmission of the disease (i.e., the rate at which
individuals transition from S to I), and v the recovery rate of the disease
(i.e., the rate at which individuals transition from I to R) [14, 30, 19]:

dS

dt
= −βIS, (1)

dI

dt
= βIS − vI, (2)

dR

dt
= vI. (3)

This model, as in many of these models, is devised such that the total
population relevant to the epidemic, N , can be expressed asN = S+I+R, or
if we consider the proportion of the population present in each compartment,
1 = S + I +R.

Figure 1: The SIR Model [1]

When one considers the dynamic, complex nature of a real world popula-
tion, and the many factors which could effect the likelihood of an individual
contracting a disease, it is clear that the SIR model is a simplification of
the actual dynamics of an infectious disease. One major assumption made
here is that the disease transmission follows the mass action law (expressed
by the term βIS), meaning that each member of the host population is
assumed to be equally likely to be in contact with an infected individual
at any given time. In models making use of the mass action law, the rate
of transmission is directly proportional to the population size rather than
characteristics such as population movement or distribution which we would
expect in reality to have a large effect on disease transmission; a disease pop-
ulation following these transmission dynamics is said to be homogeneously
mixed [8].

These time dependent models have proven themselves useful in modeling
real-world infections, but are not able to model structure in the host pop-
ulation, including considerations such as age and spatial distribution which
can have an effect on disease transmission [4]. In order to more accurately
represent these dynamics, a variety of models have been devised which take
into account more complex behaviors of epidemic populations, including
those which consider the spatial distribution of individuals and how they

4

move within space [4]. Although these models can give a more accurate ap-
proximation of disease behavior, they often require the costly collection of
ecological data in order to approximate the model parameters. It is therefore
the case that simpler models with fewer unknowns are sometimes preferred
[37].

Many models of epidemiology use statistical approaches, which do tend
to produce a more accurate representation of disease transmission [37]. How-
ever, the value mathematical models have is that they allow observation of
the asymptotic behavior of an epidemic, and using this information, predict
which model parameters have the most impact on disease transmission [37].
Ronald Ross, one of the early researchers in mathematical epidemiology,
purposed the use of information from compartmental models in conjunction
with statistical models, calling this the a priori method, which he described
as: “we assume a knowledge of the causes, construct our differential equa-
tions on that supposition, follow up the logical consequences, and finally
test the calculated results by comparing them with the observed statistics”
[37]. Using this method, Ross was able to make predictions about which
parameters most affected the spread of malaria and proposed methods for
controlling and preventing outbreaks [37, 8].

In order to predict the behavior of an epidemic in the future, the study
of two biologically significant equilibria are particularly useful, the disease-
free equilibrium, where the portion of infected individuals approaches 0 over
time, and the endemic equilibrium, a situation where a portion of the pop-
ulation will always consist of infectives [9, 12, 19]. The stability of these
equilibria is determined by R0, the basic reproduction number, which rep-
resents the average number of secondary infections generated by a single
infectious case introduced into a completely susceptible population [1, 8,
14, 19, 12]. If R0 < 0, then the disease free equilibrium will be stable and
the epidemic will die out; if R0 > 0 then a disease outbreak is certain, but
if an endemic equilibrium can be proved to exist, then there will exist a
threshold such that the disease will persist in the population [14, 9, 19, 12,
22]. Because of its important properties, the basic reproduction number
is of interest when an epidemic model is proposed; in the case of the SIR
model, R0 = Nβ

v [14], so we see that the parameters β and v are of partic-
ular importance for a disease following these transmission dynamics. In the
case of a real world epidemic, taking measures to reduce the reproduction
number below unity are vital in controlling any further spread of the dis-
ease, so understanding which values contribute to its growth is extremely
valuable. Other important quantities in epidemic modeling include the con-
tact number σ, representing the number of contacts resulting in successful
disease transmission an average infective makes during the infectious period,
and R, the average number of secondary infections produced by a typical
infectious case over the entire period of infectiousness [19].

Once a model has been devised, it is often applied using parameters

5

gathered from actual disease outbreaks in order to test its validity. To
solve these models, software is used to obtain numerical solutions which can
be compared to actual recorded results [2, 16, 9]. Numerical solutions are
preferred for solving these models since they are typically too complex to
be solved analytically. Additionally, to aid in the mathematical analysis of
these models, computer simulations of epidemic spread are used to confirm
mathematical results and analyze the sensitivity of model parameters [19,
36, 9, 22].

The purpose of our research is to use error controlled software to find
accurate numerical solutions to the differential equations arising in several
compartmental epidemiological models. Software that implements adaptive
error control returns an approximate solution which has an error consis-
tent with user-prescribed error tolerances. From our observations, many
previously published studies in this area of research do not employ error
controlled software in their numerical simulations, inviting the possibility
of erroneous results. It has become standard practice for ODE solvers to
perform error control and as a result error control has become more com-
mon, but simulations using simple, non-error controlled methods can still
be found. In the case of models based on PDE’s, very few, if any, models
are solved using error control software to control the spatial error; this is
perhaps due to how few of these solvers exist. Numerical solutions in this
field are often used to back up mathematical analysis of a disease model or
in the analyses of properties of an epidemic, but using numerical methods
that do not implement error control can lead to false positives or negatives.

In this report we apply error control software for time and time-space
dependent epidemic models with the intent to show the advantage of error
control software to solve problems in the domain of epidemiology. The
Scilab problem solving environment ode function is applied in order to solve
several standard time-dependent ODE-based models found in the literature.
In order to solve several PDE reaction-diffusion systems we apply BACOLI
[38], a recent B-spline collocation software package which provides adaptive
spatial and temporal error control.

This report is organized as follows. We begin in Section 2 by introducing
some necessary background material on mathematical epidemiological mod-
els of the kinds we are interested in as well as some background on the nu-
merical techniques used to solve them. Information on ODE and PDE-based
epidemiological models are provided in sections 2.1 and 2.2 respectively. Sec-
tions 2.3 and 2.4 then go on to describe the numerical methods we apply in
solving these ODE and PDE-based models, as well as a description of the
specific numerical software we apply. In Section 3, specific time-dependent
ODE-based models of epidemic spread, solved using the Scilab ode function,
are compared with those reported in the literature. Section 4 goes on to per-
form similar experimentation as in Section 3, in the context of PDE-based
models dependent on both time and space. Section 5 gives our concluding

6

remarks and possible avenues of future research are discussed in Section 6.

2 Background Materials

2.1 ODE-based Epidemiological Models

Many mathematical epidemiological models, including the SIR model, are
purely time dependent and do not take into account any population struc-
ture which may influence the transmission of an infectious disease. These
ODE based epidemic models can be seen as modifications to the SIR model,
developed in order to more closely represent the behavior of particular dis-
eases [19, 4]. A simple extension is the SIRS model [14], which can be used
in the modeling of diseases which confer temporary immunity to their hosts
after they have been removed from the infectious class. Following this pe-
riod of immunity, the individual then rejoins the susceptible class and may
again become infected. Here we see the necessity of a transition from R to
S, modeling the cyclic nature of diseases such as influenza where recurrent
infections are common; this transition is controlled by a parameter γ, rep-
resenting the duration of the immunity period. In addition, many models
of infectious diseases add the consideration of certain vital dynamics of the
host population; for example, birth and death rates may be represented,
controlled by the parameters Π for birth rate, µ for the natural mortality
rate (the rate of mortality in absence of disease) and δ for mortalities caused
by the epidemic [28, 14, 24]. A similar kind of modified SIR model is used in
[28]; this article considers the SZR model, a model suitable for representing
an outbreak of zombies. A case study making use of this model is given in
Section 3.1.

The susceptible, exposed, infected, recovered SEIR model expands on the
Kermack-McKendrick model with the addition of a compartment containing
members of the population who have been exposed to infection, but are
currently in the incubation period of the disease [2, 19]. In this model,
members of S transition to E rather than directly to I, and members of
E transition to I at rate 1/σ, the average incubation period of the disease.
Adding this exposed class makes it possible to model diseases such as Ebola,
Dengue fever, and Rabies, all diseases with incubation periods of varying
length [2, 16, 29]. In Section 3.2, a case study on the 2014 Ebola outbreak
in West Africa is discussed which makes use of the SEIR model.

Among the more complicated of these dynamic models are those which
consider diseases spread by biting animals, which in epidemiology are called
vectors. In these cases the models consider the dynamics of the host pop-
ulation, the vector population, and the interactions between the two. One
classic example is the Ross-Macdonald model for the transmission of dis-
eases between humans and mosquitoes. Here the human-mosquito trans-
mission cycle works as follows: an uninfected human is bitten by an infected

7

mosquito and becomes infected, this infected human is then bitten by an
uninfected mosquito which is subsequently infected [37]. These models are
typically dependent on more variables since the population dynamics of
both groups must be considered. In Section 3.2, a Ross-Macdonald model
for Dengue fever is discussed which makes use of an SEIR model for the
human population, and an SIR model for the vector population.

Within the realm of ODE-based epidemiological models, several other
kinds have been devised in order to give a more accurate representation of
the population dynamics of infectious diseases. Stochastic models introduce
elements of randomness into the dynamics of disease transmission [24, 1].
Models can also consider diseases for which there is a treatment such as
vaccination, allowing reduction in the size of the infected class faster than
the natural rate [1, 28, 22]. Age structured epidemic models further subdi-
vide the population based on age; the dynamics of each age group are then
analyzed, which is useful for diseases such as measles, which has an infectiv-
ity largely dependent on age [1]. In many biological systems, including the
population dynamics of epidemics, changes to the environment often have a
delay before noticeable change occurs; to represent this, time delayed mod-
els of epidemiology have been devised which can be modeled using delay
differential equations [5]. Network-based models consider the transmission
of individuals between nodes representing specific areas members of the host
population may move between (such as a hospital or place of work), with the
movement between each node modeled using time dependent ODE’s [35].

2.2 PDE-based Epidemiological Models

In order to better represent the dynamics of contact between the different
populations relevant in an epidemic, it can be useful to develop models which
can represent the spatial structure of a population. These models consider
the heterogeneous mixing of a diseased population by making the number
of individuals in each compartment dependent on both time and position in
space. In making these models consistent with the biological phenomena,
a logical requirement is that an infected individual is more likely to infect
susceptibles who are close to them in space; to reflect this, spatial diffusion
is allowed, thereby modeling the mobility of an actual population [1, 4].
One approach to represent these dynamics makes use of reaction-diffusion
systems; models which implement systems of parabolic PDE’s [4] and are
generally significantly more complicated to solve than traditional ODE based
models. Many of these models are Kermack-McKendrick type models which
have been modified to include spatial dependence and diffusion; a simple
example of an SIR model modified as such is given in [30]. These models have
been used in studying the dynamics of multiple diseases including cholera [9],
malaria [26, 4], and influenza [36]. The necessity of these models can be seen
in situations where the places where infections occur are highly localized,

8

such as when a population center is geographically isolated, meaning that
this area could have a much denser or less dense infectious population than
surrounding areas; this has an impact on disease transmission that a non-
spatial disease model could not capture.

In PDE Models, transmission between compartments is still largely con-
trolled by a mass action transmission term for communicable diseases, but
since the mixing here takes place over small regions of space it can account
for differences in population density. This has an effect on the basic repro-
duction number R0 due to the fact that an infected individual may produce
more or less infections depending on their position in space. Spatial diffu-
sion is associated with the second derivative of the solution component cor-
responding to each sub-population and a diffusion coefficient representing
the rate at which members of each population diffuse through space. Many
of the same modifications made to the non-spatial ODE compartmental
models have also been applied to PDE-based models, including stochastic,
age structured, and delayed models [25, 10, 40]. Another interesting mod-
ification here are mixed PDE and ODE models, which allow only certain
components of a epidemic population to diffuse in space (for examples see
[29, 7]). The models that we are interested in for this report are time depen-
dent, deterministic models which consider one spatial dimension and permit
spatial diffusion.

2.3 Numerical Solutions to ODE’s

Differential equations are among the most important mathematical tools
for describing any system which changes, and as such are applied in many
fields such as science, engineering, and economics. ODE’s are differential
equations which involve functions of a single independent variable; in most
applications this variable is time. The general form for an initial value ODE
model is

~y′ = ~f(t, y), ~y(t0) = ~yx. (4)

for the purpose of our research, we consider systems of non-linear, coupled
ODE’s which arise in the study of compartmental epidemic models. Since
most of these systems do not have explicit closed-form solutions, numerical
software is employed to find approximate solutions for specified initial values.

When using numerical software to solve ODE’s, there are four impor-
tant factors to take into consideration regarding the numerical scheme im-
plemented by the software; these are the local error, global error, stability
and performance. Most numerical schemes for solving initial value problems
(IVP’s) rely on the concept of a step size h, the distance between discrete
points t0, t1, ..., tn on the independent axis where the solution of the differen-
tial equation y′(t, y) is approximated. For the ith between ti to ti+1, we have
a certain amount of error in our numerical solution; this is the local error
and can be controlled by decreasing the size of h (that is, even if we were

9

to assume that the solution approximation at ti was exact, there will still
be an error associated with the solution approximation at ti+1; this error is
referred to as the local error) [6, 34]. Global error is the cumulative effect
of the local error that has been generated on each step of the algorithm. At
any point in time, it is simply the difference between the exact solution to
the original ODE and the numerical solution at that point in time; therefore
limiting the local error per step will also have an effect in reducing the global
error [34].

A numerical algorithm for solving a differential equation is said to be
unstable if small errors made while approximating the solution can result in
“blow ups”; use of an unstable algorithm will lead to an approximate solution
with a large amount of error disproportionate to the sum of the local errors
[34]. Stability issues such as this can be avoided if appropriate measures
are taken such as a reduction of step size, but this can come at a significant
cost to performance; one such method which suffers significantly from this is
Euler’s method, one of the simplest and most common numerical methods
[34, 6]. When Euler’s method is used to solve the IVP y′ = λy, y(0) =
y0 (where λ is a complex number with negative real part), its region of
stability, the step sizes which will produce a stable solution, are limited by
the requirement that |1 + λh| < 1 [13]. This shows that depending on λ,
the required step size may be forced to be extremely small, resulting in an
expensive computation. In general, it is preferable to use numerical software
which implements more sophisticated stable numerical schemes in order to
limit the cost of computation while producing accurate output.

There are two main classes of numerical methods upon which most good
quality ODE solvers are based, Runge-Kutta method [13, 6] and multistep
methods [13, 6]. Runge-Kutta methods belong to the family of one-step
methods which include Euler’s method and are characterized by the fact
that the numerical solution at tn is solely determined from the previous ap-
proximate solution computed at tn−1. In contrast, multistep methods make
use of a number of previous numerical solution values yn−k, ..., yn−2, yn−1 at
times tn−k, ..., tn−2, tn−1 respectively, in computing the numerical solution
yn.

In our research, the numerical solutions of IVP’s we consider are obtained
using the ode function provided in the Scilab problem solving environment
[15]. The function interfaces with the LSODE [20] solver from ODEPACK
[21], which automatically detects for stiffness in the problem and uses Adams
methods [13] to solve non-stiff ODE’s and BDF methods [13, 6] to solve stiff
problems [20]. This function also provides error control capabilities; the
default tolerances used for the relative and absolute error tolerances are
1 × 10−5 and 1 × 10−7 respectively; alternative tolerances can be specified
by providing the optional parameters rtol and atol. The ode function adjusts
the time step it takes so that at the end of each step, the numerical solution is
accepted only if the associated error estimate is less than the user-provided

10

tolerance. By applying advanced, error controlled numerical software to
standard time dependent models used in epidemiology, we expect to produce
results with a higher degree of accuracy than would be obtained from simple
schemes such as Euler’s method with a fixed stepsize.

2.4 Numerical Solutions to PDE’s

PDE’s are equations that involve partial derivatives of functions that are
dependent on more than one independent variable. These equations are
frequently applied in situations where a system changes with respect to
both time and space. With these additional dependence relations comes
increased complexity in the methods used in approximating their solutions.
These methods typically involve a discretization process where the system of
PDE’s is replaced with an approximating system of time dependent ODE’s,
this is known as the method-of-lines [34]. There are three main methods
for performing the spatial discretization process: finite differences, finite
elements, and collocation methods [34, 17]; here we focus on the collocation
methods, as it is these methods we will be using in our numerical simulations.

For the numerical investigations undertaken in this report, the BACOLI
software package [33] for solving one dimensional parabolic PDE’s is em-
ployed to find numerical solutions to systems arising in epidemiology of the
form:

~ut(x, t) = ~f(t, x, ~u(x, t), ~ux(x, t), ~uxx(x, t)), xa ≤ x ≤ xb, t ≥ t0, (5)

with the initial conditions

~u(x, t0) = ~u0(x), xa ≤ x ≤ xb, (6)

and separated boundary conditions

~bL(t, ~u(xa, t), ~ux(xa, t)) = ~0, ~bR(t, ~u(xb, t), ~ux(xb, t)) = ~0, t ≥ t0. (7)

BACOLI approximates the solution to these PDE’s using a B-spline col-
location scheme (as described in [33]) . The spatial domain is partitioned
into N sub-intervals determined by the spatial mesh points xa = x0 <
x1 < ... < xN = xb; the solution is then approximated as a linear combina-
tion of B-spline basis functions, peicewise polynomials of chosen degree p.
The collocation positions are the set of p− 1 Gaussian points mapped onto
each sub-interval; C1 continuity is imposed at each mesh point, providing a
continuous and smooth curve. The approximate solution is determined by
requiring it to satisfy the boundary conditions, and the PDE at the collo-
cation points on each sub-interval. From here a system of ODE’s with time
dependent coefficients is generated, which together with the boundary con-
ditions form a system of differential algebraic equations (DAE’s), which is
then solved in an error controlled computation using the DASSL [32] DAE

11

solver. DASSL adjusts the time-step and the order of the time stepping
method so that at the end of each step, the numerical solution of the DAE
system is accepted only if the associated estimate of the error (in time) is
less than the user-prescribed tolerance.

BACOLI has an advantage over other PDE solvers in that it also per-
forms adaptive spatial error control to ensure that an approximate solution
is obtained for which an associated spatial error estimate is within a user
defined error tolerance [33]. This allows more confidence in the approxima-
tion than typical PDE solvers provide. Here we employ BACOLI in order
to attempt to reproduce results in the domain of epidemiology for models
with time and space dependence. We attempt to reproduce results which
are as accurate or more accurate than those obtained with non-error con-
trolled PDE software in order to show the strength of these error controlled
methods.

3 Applications of Error Control ODE Software to
Time Dependent Epidemiological Models

3.1 Zombie ODE Model

The basic time dependent epidemic models mentioned in Section 2.1 have
been applied in modeling many different and diverse diseases, including some
in the realm of the supernatural. In 2009, Munz et al. wrote an article [28]
detailing several models for zombie outbreaks with the goal of seeing under
which circumstances humanity is most likely to survive this apocalyptic
event. The types of outbreaks considered varied in scope, some of which
were very basic while others considered what would happen when various
additions were made to the model, such as a cure for the zombie infection or
an initial aggressive human response to the outbreak. Here we will attempt
to reproduce the results given in [28] for the most basic of these models.

The model for this epidemic is given as the SZR model, a modification of
the SIR model which takes into account the unique characteristics of a zom-
bie outbreak. This is done by dividing the population into the Susceptible
(S), Zombie (Z), and Removed (R) classes. The vital dynamics of this host
population are considered in this model, meaning birth and death rates have
been taken into account with birth rate Π and non-zombie related mortality
rate δ. Members of the susceptible class have a chance to become infected
when an encounter with a zombie occurs (parameter β) and transition into
class Z. Members of S can also be removed through natural causes at rate
δ and transition into the Removed class, after which they can transition to
class Z at rate ζ. Members of Z can only transition to class R after an en-
counter with a human which leads to their destruction (parameter α). This
relationship is modeled by the following set of ODE’s:

12

dS

dt
= Π− βSZ − δS, (8)

dZ

dt
= βSZ + ζR− αSZ, (9)

dR

dt
= δS + αSZ − ζR. (10)

Parameter Value Used

α 0.005

β 0.0095

ζ 0.0001

δ 0.0001

Table 1: Zombie Model Parameters [28].

Figure 2: Zombie Model Original Numerical Results [28].

In [28], the authors used Euler’s method with a fixed step size which
was not identified, thus an exact reproduction of their numerical results
could not be performed despite the fact that the source code was provided.
For our purposes, we will use a more sophisticated method for solving this
model, namely the Scilab ode function. Here we reproduce one of the results
for this human-zombie population (shown in Figure 3 of [28]), which used
initial conditions (S,Z,R) = (500, 0, 0), and parameter values as given in
Table 1. The original numerical result can be seen in Figure 2. In [28], it
was also assumed that the birth rate was equal to the background death
rate, therefore (7) can be rewritten as:

13

dS

dt
= −βSZ. (11)

Figure 3: Plot of Human and Zombie Populations Over Time, as Computed Using
the Scilab ode function.

The results for our simulation can be seen in Figure 3. Examining the
result we obtain, we notice discrepancies between our results and those given
in [28]. Most notably, the point at which the Susceptible and Zombie pop-
ulation curves intersect occurs when t is approximately equal to 9, which is
outside the time domain given in [28].

In order to confirm this result, we also solved this problem in Python
using the scipy.integrate module ode function which also implements a tem-
poral error control scheme; the results (see Figure 4) were identical to those
given by the Scilab script. The discrepancy between out numerical results
and those reported in [28] may be due to the values for the parameters which
are provided in [28] being different than those that were actually used in the
original simulation, though in experimenting with changes to these param-
eters, we could not obtain the results given in [28]. The source code used to
obtain our results, including both the Sciliab and Python implementations
can be seen in Appendix A.

3.2 Ebola ODE Model

In 2014, an article was published with the purpose of using available data to
gauge whether or not the control measures being employed in three African

14

Figure 4: Plot of Human and Zombie Populations Over Time, as Computed Using
the scipy.integrate ode function.

countries - Guinea, Seirra Leone, and Liberia - were effective in controlling
the epidemics of Ebola during the 2014 outbreak in West Africa [2]. To
model the transmission of Ebola, an SEIR model was used to account for
Ebola’s incubation period.

This model is represented by the following set of ODE’s:

dS

dt
= −β(t)SI/N, (12)

dE

dt
= β(t)SI/N − σE, (13)

dI

dt
= σE − γI, (14)

dR

dt
= (1− f)γI. (15)

Additionally, the following equations were given, representing the rate
of change of the number of the cumulative number of infected cases (C), as
well as the total number of deaths (D):

dC

dt
= σE, (16)

15

dD

dt
= fγI. (17)

This system is dependent on several parameters: the population size (it
was assumed that N = 1, 000, 000 for each country), the average incubation
period of Ebola (1/σ = 5.3 days), its average duration of infection (1/γ =
5.61 days), the transmission rate at time t (β(t)), the rate at which control
measures reduce transmission rate (k), and the fatality rate (f). The values
of β, k, and f vary for each country and are given in Table 2. Also of note is
that β(t) is assumed to be constant before control measures are introduced,
and after control measures are introduced, it is assumed that β(t) decays
exponentially. In [2], it is assumed that control measures are put into place
immediately following the first infection; therefore we can express β(t) as

β(t) = βe−kt. (18)

Using this information, we will attempt to reproduce the results given in
[2] for the number of infections and number of deaths for each of the three
African nations. In [2], the author states that this system of ODE’s was
solved numerically in the R software environment using the deSolve package
ode function. However, the author did not give specific details regarding how
this function was used; in particular the error tolerance which was employed
for the computation is not indicated. For our attempted reproduction of
these results we will use the default tolerance for the ode function. The
initial conditions used in each case were (S,E, I,R) = (N − 1, 0, 1, 0). The
original results reported in the paper can be seen in Figure 5.

Figure 5: Ebola Model - Original Numerical Results [2].

Using the Scilab’s built in ode function, we computed the solutions for
the number of infected cases and number of deaths over time. The results
for the Guinea, Sierra Leone, and Liberia Ebola outbreaks can be seen in
Figures 6, 7, and 8 respectively.

Comparing these results to those plotted in the article, we see that they
are either identical or close. We expect that any discrepancy in the result

16

Parameter Guinea Seirra Leone Liberia

β 0.27 0.45 0.28

k 0.0023 0.0097 0.0

f 0.74 0.48 0.71

Table 2: Ebola Model Parameters For Each Country [2].

Figure 6: Guinea Infected Cases and Deaths.

may be due to differences in the algorithm or the error tolerance used in the
computations associated with[2]. The Scilab source code used to obtain our
results can be seen in Appendix B.

3.3 Dengue Fever ODE Model

Dengue fever is a vector transmitted disease which, with more than 50 mil-
lion cases per year, is one of the most prominent mosquito borne illnesses
[3]. In an article by Erickson et al. [16], a simple model for the possible
transmission of Dengue was constructed, and verified using data from Lub-
bock, Texas. In this case, the vector population considered was the Aedes
albopictus mosquito, the secondary vector of Dengue. We will attempt to
reproduce these results here.

The model used is a Ross-MacDonald type SEIR-SEI model as described
in section 2.1, which considers the dynamics of both human and vector
populations. Additionally, the human birth rate, as well as the rate of
human mortality from both dengue and other causes are considered.

17

Figure 7: Seirra Leone Infected Cases and Deaths.

Figure 8: Liberia Infected Cases and Deaths.

The human SEIR population is divided into four components: Hs - the
number of susceptible humans, He - the number of exposed, Hi - the number
of infected, and Hr - the number of recovered. The dynamics for this human
population are modeled using the following set of ODE’s

18

dHs

dt
= λHt −Hs

(
cVi
Ht

+ µh

)
, (19)

dHe

dt
= Hs

cVi
Hn
−He(τexh + µh), (20)

dHi

dt
= Heτexh −Hi(τih + α+ µh), (21)

dHr

dt
= Hiτih − µhHr. (22)

And the vector SEI population is divided into three components: Vs - the
number of susceptible mosquitoes, Ve - the number of exposed mosquitoes,
and Vi - the number of mosquitoes. The system modeling the vector popu-
lation is:

dVs
dt

= µaVt − Vs
(
cHi

Ht
+ µa

)
, (23)

dVe
dt

= Vs
cHi

Ht
− Ve(τexv + µa), (24)

dVi
dt

= Veτexv − µaVi. (25)

Parameter Meaning Value Used

λ Human population growth rate 2.244 x 10−5

µh Human mortality rate 1/28000

c Contact probability 0.12

τexh Inverse exposure time, host 1/10

α Dengue host mortality rate 0.003

µa Adult mortality 1/20

τih Inverse infective time, host 1/4

Hn Initial number of humans 10000

Table 3: Dengue Model Parameters [16].

The parameters used in this model are explained and their values shown
in Table 3. The initial conditions used for the human population were
(Hs, He, Hi, Hr) = (10000, 0, 0, 0), and for the vector population (Vs, Ve.Vi) =
(100000, 0, 10000). We will use this information in order to attempt to re-
produce the results given in [16] for changes in the human and mosquito
populations over time as determined by the model. In [16], the author
states that the solution was computed using Mathematica, but did not spec-
ify how the software was used or give any indication that error control was
used. The original numerical results reported in [16] can be seen in Figure
9. We used the Scilab function ode in our computation with its default error

19

Figure 9: Dengue Model - Original Numerical Results [16].

tolerance; the script can be seen in Appendix C. The results we obtained are
shown in Figure 10 for the human population, and Figure 11 for the vector
population. Note that the original results for both the human and vector
population were split into two graphs each, which have been combined into
one in our results.

Comparing the plotted to results to those found in the article, we see
that they are identical and therefore our reproduction of this model has
been successful. Thus our results support the authors argument made in
[16] that this model does give an accurate representation of Dengue fever
spread through this host population.

4 Applications of Error Controlled PDE Software
to Time-Space Epidemiological Models

4.1 Spatial SI Model

In 2014, Lofti et al. [27] published a mathematical analysis of a general
reaction-diffusion SI epidemic model. The model purposed in [27] is relevant
for communicable diseases, transmitted via direct contact by an infectious
individual with a susceptible one, such as influenza, measles and rabies; in
[27] the global dynamics of this model are analyzed. In particular, the global
asymptotic stability of its disease free and endemic equilibria are analyzed
both mathematically and numerically. Here we attempt to reproduce the

20

Figure 10: Plot of the human populations Susceptible (Hs), Exposed (He), In-
fected (Hi), Recovered (Hr), and Total (Ht) Populations.

Figure 11: Plot of the Aedes albopictus Populations Susceptible (Vs), Exposed
(Ve), Infected (Vi), and Total (Vt) Populations.

numerical simulations, which were used as confirmation for the mathematical
results proven in [27]. The system is given as

21

∂S

∂t
= dS∆S + Λ− µS(x, t)− βS(x, t)I(x, t)

1 + α1S(x, t) + α2I(x, t) + α3S(x, t)I(x, t)
,

(26)
∂I

∂t
= dI∆I+

βS(x, t)I(x, t)

1 + α1S(x, t) + α2I(x, t) + α3S(x, t)I(x, t)
−(µ+δ+r)I(x, t),

(27)
where ∆ is the Laplacian operator. The boundary conditions are

∂S

∂v
=
∂I

∂v
= 0, t > 0, xε[0, 1], (28)

and the initial conditions are

S(x, 0) =

{
1.1x, 0≤x<0.5,

1.1(1− x), 0.5≤x≤1,

I(x, 0) =

{
0.5x, 0≤x<0.5,

0.5(1− x), 0.5≤x≤1.
(29)

The parameters used in this system and their explanations are given in
Table 4. From the initial conditions given here, the highest concentration of
the population is at the midpoint of the spatial domain, where x = 0.5; as
time progresses we would expect the larger population at x = 0.5 to spread
throughout the spatial domain.

We now attempt to reproduce the numerical solutions found in [27]; no
reference was made in [27] to the software used to produce their numerical
results, thus the accuracy of the provided numerical results is unclear. A
numerical approximation of the solution to this system was found with BA-
COLI using absolute and relative error tolerances of 10−5. Note that the
given initial conditions are not smooth (i.e., the first derivative is discon-
tinuous) at the midpoint of the spatial domain; it is known that this can
cause issues for BACOLI. From past experience, we know that this issue can
be handled by placing a spatial mesh-point on this non-smooth point. The
results from BACOLI are plotted in Figure 12. We see consistency with the
results given in the paper, which provides additional confidence regarding
the validity of the originally published numerical results. The scripts used
for computing the results using BACOLI and plotting those results are given
in Appendix D.

4.2 Spatial Influenza Model

Influenza is one of the most prevalent of the infectious diseases, with seasonal
reoccurring outbreaks affecting large portions of their host population each
year. Though it is seemingly harmless in most cases, influenza takes a

22

(a) Susceptable (left) and Infected (right) Populations when β = 0.2

(b) Susceptable (left) and Infected (right) Populations when β = 0.6

Figure 12: Numerical Results for the Reaction Diffusion SI Model (25) - (28).

large toll on healthcare systems and causes many deaths each year. In
Samsuzzoha et. al [36] a spatial SEIR model is considered which modifies
an existing ODE model to include spatial dependence and diffusion. This
reaction-diffusion PDE model is as follows:

∂S

∂t
= −βE + I

N
S − µS + rN(1− N

K
) + d1

∂2S

∂x2
, (30)

∂E

∂t
= β

E + I

N
S − (µ+ σ + κ)E + d2

∂2E

∂x2
, (31)

∂I

∂t
= σE − (µ+ α+ γ)I + d3

∂2I

∂x2
, (32)

∂R

∂t
= κE + γI − µR+ d4

∂2R

∂x2
, (33)

23

Parameter Meaning Case 1 Case 2

dS Diffusion rate for susceptible class 0.1 0.1

dI Diffusion rate for infected class 0.5 0.5

Λ Recruitment rate of host population 0.5 0.5

µ Natural death rate of the population. 0.1 0.1

d Rate of death due to disease 0.1 0.1

r Recovery rate of infected individuals 0.5 0.5

α1 Incidence rate of S 0.1 0.1

α2 Incidence rate of I 0.02 0.02

α3 Incidence rate of R 0.03 0.03

β Infection rate 0.6 0.2

Table 4: Reaction Diffusion SI Model Parameters [27].

on the spatial domain x ε [−2, 2] with boundary conditions:

∂S(−2, t)

∂x
=
∂E(−2, t)

∂x
=
∂I(−2, t)

∂x
=
∂R(−2, t)

∂x
= 0, (34)

∂S(2, t)

∂x
=
∂E(2, t)

∂x
=
∂I(2, t)

∂x
=
∂R(2, t)

∂x
= 0. (35)

The stability of this diffusion models equilibria are shown mathemat-
ically and the solution of this system is approximated using an operator
splitting method, which splits the PDE system into two subsystems, a sys-
tem of non-linear reaction equations applied to the first half of the time step
and a system of linear diffusion equations for the second half. These sub-
systems were then solved numerically to simulate the spread of influenza in
populations implementing control strategies with varying degrees of success;
the control strategies are represented by varying the parameters β and v, the
transmission and recovery rates respectively. In order to demonstrate how
the addition of spatial diffusion affects the spread of an epidemic, the same
problems were simulated with and without diffusion. For their numerical
simulations, the authors used Euler’s method to solve the derived systems
with a fixed time step; there is, therefore, the potential for substantial error
in these numerical results.

We will attempt to reproduce one of the results given in [36] for the
diffusive model considered in their third case, which had parameters given
as in Table 5, and the initial conditions:

S(x, 0) = 0.96e−10x
2
, (36)

E(x, 0) = 0, (37)

I(x, 0) = 0.04e−100x
2
, (38)

R(x, 0) = 0. (39)

24

From these initial conditions we can observe that we have a host pop-
ulation which is most dense at the center of the spatial domain, x = 0,
and which gets progressively more diffused near the endpoints of the spatial
domain. The original numerical results for this model can be seen in Figure
13.

Figure 13: Influenza Model - Original Numerical Results [36].

Here this reaction-diffusion PDE system is solved using BACOLI, with
relative and absolute error tolerances of 10−6, giving us good confidence in
the accuracy of our approximate solution. The result of our simulation can
be seen in Figure 14. Comparing our solutions with those given in the [36],
we see similar behavior for the times 5, 10, and 15, but our solution differs
greatly when t is 40.

To further investigate these results, this system was then solved using
the Maple pdsolve function with an absolute error tolerance of 10−5. The
pdsolve function provides error checking using estimation of the spatial and
temporal errors. The spatial error estimate is obtained by computing the
solution twice, first on the fixed initial mesh provided to the function and
again on a courser mesh; the two solutions are then compared to obtain
this estimate. Estimation of the temporal error is computed by comparing
the solution computed using at the fixed time step with another computed
with a slightly larger time step but with the same spatial mesh. If this
error estimate is greater than the specified tolerance then the computation is
terminated; in order for the error estimates to be within the user tolerance a
dense spatial mesh and small step sizes must be used. Our computation was
performed with spacestep = 0.001 and timestep = 0.001 passed as arguments
to pdsolve. This computation produced numerical solutions similar to those
we obtained with using BACOLI. We hypothesize that the reason for the

25

disagreement of our results with those of [36] is due to the authors use of a
fixed step Euler’s method. The scripts used in obtaining our results can be
seen in Appendix E.

Figure 14: Numerical Results for the Reaction Diffusion Influenza Model

4.3 Spatial Cholera Model Applied to 2010-2012 Haiti Out-
break

Cholera is an infectious bacterial disease which is most commonly trans-
mitted via food and water contaminated with the Vibrio cholerae bacteria,
and much more rarely, direct human contact [9]. Many developing coun-
tries experience cholera epidemics due to insufficient access to clean water.
When someone is infected with cholera, they suffer from diarrhea and vom-
iting which can cause dehydration, which can be fatal if the infected person
cannot be re-hydrated with clean water. Due to the nature of the illness, a
diseased patient can cause further contamination of the water source, which
will in turn lead to more infections if proper precautions have not been
put in place to prevent further consumption from the contaminated water
source. Epidemic models representing cholera outbreaks often consider an
SIR human population with the addition of a compartment representing the
population of the bacteria, B [9, 39]. With these models it is useful to use
the spatial domain to represent the contaminated water source, in this way

26

Parameter Meaning Value Used

β Transmission coefficient. 0.514

µ Natural mortality rate. 5.5× 10−5

r Birth rate. 0.0714

K Carrying capacity. 1.0

σ Duration of latent period. 0.5

κ Recovery rate of latents 0.1857

α Flu induced mortality rate. 0.0093

γ Recovery rate for clinically ill. 0.20

d1 Diffusion coefficient for S. 0.5

d2 Diffusion coefficient for E. 0.025

d3 Diffusion coefficient for I. 0.001

d4 Diffusion coefficient for R. 0.0

Table 5: Reaction Diffusion Influenza Model Parameters [36].

the infectiousness of the disease is related to the concentration of susceptible
humans and bacteria at a given point along the water source.

A cholera model is given by Capone et. al [9] which represents the spread
of Cholera over a spatial domain; the existence and stability of the disease
free and endemic equilibria are shown and numerical simulations performed
in order to support these results. The SIBR cholera model is

∂S

∂t
= µ(N0 − S) + γ1∆S − βλ(B)S, (40)

∂I

∂t
= βλ(B)S − (σ + µ)I + γ2∆I, (41)

∂B

∂t
= eI − (µb − πb)B + γ3∆B, (42)

∂R

∂t
= σI − µR+ γ4∆R, (43)

where λ(B),the probability of catching cholera, is

λ(B) =
B

KB +B
, (44)

and with the boundary conditions on domain x = [0, 1]:

∂S

∂t
=
∂I

∂t
=
∂B

∂t
=
∂R

∂t
= 0. (45)

In order to represent the effect of control strategies as well as demonstrate
the asymptotic stability of the equilibria, various simulations were performed
which vary the parameter β, the contact rate with contaminated water, the

27

diffusion terms for the populations and the initial conditions. Note that this
model only considers transmission of Cholera from a water source to a human
and considers no representation for human to human transmission. For
these simulations, the authors state that the spatial domain was restricted
to consider only one independent variable, x. The parameters chosen for
these simulations came from the 2010-2012 cholera outbreak in Haiti, so
that the numerical results could be compared to the true results recorded
during that epidemic.

Here we attempt to reproduce two of the numerical results given in [9]
using BACOLI, with the parameters used for each as given in Table 6. In
simulation 1, the constant initial conditions used were given as (S, I,R,B) =
(2989.29, 9.17889, 278.148, 701.53); for simulation 2, the initial conditions are
given as:

S(x, 0) = 3500, (46)

I(x, 0) =

{
100πcos(πx) 0 ≤ x ≤ 0.5,

0 0.5 < x ≤ 1,
(47)

B(x, 0) =

{
10πcos(πx), 0 ≤ x ≤ 0.5,

0 0.5 < x ≤ 1,
(48)

R(x, 0) = 100. (49)

The original numerical results provided in [9] for simulation 1 can be
seen in Figure 15; the results for simulation 2 can be seen in Figure 16.

Figure 15: Cholera Model Simulation One - Original Numerical Results [9].

For simulation 1, we compute an approximate numerical solution using
BACOLI with absolute and relative error tolerances of 10−7. Plotting these
results, we see good agreement with those given in [9], with the exception
of the beginning of the time domain, where in the results obtained for each

28

Figure 16: Cholera Model Simulation Two - Original Numerical Results [9].

portion of the disease population we see disagreement. The plot for simu-
lation 1 can be seen in Figure 17; we also computed the solution using the
Maple problem solving environment pdsolve function, which produces re-
sults consistent with those produced with BACOLI. This may indicate that
some element of the PDE system used to produce the result as given in [9]
for this case differs from what was described in [9].

In simulation 2, due to the non-smooth initial conditions, we choose the
relatively large absolute and relative error tolerances of 10−4; for sharp tol-
erance choices, the integration with BACOLI fails (that is, BACOLI was not
able to obtain an error controlled numerical solution to within the specified
tolerance). Additionally, the initial spatial mesh points have been chosen
to include the point x = 0.5 to accommodate the non-smooth initial condi-
tions. Examining the plot generated from our simulations in Figure 18, we
see drastic differences between the results we obtain and those provided in
[9]. The most notable differences which can be seen are the behaviors of the
I and B populations at the beginning of the time domain, which rather than
exhibiting a horizontal line as seen in [9], show a steep curve which changes
across spatial domain from x = 0 to x = 1 from a high peak value down
to zero. However, based on the initial values for this system, this behavior
is unsurprising. This indicates that the initial conditions differ from those
used in the simulation; from observation it seems likely that constant initial
conditions where used rather than the spatially dependent ones presented
in the paper [9].

In [9], we observe issues in the numerical results for two cases. While
both of the results demonstrated asymptotic stability and therefore help to
confirm the primary result of the paper, the simulations used to support

29

Figure 17: Numerical Results of Cholera Simulation 1

these results are problematic. All source code used in obtaining our results
can be found in Appendix F.

5 Conclusions/Related Work/Future Work

5.1 Conclusion

In this report, we have applied error controlled numerical software to a va-
riety of ODE and PDE based mathematical models from the domain of
epidemiology. This was done in order to attempt to reproduce numerical
results which have been presented in published literature in this field, and in
doing so compare these results to those produced using error control ODE
and PDE solvers. One pattern which emerged while performing this re-
search is that many authors do not provide the source code they have used,
specify which numerical methods have been used in solving these models,
or provide complete information about important factors in how their sim-
ulation was performed, such as the prescribed error tolerance or the fixed
step size they have used for Euler’s method. As a consequence, it is often
difficult or impossible to faithfully reproduce these numerical results, and
when discrepancies in results do arise, it is difficult to pinpoint their cause.

30

Figure 18: Numerical Results of Cholera Simulation 2

5.2 Related Work

Among the literature we have considered over the course of this research,
a common trend we have observed among domain experts is the use of
either high-level problem solving environments such as MATLAB, Maple,
or Mathematica to produce numerical simulations. These environments give
users the advantage of being able to obtain high-quality numerical results
by writing quick scripts in a familiar, easy-to-use environment, which, for
the convenience it provides, can, for many users be worth the performance
cost associated with the use of these environments. To accommodate this
usage case, we have recently developed a Python interface to BACOLI,
packaged as a part of scikits, a distribution of scientific tools bundled as
add-on packages for the SciPy scientific computing library [41]. This package
is called scikits.bacoli py; in its development, the f2py Python to Fortran
interface generator [31] was used to create an interface module between the
calling Python programs and a Fortran interface for the BACOLI software
package. The version of BACOLI used in bacoli py has undergone slight
modifications, the most substantial change being the replacement of the
COLROW [11] linear system solver with LAMPACK [23] in order to ensure
BSD license compatibility.

This Python wrapper was designed with ease of use in mind, with an in-

31

Parameter Meaning Case 1 Case 2

N0 Total population size at t=0 3700 3700

γ1 Diffusion coefficient for susceptible class 0.8 0.8

γ2 Diffusion coefficient for infected class 0.003 0.1

γ3 Diffusion coefficient for bacteria class 0.002 0.01

γ4 Diffusion coefficient for recovered class 0.5 0.5

µ Birth/Death rate 0.014 0.014

σ Recovery rate 1.0678 1.0678

µB Loss rate of bacteria 1.06 1.06

πB Growth rate of bacteria 0.73 0.73

e V. cholerae produced by one infected 10 10

β Contact rate with contaminated water 1.2 1.0

KB Half saturation rate 105 105

Table 6: Cholera Model Parameters [9].

terface which may be quickly grasped by those familiar with other high-level
PDE solver implementations such as MATLAB’s pdepe solver. However, in-
terfacing with Python in this way has come at a fairly substantial cost to
performance. From our tests it seems that when both the Python and pure
Fortran implementations are used to solve the same problem, the Python
implementation performs the computation in at best approximately twice
the time of the Fortran implementation. To our current knowledge, there is
no other PDE solver available for the Python language which implements
the type of spatial error control available in this package.

5.3 Future Work

In order to accommodate the needs of domain experts, the BACOLI software
package may be expanded in order to provide error controlled solutions
to more classes of problems. Currently work is being done to allow it to
handle mixed PDE-ODE models of the type we have seen in the literature
[18]. Modifications may be also be made to accommodate time delayed and
fractional PDE systems.

32

Appendices

Appendix A: Zombie Modeling Scripts

// So l v i n g t h e sys tem o f ODE’ s r e p r e s e n t i n g t h e spread o f z omb i f i c a t i o n through
//a popu l a t i o n . Uses mod i f i e d SIR ODE model , t h e SZR model .
// Parameters Used :
// a −− a lpha in a r t i c l e −− zombie d e s t r u c t i o n r a t e
// b −− b e t a in a r t i c l e −− new zombie r a t e
// z −− z e t a in a r t i c l e −− r e s u r r e c t i o n r a t e
// d −− d e l t a in a r t i c l e −− na t u r a l dea th r a t e
// N −− i n i t i a l human popu l a t i o n

a = 0 . 0 05 ;
b = 0 . 0095 ;
z = 0 . 0001 ;
d = 0 . 0001 ;
N = 500 ;

function ydot = odes (t , y)
ydot = zeros (y) ;
//S
ydot (1) = −b∗y (1)∗y (2) ;
//Z
ydot (2) = b∗y (1)∗y (2) − a∗y (1)∗y (2) + z∗y (3) ;
//R
ydot (3) = a∗y (1)∗y (2) + d∗y (1) − z∗y (3) ;

endfunction

t = 0 : 0 . 0 0 5 : 1 5 ;
y0 = [N; 0 ; 0] ;
t0 = 0 ;
y = ode (y0 , t0 , t , odes) ;
y

plot (t , y (1 , :) , t , y (2 , :)) ;
xt i t l e (’Human and Zombie Populat ions ’ , ’Time (days) ’ , ’ Populat ion ’) ;
l egend (’ Susceptab l e s ’ , ’ Zombies ’) ;

So l v i n g t h e s e t o f ODE’ s r e p r e s e n t i n g t h e spread o f z omb i f i c a t i o n through
a popu l a t i o n . Uses mod i f i ed SIR ODE model , t h e SZR model .
Parameters Used :
a −− a lpha in a r t i c l e −− zombie d e s t r u c t i o n r a t e
b −− b e t a in a r t i c l e −− new zombie r a t e
z −− z e t a in a r t i c l e −− r e s u r r e c t i o n r a t e
d −− d e l t a in a r t i c l e −− na t u r a l dea th r a t e
import numpy as np
import matp lo t l ib . pyplot as p l t
from s c ipy . i n t e g r a t e import ode int
p l t . ion ()
p l t . rcParams [’ f i g u r e . f i g s i z e ’] = 10 , 8

d = 0.0001 # na t u r a l dea th pe r c en t (per day)
b = 0.0095 # tran sm i s s i on pe r c en t (per day)
z = 0.0001 # r e s u r e c t p e r c en t (per day)
a = 0.005 # de s t r o y pe r c en t (per day)

s o l v e t h e sys tem dy/ d t = f (y , t)
def f (y , t) :

S i = y [0]
Zi = y [1]
Ri = y [2]
the model e q ua t i on s (s ee Munz e t a l . 2009)
f 0 = −1∗b∗Si ∗Zi
f1 = b∗Si ∗Zi + z∗Ri − a∗Si ∗Zi
f2 = d∗Si + a∗Si ∗Zi − z∗Ri
return [f0 , f1 , f 2]

i n i t i a l c o n d i t i o n s
S0 = 500 . # i n i t i a l p o pu l a t i o n
Z0 = 0 # i n i t i a l zombie p opu l a t i o n
R0 = 0 # i n i t i a l dea th p opu l a t i o n
y0 = [S0 , Z0 , R0] # i n i t i a l c ond i t i o n v e c t o r
t = np . l i n s pa c e (0 , 15 . , 3000) # time g r i d

s o l v e t h e DEs
so ln = ode int (f , y0 , t)
S = so ln [: , 0]
Z = so ln [: , 1]
R = so ln [: , 2]

33

p l o t r e s u l t s
p l t . f i g u r e ()
p l t . p l o t (t , S , l a b e l=’ Liv ing ’)
p l t . p l o t (t , Z , l a b e l=’ Zombies ’)
p l t . x l ab e l (’Time (days) ’)
p l t . y l ab e l (’ Populat ion ’)
p l t . t i t l e (’ Zombie Apocalypse ’)
p l t . l egend (l o c=0)

p l t . s a v e f i g (”temp . png”)

Appendix B: Ebola Modeling Script

// S c r i p t t o s o l v e t h e sys tem o f ODE’ s f o r t h e model used
// f o r t h e spread o f Ebo la in t h r e e coun t r i e s , in e d i t i o n to ODE’ s
// r e p r e s e n t i n g t h e number o f c a s e s and the number o f
// dea t h s over t h e cour se o f t h e ou t b r eak . The s o l u t i o n
// f o r t h e number o f c a s e s and dea t h s are then p l o t t e d .
// Parameters :
// n − t h e p opu l a t i o n s i z e .
// inc − t h e average i n cu b a t i o n pe r i od o f Ebo la .
// i n f − t h e average i n f e c t i o n dura t i on o f Ebo la .
// b − t h e t r an sm i s s i on r a t e p r i o r to c o n t r o l measures .
// k − t h e r a t e a t which c on t o l measures reduce t r an sm i s s i on r a t e .
// f − t h e f a t i l i t y r a t e .
// b t − t h e t r an sm i s s i on r a t e a t t ime t a f t e r c o n t r o l measures .

n=1000000;
inc = 5 . 3 ;
i n f = 5.61

// k −−
//For Guinea
k = 0 . 0023 ;
//For S i e r r a Leone :
// k = 0 . 0097 ;
//For L i b e r i a :
// k = 0 . 0 ;

// f −−
//For Guinea :
f = 0 . 7 4 ;
//For Se i r r a Leone :
// f = 0 . 4 8 ;
//For L i b e r i a :
// f = 0 . 7 1 ;

// b −−
//For Guinea :
b = 0 . 2 7 ;
//For S i e r r a Leone :
// b = 0 . 4 5 ;
//For L i b e r i a :
// b = 0 . 2 8 ;

function ydot=odes (t , y)
ydot=zeros (y) ;
bt = b∗\%eˆ(−k∗ t) ;
ydot (1) = −1∗bt∗y (1)∗y (3) / n ;
ydot (2) = bt∗y (1)∗y (3)/n − (1/ inc ∗ y (2)) ;
ydot (3) = (1/ inc)∗y (2) − (1/ i n f)∗y (3) ;
ydot (4) = (1 − f)∗(1/ i n f)∗y (3) ;
ydot (5) = (1/ inc) ∗ y (2) ;
ydot (6) = f ∗ (1/ i n f) ∗ y (3) ;

endfunction

// t ’ s −−
//For Guinea :
t = 0 : 1 : 2 7 3 ;
//For Se i r r a Leone :
// t = 0 : 1 : 1 3 1 ;
//For L i b e r i a :
// t = 0 : 1 : 1 4 0 ;

y0 = [n−1; 0 ; 1 ; 0 ; 1 ; 0] ;
t0 = 0 ;
y = ode (y0 , t0 , t , odes) ;
y

plot (t , y (5 , :) , t , y (6 , :)) ;
xt i t l e (’ I n f e c t i o n s and Deaths ’ , ’Time (days) ’ , ’Number o f I nd i v i dua l s ’) ;
l egend (’Number o f I n f e c t ed Cases ’ , ’Number o f Deaths ’) ;

34

Appendix C: Dengue Modeling Script

// So l v i n g t h e sys tem o f ODE’ s r e p r e s e n t i n g t h e spread o f t h e Dengue Virus u s ing
// data from the ou t b r eak in Lubbock , Texas .
// Parameters used :
// l a −− lambda in a r t i c l e −− human popu l a t i o n growth r a t e
// uh −− mu sub h in a r t i c l e −− human mo r t a l i t y r a t e
// c −− c in a r t i c l e −− c on t a c t p r o b a b i l i t y
// t e xh −− tau sub exh in a r t i c l e −− i n v e r s e exposure time , ho s t
// a −− a lpha in a r t i c l e −− dengue ho s t mo r t a l i t y r a t e
// t i h −− tau sub i h in a r t i c l e −− i n v e r s e i n f e c t i v e time , ho s t
// ua −− mu sub a in a r t i c l e −− a d u l t mo r t a l i t y
// t e x v −− tau sub exv in a r t i c l e −− i n v e r s e exposure time , v e c t o r
// Hn −− i n i t i a l number o f humans

l a = 2.244D−5;
uh = 1/28000;
c = 0 . 1 2 ;
texh = 1/10;
texv = 1/9 ;
a = 0 . 0 03 ;
ua = 1/20;
t i h = 1/4 ;
Hn = 10000;

function ydot = odes (t , y)
Ht = y (1) + y (2) + y (3) + y (4) ;
Vt = y (5) + y (6) + y (7) ;
ydot = zeros (y) ;
//Hs
ydot (1) = la ∗ Ht − y (1)∗ (c∗y (7)/Ht + uh) ;
//He
ydot (2) = y (1)∗ c∗y (7)/Hn − y (2)∗ (texh + uh) ;
//Hi
ydot (3) = y (2)∗ texh − y (3)∗ (t i h + a + uh) ;
//Hr
ydot (4) = y (3)∗ t i h − uh∗y (4) ;
//Vs
ydot (5) = ua∗Vt − y (5)∗ (c∗y (3)/Ht + ua) ;
//Ve
ydot (6) = y (5)∗ c∗y (3)/Ht − y (6)∗ (texv + ua) ;
//Vi
ydot (7) = y (6)∗ texv − ua∗y (7) ;

endfunction

t = 0 : 1 : 4 0 0 ;

y0 = [10000 ; 0 ; 0 ; 0 ; 100000; 0 ; 1 0000] ;
t0 = 0 ;

y = ode (y0 , t0 , t , odes) ;

//For Humans :
ht = y (1 , :) + y (2 , :) + y (3 , :) + y (4 , :) ;
//For Vec tors :
// v t = y (5 , :) + y (6 , :) +y (7 , :) ;

//Human popu l a t i o n in f o rma t i on p l o t .
plot (t , y (1 , :) , t , y (2 , :) , t , y (3 , :) , t , y (4 , :) , t , ht) ;
xt i t l e (’Human Populat ion ’ , ’Time (days) ’ , ’No . Of Humans ’) ;
l egend (’ Susceptab le ’ , ’ Exposed ’ , ’ I n f e c t ed ’ , ’ Recovered ’ , ’ Total Populat ion ’) ;
// Vector p opu l a t i o n in f o rma t i on p l o t .
// p l o t (t , y (5 , :) , t , y (6 , :) , t , y (7 , :) , t , v t) ;
// x t i t l e (’ Vector Popu la t ion ’ , ’Time (days) ’ , ’No . Of Vectors ’) ;
// l e g end (’ Su s c ep t a b l e ’ , ’ Exposed ’ , ’ I n f e c t e d ’ , ’ To ta l Popu la t ion ’) ;

Appendix D: Spatial SI Modeling and Plotting Scripts

! At tempt ing to s o l v e t h e s p a t i a l SI model g i v en in L o f t i e t a l . 2013 .
! Problem w i l l be s o l v e d us ing two v a l u e s f o r parameter be , t h e t r an sm i s s i on
! Rate o f t h e d i s e a s e .
! This sys tem c o n s i s t s o f two PDE’ s (npde=2).
! Problem Parameters :
! ds −− Di f f u s i o n r a t e f o r s u s c e p t a b l e c l a s s .
! d i −− Di f f u s i o n r a t e f o r i n f e c t e d c l a s s .
! l a −− Recrui tment r a t e o f t h e p opu l a t i o n .
! mu −− Natura l dea th r a t e o f t h e p opu l a t i o n .
! d −− Death r a t e due to d i s e a s e .
! r −− Recovery r a t e o f i n f e c t e d i n d i v i d u a l s
! as −− In c i d enc e r a t e o f S .
! a i −− In c i d enc e r a t e o f I .
! ar −− In c i d enc e r a t e o f R.
! be −− I n f e c t i o n Rate .

35

subroutine f (t , x , u , ux , uxx , fva l , npde)
implicit none
! Purpose : Sub rou t ine d e f i n e s t h e r i g h t hand s i d e v e c t o r o f t h e NPDE
! ut = f (t , x , u , ux , uxx)
!PARAMETERS:
! Inpu t :
! Number o f PDE’ s in t h e sys tem
integer : : npde
! The cu r r en t t ime coo r d i na t e
double precision : : t
! The cu r r en t s p a c i a l c o o r d i na t e
double precision : : x
! u (! : npde) i s t h e approx imat ion o f t h e s o l u t i o n a t po i n t (t , x)
double precision : : u (npde)
! ux (! : npde) i s t h e approx imat ion o f t h e s p a t i a l d e r i v a t i v e o f t h e
! s o l i t i o n a t t h e po i n t (t , x)
double precision : : ux (npde)
! uxx (1 : npde) i s t h e approx imat ion o f t h e second s p a t i a l d e r i v a t e
! o f t h e s o l u t i o n a t t h e pnt . (t , x)
double precision : : uxx (npde)
! f v a l (1 : npde) i s t h e r i g h t hand s i d e o f t h e v e c t o r in t h e PDE.
double precision : : f v a l (npde)

!−−
!−−−−PROBLEM CONSTANTS

double precision : : ds , di , la , mu, d , r , as , ai , ar , be
common /SI / ds , di , la , mu, d , r , as , ai , ar , be

!−−
! Ass ign v a l u e s f o r our PDE’ s
!−−

! S
f v a l (1) = ds∗uxx (1) + la − mu∗u (1) &

& − (be∗u(1)∗u (2)) / (1 + as∗u (1) + a i ∗u (2) + ar∗u(1)∗u (2))
! I
f v a l (2) = di ∗uxx (2) − (mu + d + r)∗u (2) &

& + (be∗u(1)∗u (2)) / (1 + as∗u (1) + a i ∗u (2) + ar∗u(1)∗u (2))
!−−−
end subroutine f

! Note : Not u s ing d i r i v f s u b r ou t i n e to make Jacob ians f o r t h i s prob lem .
! Note : d i f b x a and d i f b x b a l s o not used .

! PURPOSE:
! THE SUBROUTINE IS USED TO DEFINE THE BOUNDARY CONDITIONS AT THE
! LEFT SPATIAL END POINT X = XA.
! B(T, U, UX) = 0
!
!−−−
subroutine bndxa (t , u , ux , bval , npde)

implicit none
! SUBROUTINE PARAMETERS:
! INPUT:

integer : : npde
! THE NUMBER OF PDES IN THE SYSTEM.
!

double precision : : t
! THE CURRENT TIME COORDINATE.
!

double precision : : u (npde)
! U(1 :NPDE) IS THE APPROXIMATION OF THE
! SOLUTION AT THE POINT (T,XA) .
!

double precision : : ux (npde)
! UX(1 :NPDE) IS THE APPROXIMATION OF THE
! SPATIAL DERIVATIVE OF THE SOLUTION AT
! THE POINT (T,XA) .
!
! OUTPUT:

double precision : : bval (npde)
! BVAL(1 :NPDE) IS THE BOUNDARY CONDITION
! AT THE LEFT BOUNDARY POINT.
!−−−
! PROBLEM CONSTANTS
!

double precision : : ds , di , la , mu, d , r , as , ai , ar , be
common /SI / ds , di , la , mu, d , r , as , ai , ar , be

!−−−
bval (1) = ux (1)
bval (2) = ux (2)

end subroutine bndxa

! PURPOSE:
! THE SUBROUTINE IS USED TO DEFINE THE BOUNDARY CONDITIONS AT THE

36

! RIGHT SPATIAL END POINT X = XB.
! B(T, U, UX) = 0
!
!−−−
subroutine bndxb (t , u , ux , bval , npde)

implicit none
! SUBROUTINE PARAMETERS:
! INPUT:

integer : : npde
! THE NUMBER OF PDES IN THE SYSTEM.
!

double precision : : t
! THE CURRENT TIME COORDINATE.
!

double precision : : u (npde)
! U(1 :NPDE) IS THE APPROXIMATION OF THE
! SOLUTION AT THE POINT (T,XA) .
!

double precision : : ux (npde)
! UX(1 :NPDE) IS THE APPROXIMATION OF THE
! SPATIAL DERIVATIVE OF THE SOLUTION AT
! THE POINT (T,XA) .
!
! OUTPUT:

double precision : : bval (npde)
! BVAL(1 :NPDE) IS THE BOUNDARY CONTIDITION
! AT THE LEFT BOUNDARY POINT.
!−−−
! PROBLEM CONSTANTS
!

double precision : : ds , di , la , mu, d , r , as , ai , ar , be
common /SI / ds , di , la , mu, d , r , as , ai , ar , be

!−−−
bval (1) = ux (1)
bval (2) = ux (2)

end subroutine bndxb

!−−−
! PURPOSE:
! THIS FUNCTION PROVIDES THE EXACT SOLUTION OF THE PDE.
!−−−
subroutine truu (t , x , u , npde)

implicit none
! INPUT:

integer : : npde
! THE NUMBER OF PDES IN THE SYSTEM.
!

double precision : : t
! THE CURRENT TIME COORDINATE.
!

double precision : : x
! THE CURRENT SPATIAL COORDINATE.
!
! OUTPUT:

double precision : : u (npde)
! U(1 :NPDE) IS THE EXACT SOLUTION AT THE
! POINT (T,X) .
!−−−
! t r u e s o l u t i o n i s unknown

u (1) = 0 . d0
u (2) = 0 . d0

end subroutine truu

!−−−
! PURPOSE:
! THIS SUBROUTINE IS USED TO RETURN THE NPDE−VECTOR OF INITIAL
! CONDITIONS OF THE UNKNOWN FUNCTION AT THE INITIAL TIME T = T0
! AT THE SPATIAL COORDINATE X.
!−−−
subroutine u i n i t (x , u , npde)

implicit none
! SUBROUTINE PARAMETERS:
! INPUT:

double precision : : x
! THE SPATIAL COORDINATE.
!

integer : : npde
! THE NUMBER OF PDES IN THE SYSTEM.
!
! OUTPUT:

double precision : : u (npde)
! U(1 :NPDE) IS VECTOR OF INITIAL VALUES OF
! THE UNKNOWN FUNCTION AT T = T0 AND THE
! GIVEN VALUE OF X.

37

!−−−
! PROBLEM CONSTANTS
!

double precision : : ds , di , la , mu, d , r , as , ai , ar , be
common /SI / ds , di , la , mu, d , r , as , ai , ar , be

!−−−
i f (x >= 0.0 d0 .and . x < 0 .5 d0) then

u (1) = 1.1∗x
u (2) = 0.5∗x

else i f (x >= 0.5 d0 .and . x <= 1.0 d0) then
u (1) = 1 .1∗ (1 − x)
u (2) = 0 .5∗ (1 − x)

end i f
end subroutine u i n i t

!−−−
! purpose :
! t h i s s u b r ou t i n e w r i t e s a header d e s c r i b i n g t h e npde d imens iona l
! p a r a b o l i c p a r t i a l d i f f e r e n t i a l e qua t i on
! u t = f (t , x , u , ux , uxx) .
!−−−
subroutine header (nout)

implicit none
! s u b r ou t i n e parameters :
! i npu t :

integer : : nout
! nout i s t h e ou tpu t un i t number .
!−−−
! c on s t an t s :

double precision , parameter : : t0 = 0 .0 d0
!

double precision , parameter : : xa = 1 .0 d0
!

double precision , parameter : : xb = 2 .0 d0
!−−−
!

write (nout , 9 5) ’The SI Model ’
write (nout , 9 5) ’ domain : ’
write (nout , 9 6) ’ t0 =’ , t0 , ’ < t , ’
write (nout , 9 6) ’ xa =’ , xa , ’ <= x <= xb =’ , xb , ’ , ’

95 format (a)
96 format (a , e13 . 5 , a , e13 . 5 , a , e13 . 5 , a , e13 . 5 , a)

end subroutine header

!−−−
! Dr i ver program f o r t h e S p a t i a l SI model from Samsuzzoha e t . a l 2010 .

program s p a t i a l s i d r i v e r

use bacoli95 mod , only : b a c o l i 9 5 i n i t , baco l i95 , b a c o l i 9 5 v a l s
use bacoli95 mod , only : b a c o l i 9 5 s o l , ba co l i 9 5 so l t e a rdown

implicit none
integer , parameter : : dp = kind (0 d0)
type (b a c o l i 9 5 s o l) : : s o l

integer , parameter : : npde = 2 , nint max=1000
real (dp) , parameter : : xa = 0 , xb = 1
real (dp) , allocatable : : uout (: , :)
real (dp) : : tout , t s t a r t , tstop , a t o l (npde) , r t o l (npde)

integer : : i , j , k , i e r , ntout
character (len=32) : : fname , npde s t r

external f , bndxa , bndxb , u i n i t

!−−
double precision : : ds , di , la , mu, d , r , as , ai , ar , be
common /SI / ds , di , la , mu, d , r , as , ai , ar , be

ds = 0 .1
d i = 0 .5
l a = 0 .5
! be = 0 .2 f o r f i g u r e 2 , be = 0 .6 f o r f i g u r e 3
be = 0 .2
mu = 0.1
as = 0 .1
a i = 0.02
ar = 0.03
d = 0.1
r = 0 .5

38

!−−−
! Write out v a l u e o f npde to a l l ow user to conf i rm t h a t i t s v a l u e
! i s a p p r o p r i a t e f o r t h e prob lem to be s o l v e d .

write (6 ,∗) ’The number o f PDEs i s assumed to be ’ , npde
write (6 ,∗)

! Get some user i npu t
! p r i n t ∗ , ” Enter t s t op , t h e end o f t h e tempora l domain . ”
! read (∗ ,∗ , e r r =600) t s t o p
t s top = 100.0 d0

! p r i n t ∗ , ”At how many e qua l l y−spaced p o i n t s a l ong t he t ime domain” &
! // ” i s ou tpu t d e s i r e d ?”
! read (∗ ,∗ , e r r =600) n tou t
ntout = 100

! p r i n t ∗ , ” P l ea s e choose an e r r o r t o l e r a n c e ”
! read (∗ ,∗ , e r r =600) a t o l (1)
a t o l (1) = 1d−5
r t o l (1) = a to l (1)

!−−−
! I n i t i a l i z a t i o n : A l l o c a t e s t o r a g e and s e t prob lem parameters .

! c a l l b a c o l i 9 5 i n i t (so l , npde , (/ xa , xb /) , a t o l=a t o l , r t o l=r t o l , d i r i c h l e t =1)
ca l l b a c o l i 9 5 i n i t (so l , npde , (/xa , xb /) , a t o l=ato l , r t o l=r to l , &

nint max=nint max)

allocate (uout (npde , s o l\%nint max+1) , stat=i e r)
i f (i e r /= 0 . or . s o l\%id id == −1000) goto 700
t s t a r t = s o l\%t0

!−−−
! Open f i l e s f o r ou tpu t .
do k = 1 , npde

write (npde str ,∗) k
fname = ’ Points ’ // adjustl (trim (npde s t r))
open(unit=10+k , f i l e=fname)

end do

!−−−
! I n t e g r a t e s o l u t i o n from t=0 to t=t ou t .
print ’ (/”THE INPUT IS ”) ’
print 900 , s o l\%kcol , s o l\%nint , s o l\%npde , t s top
print 901 , s o l\%ato l (1) , s o l\%r t o l (1) , ”LOI”

do j = 2 , ntout

tout = t s t a r t + (j −1)∗(tstop−t s t a r t)/ (ntout−1)

ca l l baco l i 95 (so l , tout , f , bndxa , bndxb , u i n i t)
i f (s o l\%id id <= 0) goto 800
! p r i n t 902 , s o l\%nin t

i f (j == 2) then
do i = 1 , s o l\%nint+1

ca l l u i n i t (s o l\%x(i) , uout (1 , i) , npde)
end do
do k = 1 , npde

do i = 1 , s o l\%nint+1
write (10+k ,∗) s o l\%x(i) , t s t a r t , uout (k , i)

end do
end do

end i f

ca l l ba c o l i 9 5 v a l s (so l , s o l\%x (1 : s o l\%nint+1) , uout)

do k = 1 , npde
do i = 1 , s o l\%nint+1

write (10+k ,∗) s o l\%x(i) , s o l\%t0 , uout (k , i)
end do

end do
end do

print ’ (” IDID = ” , i10) ’ , s o l\%id id
print ’ (” nsteps = ” , i 10) ’ , s o l\%num accepted t ime steps

!−−−

ca l l baco l i 9 5 so l t e a rdown (s o l) ; stop
600 print ’ (” Error : Improperly formatted input ”) ’ ; stop
700 print ’ (” Error : Could not a l l o c a t e s to rage ”) ’ ; stop
800 print ’ (” Error : Was not ab le to i n t e g r a t e to tsop ”) ’ ; stop

39

!−−−
! Formats !

900 format (” kco l = ” , i2 , ” , n int0 = ” , i4 , ” , npde = ” , i3 , ” , tout = ” , es7 . 1)
901 format (” a t o l = ” , es7 . 1 , ” , r t o l = ” , es7 . 1 , ” , ” ,17x , a3)
902 format (”Number o f s ub i n t e r v a l s in the cur rent mesh : ” , i 8)

end program

import matp lo t l ib as mpl
from matp lo t l ib import cm
import matp lo t l ib . pyplot as p l t
mpl . use (’AGG’) # fo r sys t ems not running a GUI
from mpl t o o l k i t s . mplot3d import Axes3D
import numpy as np

s t y l i n g = {
’ cmap ’ : cm . coolwarm ,
’ l i n ew idth ’ : 0 ,
’ a n t i a l i a s e d ’ : True

}

For the s u s c e p t a b l e p o pu l a t i o n :
x , t , u = np . l oadtxt (’ Points1 ’ , unpack=True)
For the i n f e c t e d popu l a t i o n :
x , t , u , = np . l o a d t x t (’ Po in t s2 ’ , unpack=True)
f i g = p l t . f i g u r e ()
ax = f i g . add subplot (111 , p r o j e c t i on=’ 3d ’)
ax . p l o t t r i s u r f (x , t , u , ∗∗ s t y l i n g)

ax . s e t x l a b e l (’ x ’)
ax . s e t y l a b e l (’ t ’)
ax . s e t z l a b e l (’ $u (t , x) $ ’)

p l t . s a v e f i g (’ tr imesh . png ’)

Appendix E: Spatial Influenza Modeling and Plotting Scripts

! At tempt ing to s o l v e t h e React ion−Di f f u s i o n I n f l u e n z e model g i v en in Samsuzzoha
! e t a l . 2013 .
! S o l u t i o n f o r sys tem wi th i n i t i a l c ond i t i o n i i i (as g i v en in t he paper) .
! This sys tem c o n s i s t s o f two PDE’ s (npde=4).
! Problem Parameters :
! be −− Transmiss ion c o e f f i c i e n t .
! mu −− Natura l mo r t a l i t y r a t e .
! r −− Bir t h r a t e .
! ka −− Carry ing c a p a c i t y .
! s i g −− Durat ion o f l a t e n c y .
! kb −− Recovery r a t e o f l a t e n t s .
! a l ph −− Flu induced mo r t a l i t y r a t e .
! gam −− Recovery r a t e f o r c l i n i c a l l y i l l .
! d1 , d2 , d3 , d4 −− Di f f u s i o n c o e f f i c i e n t s .

subroutine f (t , x , u , ux , uxx , fva l , npde)
implicit none
! Purpose : Sub rou t ine d e f i n e s t h e r i g h t hand s i d e v e c t o r o f t h e NPDE
! ut = f (t , x , u , ux , uxx)
!PARAMETERS:
! Inpu t :
! Number o f PDE’ s in t h e sys tem
integer : : npde
! The cu r r en t t ime coo r d i na t e
double precision : : t
! The cu r r en t s p a c i a l c o o r d i na t e
double precision : : x
! u (! : npde) i s t h e approx imat ion o f t h e s o l u t i o n a t po i n t (t , x)
double precision : : u (npde)
! ux (! : npde) i s t h e approx imat ion o f t h e s p a t i a l d e r i v a t i v e o f t h e
! s o l i t i o n a t t h e po i n t (t , x)
double precision : : ux (npde)
! uxx (1 : npde) i s t h e approx imat ion o f t h e second s p a t i a l d e r i v a t e
! o f t h e s o l u t i o n a t t h e pnt . (t , x)
double precision : : uxx (npde)
! f v a l (1 : npde) i s t h e r i g h t hand s i d e o f t h e v e c t o r in t h e PDE.
double precision : : f v a l (npde)

!−−
!−−−−PROBLEM CONSTANTS

double precision : : be , mu, r , ka , s ig , kb , alph , gam , d1 , d2 , d3 , d4
double precision : : N
common /SEIR/ be , mu, r , ka , s ig , kb , alph , gam , d1 , d2 , d3 , d4

!−−
! Ass ign v a l u e s f o r our PDE’ s
!−−

40

N = u(1) + u (2) + u (3) + u (4)
! S
f v a l (1) = −be∗u (1)∗ (u (2) + u (3))/N − mu∗u (1) + r∗N∗(1 − N/ka) + d1∗uxx (1)
!E
f v a l (2) = be∗u (1)∗ (u (2) + u (3))/N − (mu + s i g + kb)∗u (2) + d2∗uxx (2)
! I
f v a l (3) = s i g ∗u (2) − (mu + alph + gam)∗u (3) + d3∗uxx (3)
!R
f v a l (4) = kb∗u (2) + gam∗u (3) − mu∗u (4) + d4∗uxx (4)

!−−−
end subroutine f

! Note : Not u s ing d i r i v f s u b r ou t i n e to make Jacob ians f o r t h i s prob lem .
! Note : d i f b x a and d i f b x b a l s o not used .

! PURPOSE:
! THE SUBROUTINE IS USED TO DEFINE THE BOUNDARY CONDITIONS AT THE
! LEFT SPATIAL END POINT X = XA.
! B(T, U, UX) = 0
!
!−−−
subroutine bndxa (t , u , ux , bval , npde)

implicit none
! SUBROUTINE PARAMETERS:
! INPUT:

integer : : npde
! THE NUMBER OF PDES IN THE SYSTEM.
!

double precision : : t
! THE CURRENT TIME COORDINATE.
!

double precision : : u (npde)
! U(1 :NPDE) IS THE APPROXIMATION OF THE
! SOLUTION AT THE POINT (T,XA) .
!

double precision : : ux (npde)
! UX(1 :NPDE) IS THE APPROXIMATION OF THE
! SPATIAL DERIVATIVE OF THE SOLUTION AT
! THE POINT (T,XA) .
!
! OUTPUT:

double precision : : bval (npde)
! BVAL(1 :NPDE) IS THE BOUNDARY CONTIDITION
! AT THE LEFT BOUNDARY POINT.
!−−−
! PROBLEM CONSTANTS
!

double precision : : be , mu, r , ka , s ig , kb , alph , gam , d1 , d2 , d3 , d4
common /SEIR/ be , mu, r , ka , s ig , kb , alph , gam , d1 , d2 , d3 , d4

!−−−
bval (1) = ux (1)
bval (2) = ux (2)
bval (3) = ux (3)
bval (4) = ux (4)

end subroutine bndxa

! PURPOSE:
! THE SUBROUTINE IS USED TO DEFINE THE BOUNDARY CONDITIONS AT THE
! RIGHT SPATIAL END POINT X = XB.
! B(T, U, UX) = 0
!
!−−−
subroutine bndxb (t , u , ux , bval , npde)

implicit none
! SUBROUTINE PARAMETERS:
! INPUT:

integer : : npde
! THE NUMBER OF PDES IN THE SYSTEM.
!

double precision : : t
! THE CURRENT TIME COORDINATE.
!

double precision : : u (npde)
! U(1 :NPDE) IS THE APPROXIMATION OF THE
! SOLUTION AT THE POINT (T,XA) .
!

double precision : : ux (npde)
! UX(1 :NPDE) IS THE APPROXIMATION OF THE
! SPATIAL DERIVATIVE OF THE SOLUTION AT
! THE POINT (T,XA) .
!
! OUTPUT:

double precision : : bval (npde)
! BVAL(1 :NPDE) IS THE BOUNDARY CONTIDITION

41

! AT THE LEFT BOUNDARY POINT.
!−−−
! PROBLEM CONSTANTS
!

double precision : : be , mu, r , ka , s ig , kb , alph , gam , d1 , d2 , d3 , d4
common /SEIR/ be , mu, r , ka , s ig , kb , alph , gam , d1 , d2 , d3 , d4

!−−−
bval (1) = ux (1)
bval (2) = ux (2)
bval (3) = ux (3)
bval (4) = ux (4)

end subroutine bndxb

!−−−
! PURPOSE:
! THIS FUNCTION PROVIDES THE EXACT SOLUTION OF THE PDE.
!−−−
subroutine truu (t , x , u , npde)

implicit none
! INPUT:

integer : : npde
! THE NUMBER OF PDES IN THE SYSTEM.
!

double precision : : t
! THE CURRENT TIME COORDINATE.
!

double precision : : x
! THE CURRENT SPATIAL COORDINATE.
!
! OUTPUT:

double precision : : u (npde)
! U(1 :NPDE) IS THE EXACT SOLUTION AT THE
! POINT (T,X) .
!−−−
! t r u e s o l u t i o n i s unknown

u (1) = 0 . d0
u (2) = 0 . d0
u (3) = 0 . d0
u (4) = 0 . d0

end subroutine truu

!−−−
! PURPOSE:
! THIS SUBROUTINE IS USED TO RETURN THE NPDE−VECTOR OF INITIAL
! CONDITIONS OF THE UNKNOWN FUNCTION AT THE INITIAL TIME T = T0
! AT THE SPATIAL COORDINATE X.
!−−−
subroutine u i n i t (x , u , npde)

implicit none
! SUBROUTINE PARAMETERS:
! INPUT:

double precision : : x
! THE SPATIAL COORDINATE.
!

integer : : npde
! THE NUMBER OF PDES IN THE SYSTEM.
!
! OUTPUT:

double precision : : u (npde)
! U(1 :NPDE) IS VECTOR OF INITIAL VALUES OF
! THE UNKNOWN FUNCTION AT T = T0 AND THE
! GIVEN VALUE OF X.
!−−−
! PROBLEM CONSTANTS
!

double precision : : be , mu, r , ka , s ig , kb , alph , gam , d1 , d2 , d3 , d4
common /SEIR/ be , mu, r , ka , s ig , kb , alph , gam , d1 , d2 , d3 , d4

!−−−
u (1) = 0.96∗exp(−10∗(x∗∗2))
u (2) = 0 .0 d0
u (3) = 0.04∗exp(−100∗(x∗∗2))
u (4) = 0 .0 d0

end subroutine u i n i t

!−−−
! purpose :
! t h i s s u b r ou t i n e w r i t e s a header d e s c r i b i n g t h e npde d imens iona l
! p a r a b o l i c p a r t i a l d i f f e r e n t i a l e qua t i on
! u t = f (t , x , u , ux , uxx) .
!−−−
subroutine header (nout)

implicit none
! s u b r ou t i n e parameters :

42

! i npu t :
integer : : nout

! nout i s t h e ou tpu t un i t number .
!−−−
! c on s t an t s :

double precision , parameter : : t0 = 0 .0 d0
!

double precision , parameter : : xa = −2.0d0
!

double precision , parameter : : xb = 2 .0 d0
!−−−
!

write (nout , 9 5) ’The SEIR Model ’
write (nout , 9 5) ’ domain : ’
write (nout , 9 6) ’ t0 =’ , t0 , ’ < t , ’
write (nout , 9 6) ’ xa =’ , xa , ’ <= x <= xb =’ , xb , ’ , ’

95 format (a)
96 format (a , e13 . 5 , a , e13 . 5 , a , e13 . 5 , a , e13 . 5 , a)

end subroutine header

! Dr i ver f o r Samsuzzoha et , a l 2010 .
! To be run mu l t i p l e t imes w i th t o u t = 5 , 10 , 15 , 40 .

program s p a t i a l i n f l u e n z a d r i v e r

use bacoli95 mod , only : b a c o l i 9 5 i n i t , baco l i95 , b a c o l i 9 5 v a l s
use bacoli95 mod , only : b a c o l i 9 5 s o l , ba co l i 9 5 so l t e a rdown
use bacoli95 mod , only : b a c o l i 9 5 s o l t o s p l i n e s
use bacoli95 mod , only : b a c o l i 9 5 s p l i n e s , b a co l i 9 5 sp l i n e s t e a rdown

implicit none
integer , parameter : : dp = kind (0 d0)
type (b a c o l i 9 5 s o l) : : s o l
type (b a c o l i 9 5 s p l i n e s) : : s p l i n e s

integer , parameter : : npde = 4 , nder iv = 1
real (dp) , parameter : : xa = −2.0 , xb = 2 .0

integer : : nout
real (dp) , allocatable : : xout (:) , uout (: , : , :)
real (dp) : : tout , a t o l (npde) , r t o l (npde)
log ica l : : s e r i a l i z e , exist

integer : : i , j , i e r

external f , bndxa , bndxb , u i n i t

double precision : : be , mu, r , ka , s ig , kb , alph , gam , d1 , d2 , d3 , d4
common /SEIR/ be , mu, r , ka , s ig , kb , alph , gam , d1 , d2 , d3 , d4

! Problem parameters .
be = 0.514 d0
gam = 0.20 d0
mu = 5.5d−5d0
r = 0.0714 d0
ka = 1.0 d0
s i g = 0.50 d0
kb = 0.1857 d0
alph = 0.0093 d0
d1 = 0.05 d0
d2 = 0.025 d0
d3 = 0.001 d0
d4 = 0.0 d0

!−−−
! Write out v a l u e o f npde to a l l ow user to conf i rm t h a t i t s v a l u e
! i s a p p r o p r i a t e f o r t h e prob lem to be s o l v e d .

write (6 ,∗) ’The number o f PDEs i s assumed to be ’ , npde
write (6 ,∗)

! Se t ou tpu t t ime
tout = 40.0 d0

! Se t t o l e r a n c e
a t o l = 1d−6
r t o l = a to l
a t o l (4) = 1d−1

! Save t h e s o l u t i o n as a s p l i n e f o r l a t e r use w i th a python p l o t t i n g s c r i p t .
s e r i a l i z e = . true .

43

!−−−
! I n i t i a l i z a t i o n : A l l o c a t e s t o r a g e and s e t prob lem parameters .
ca l l b a c o l i 9 5 i n i t (so l , npde , (/−2.0d0 , −1.6d0 , −1.2d0 , −0.8d0 , −0.4d0 , &

0 .0 d0 , 0 .4 d0 , 0 .8 d0 , 1 .2 d0 , 1 .6 d0 , 2 .0 d0 /) , a t o l=ato l , r t o l=r t o l)

! Se t ouput a t 8 un i f o rm ly spaced p o i n t s a c ro s s t h e s p a t i a l domain
nout = 8
allocate (xout (nout) , uout (npde , nout , 0 : nder iv) , stat=i e r)
i f (i e r /= 0 . or . s o l\%id id == −1000) goto 700

!−−−
! I n t e g r a t e s o l u t i o n from t=0 to t=t ou t .
print ’ (/”THE INPUT IS ”) ’
print 900 , s o l\%kcol , s o l\%nint , s o l\%npde , tout
print 901 , s o l\%ato l (1) , s o l\%r t o l (1) , ”LOI”

! Compute t h e s o l u t i o n a t t o u t
ca l l baco l i 95 (so l , tout , f , bndxa , bndxb , u i n i t)

! Output i d i d to check f o r a s u c c e s s f u l computat ion
print ’ (” i d i d =”, i 5) ’ , s o l\%id id
i f (s o l\%id id > 0) print ’ (” i d i d > 0 => Suc c e s s f u l computation ”) ’

!−−−
! Output r e s u l t s .
i f (s o l\%id id > 0) then

! Se t ou tpu t p o i n t s and e v a l u a t e s o l u t i o n a t t h e s e p o i n t s
xout = (/xa , (xa+i ∗(xb−xa)/(nout−1) , i =1,nout−1)/)
ca l l ba c o l i 9 5 v a l s (so l , xout , uout , nder iv=nder iv)

print ’ (/”THE OUTPUT IS ”) ’
print ’ (a13 , a27) ’ , ”XOUT” , ”UOUT”
do i = 1 , nout

print ∗ , xout (i) , uout (: , i , 0)
end do

do j = 1 , nder iv
print ’ (/”SPATIAL PARTIAL DERIVATIVE” , i 2) ’ , j
print ’ (a13 , a27) ’ , ”XOUT” , ”UOUT”
do i = 1 , nout

print ∗ , xout (i) , uout (: , i , j)
end do

end do

! Write B−s p l i n e in f o rma t i on to f i l e .
i f (s e r i a l i z e) then

ca l l b a c o l i 9 5 s o l t o s p l i n e s (so l , s p l i n e s , i e r)
i f (i e r /= 0) goto 700

! Make i t so running t h e program mu l t i p l e t imes w i l l append new
! s o l u t i o n s to t h e same t e x t f i l e .
inquire (f i l e=”Bsp l ine s ” , exist=exist)
i f (exist) then

open (20 , f i l e=”Bsp l ine s ” , status=”old ” , position=”append” , &
& action=”wr i t e ”)

else
open (20 , f i l e=”Bsp l ine s ” , status=”new” , action=”wr i t e ”)

end i f

! l i n e 1 : number o f PDEs in t he system
write (20 ,∗) s p l i n e s\%npde
! l i n e 2 : b r e a k p o i n t / knot sequence
write (20 ,∗) s p l i n e s\%knots
! l i n e 3 : c o e f f i c i e n t v a l u e s a t t ime t0
write (20 ,∗) s p l i n e s\%y
! l i n e 4 : deg r ee o f t h e B−s p l i n e i n t e r p o l a n t
write (20 ,∗) s p l i n e s\%p
close (20)

ca l l baco l i 9 5 sp l i n e s t e a rdown (s p l i n e s)
end i f

end i f

!−−−
! The end .
ca l l baco l i 9 5 so l t e a rdown (s o l) ; stop

600 print ’ (” Error : Improperly formatted input ”) ’ ; stop
700 print ’ (” Error : Could not a l l o c a t e s to rage ”) ’ ; stop

!−−−
! Formats

44

900 format (” kco l = ” , i2 , ” , n int0 = ” , i4 , ” , npde = ” , i3 , ” , tout = ” , es7 . 1)
901 format (” a t o l = ” , es7 . 1 , ” , r t o l = ” , es7 . 1 , ” , ” ,17x , a3)
902 format (”Number o f s ub i n t e r v a l s in the cur rent mesh : ” , i 8)
end program

Sc r i p t which p l o t s t h e s o l u t i o n s f o r t h e e qua t i on s g i v en in Sumsuzzoha e t a l .
2010 .

import matp lo t l ib as mpl
mpl . use (’AGG’)
import matp lo t l ib . pyplot as p l t
import numpy as np
from s c ipy . i n t e r p o l a t e import sp l ev

with open(’ Bsp l ine s ’) as f : l i n e s = f . r e a d l i n e s ()

p l t . ax i s ([−2 ,2 , 0 . 0 , 0 . 9])

xbs , y , p , npde = [] , [] , [] , []

Read the r e q u i r e d in f o rma t i on f o r each o f t h e 4 s o l u t i o n s .
for i in range (0 , 5) :

npde . append (int (l i n e s [0 + i ∗ 4]))
xbs . append (np . f r omst r ing (l i n e s [1 + i ∗4] , sep=’ ’))
y . append (np . f romst r ing (l i n e s [2 + i ∗4] , sep=’ ’) . reshape ((npde [i] , −1)))
p . append (int (l i n e s [3 + i ∗ 4]))

x = np . l i n s pa c e (−2 , 2 , 1000)

For each i t e r a t i o n o f loop , p l o t t h e v a l u e s f o r one o f t h e t imes .
for i in range (0 , 5) :

y i s a l i s t o f l i s t s , make second index 0 f o r s u s c e p t a b l e curve , 1 f o r
exposed curve , 2 f o r i n f e c t e d curve and 3 f o r r e cov e r ed curve .
u = sp l ev (x , (xbs [i] , y [i] [3] , p [i]))
i f i == 0 :

t = 0
e l i f i == 1 :

t = 5
e l i f i == 2 :

t = 10
e l i f i == 3 :

t = 15
else :

t = 40

p l t . p l o t (x , u , l a b e l=’ $t = {%d}$ ’%(t))

p l t . x l ab e l (’ x ’)
p l t . y l ab e l (’ $Recovered$ ’)
p l t . l egend ()
p l t . g r id ()
p l t . s a v e f i g (’ curve . png ’)

> r e s t a r t ;
> be := . 5 1 4 ;

> gam := . 2 0 ;

> mu := 5.5∗10ˆ(−5);

> r := 0.714 e−1;

> ka := 1 . 0 ;

> s i g := . 5 0 ;

> kb := . 1 857 ;

> alph := 0.93 e−2;

> d1 := 0 .5 e−1;

> d2 := 0.25 e−1;

> d3 := 0 .1 e−2;

> d4 := 0 .1 e−37;

> PDE1 := d i f f (U1(x , t) , t) = −be∗U1(x , t)∗ (U2(x , t)+U3(x , t))/N−mu∗U1(x , t)
+r∗N∗(1−N/ka)+d1∗(d i f f (U1(x , t) , x , x)) ;

> PDE2 := d i f f (U2(x , t) , t) = be∗U1(x , t)∗ (U2(x , t)+U3(x , t))/N

45

−(mu+s i g+kb)∗U2(x , t)+d2∗(d i f f (U2(x , t) , x , x)) ;

> PDE3 := d i f f (U3(x , t) , t) = s i g ∗U2(x , t)−(mu+alph+gam)∗U3(x , t)
+d3∗(d i f f (U3(x , t) , x , x)) ;

> PDE4 := d i f f (U4(x , t) , t) = kb∗U2(x , t)+gam∗U3(x , t)−mu∗U4(x , t)
+d4∗(d i f f (U4(x , t) , x , x)) ;

> IBC := {U1(x , 0) = .96∗ exp(−10∗x ˆ2) , U2(x , 0) = 0 . ,
U3(x , 0) = 0 .4 e−1∗exp(−100∗x ˆ2) , U4(x , 0) = 0 . ,
(D[1] (U1))(−2 , t) = 0 , (D[1] (U1)) (2 , t) = 0 ,
(D[1] (U2))(−2 , t) = 0 , (D[1] (U2)) (2 , t) = 0 ,
(D[1] (U3))(−2 , t) = 0 , (D[1] (U3)) (2 , t) = 0 ,
(D[1] (U4))(−2 , t) = 0 , (D[1] (U4)) (2 , t) = 0} ;

> PDE := {PDE1, PDE2, PDE3, PDE4} ;

> pds := pdsolve (PDE, IBC , numeric , ab s t o l = 10ˆ(−5) , t imestep = 1/1000 ,
spaces tep = 1/1000) ;

> p1 := pds:−p lo t (U1(x , t) , t = 5) ; p2 := pds:−p lo t (U1(x , t) , t = 10) ;
p3 := pds:−p lo t (U1(x , t) , t = 15) ; p4 := pds:−p lo t (U1(x , t) , t = 40) ;
p l o t s [d i sp l ay] ({ p1 , p2 , p3 , p4} ,
t i t l e = ‘ Susceptab le Populat ion at t =5 ,10 ,15 ,40 ‘) ;

> p1 := pds:−p lo t (U2 , t = 5) ; p2 := pds:−p lo t (U2 , t = 10) ;
p3 := pds:−p lo t (U2 , t = 15) ;
p4 := pds:−p lo t (U2 , t = 40) ; p l o t s [d i sp l ay] ({ p1 , p2 , p3 , p4} ,
t i t l e = ‘ Exposed Populat ion at t =5 ,10 ,15 ,40 ‘) ;

> p1 := pds:−p lo t (U3 , t = 5) ; p2 := pds:−p lo t (U3 , t = 10) ;
p3 := pds:−p lo t (U3 , t = 15) ;
p4 := pds:−p lo t (U3 , t = 40) ; p l o t s [d i sp l ay] ({ p1 , p2 , p3 , p4} ,
t i t l e = ‘ In f e c t ed Populat ion at t =5 ,10 ,15 ,40 ‘) ;

> p1 := pds:−p lo t (U4 , t = 5) ; p2 := pds:−p lo t (U4 , t = 10) ;
p3 := pds:−p lo t (U4 , t = 15) ;
p4 := pds:−p lo t (U4 , t = 40) ; p l o t s [d i sp l ay] ({ p1 , p2 , p3 , p4} ,
t i t l e = ‘ Recovered Populat ion at t =5 ,10 ,15 ,40 ‘) ;

Appendix F: Cholera Modeling and Plotting Scripts

! At tempt ing to s o l v e t h e s p a t i a l SIBR model g i v en in Capone e t a l . 2014 to
! model t h e spread o f c h o l e r a in Ha i t i from 2010 − 2012 .
! Two s imu l a t i o n s are per formed :
! S imu la t i on 1 : Model (1) w i th i n i t i a l c o n d i t i o n s (48) and homogenous Neumann
! boundary c on d i t i o n s a p p l i e d to case (5 1) .
! S imu la t i on 2 : Model (1) w i th i n i t i a l c o n d i t i o n s S(x , 0) = 3500 , (48) 2 , (48) 3
! and R(x , 0) = 100 .
!
! This sys tem c o n s i s t s o f f ou r PDE’ s (npde=4).
! Problem Parameters :
! n0 − Tota l p o pu l a t i o n s i z e a t t ime t =0.
! gam i − Di f f u s i o n c o e f f i c i e n t s (i = 1 , 2 , 3 , 4) .
! mu − Bir t h /Death r a t e .
! s i g − Recovery r a t e .
! mu b − Loss r a t e o f b a c t e r i a .
! p i b − Growth r a t e o f b a c t e r i a .
! e − Con t r i b u t i on o f each i n f e c t e d to b a c t e r i a p opu l a t i o n .
! be − Contact r a t e w i th contaminated water .
! k b − Concen t ra t ion r a t e o f c h o l e r a b a c t e r i a which l e a d s to a 50\% chance
! o f c a t c h i n g c h o l e r a .

subroutine f (t , x , u , ux , uxx , fva l , npde)
implicit none
! Purpose : Sub rou t ine d e f i n e s t h e r i g h t hand s i d e v e c t o r o f t h e NPDE
! ut = f (t , x , u , ux , uxx)
!PARAMETERS:
! Inpu t :
! Number o f PDE’ s in t h e sys tem
integer : : npde
! The cu r r en t t ime coo r d i na t e
double precision : : t
! The cu r r en t s p a c i a l c o o r d i na t e
double precision : : x
! u (! : npde) i s t h e approx imat ion o f t h e s o l u t i o n a t po i n t (t , x)
double precision : : u (npde)
! ux (! : npde) i s t h e approx imat ion o f t h e s p a t i a l d e r i v a t i v e o f t h e
! s o l i t i o n a t t h e po i n t (t , x)
double precision : : ux (npde)
! uxx (1 : npde) i s t h e approx imat ion o f t h e second s p a t i a l d e r i v a t e
! o f t h e s o l u t i o n a t t h e pnt . (t , x)
double precision : : uxx (npde)

46

! f v a l (1 : npde) i s t h e r i g h t hand s i d e o f t h e v e c t o r in t h e PDE.
double precision : : f v a l (npde)

!−−
!−−−−PROBLEM CONSTANTS

double precision : : n0 , gam 1 , gam 2 , gam 3 , gam 4 , mu, s ig , mu b , pi b , &
e , be , k b

common /SIBR/ n0 , gam 1 , gam 2 , gam 3 , gam 4 , mu, s ig , mu b , pi b , e , &
be , k b

!−−
! Ass ign v a l u e s f o r our PDE’ s
!−−

! S
f v a l (1) = mu∗(n0 − u (1)) + gam 1∗uxx (1) − be ∗(u (3)/ (k b + u (3)))∗ u (1)
! I
f v a l (2) = be ∗(u (3)/ (k b + u (3)))∗ u (1) − (s i g + mu)∗u (2) + gam 2∗uxx (2)
!B
f v a l (3) = e∗u (2) − (mu b − p i b)∗u (3) + gam 3∗uxx (3)
!R
f v a l (4) = s i g ∗u (2) − mu∗u (4) + gam 4∗uxx (4)

!−−−
end subroutine f

! Note : Not u s ing d i r i v f s u b r ou t i n e to make Jacob ians f o r t h i s prob lem .
! Note : d i f b x a and d i f b x b a l s o not used .

! PURPOSE:
! THE SUBROUTINE IS USED TO DEFINE THE BOUNDARY CONDITIONS AT THE
! LEFT SPATIAL END POINT X = XA.
! B(T, U, UX) = 0
!
!−−−
subroutine bndxa (t , u , ux , bval , npde)
! SUBROUTINE PARAMETERS:
! INPUT:

integer : : npde
! THE NUMBER OF PDES IN THE SYSTEM.
!

double precision : : t
! THE CURRENT TIME COORDINATE.
!

double precision : : u (npde)
! U(1 :NPDE) IS THE APPROXIMATION OF THE
! SOLUTION AT THE POINT (T,XA) .
!

double precision : : ux (npde)
! UX(1 :NPDE) IS THE APPROXIMATION OF THE
! SPATIAL DERIVATIVE OF THE SOLUTION AT
! THE POINT (T,XA) .
!
! OUTPUT:

double precision : : bval (npde)
! BVAL(1 :NPDE) IS THE BOUNDARY CONTIDITION
! AT THE LEFT BOUNDARY POINT.
!−−−
! PROBLEM CONSTANTS
!

double precision : : n0 , gam 1 , gam 2 , gam 3 , gam 4 , mu, s ig , mu b , pi b , &
e , be , k b

common /SIBR/ n0 , gam 1 , gam 2 , gam 3 , gam 4 , mu, s ig , mu b , pi b , e , &
be , k b

!−−−
bval (1) = ux (1)
bval (2) = ux (2)
bval (3) = ux (3)
bval (4) = ux (4)

end subroutine bndxa

! PURPOSE:
! THE SUBROUTINE IS USED TO DEFINE THE BOUNDARY CONDITIONS AT THE
! RIGHT SPATIAL END POINT X = XB.
! B(T, U, UX) = 0
!
!−−−
subroutine bndxb (t , u , ux , bval , npde)
! SUBROUTINE PARAMETERS:
! INPUT:

integer : : npde
! THE NUMBER OF PDES IN THE SYSTEM.
!

double precision : : t
! THE CURRENT TIME COORDINATE.
!

47

double precision : : u (npde)
! U(1 :NPDE) IS THE APPROXIMATION OF THE
! SOLUTION AT THE POINT (T,XA) .
!

double precision : : ux (npde)
! UX(1 :NPDE) IS THE APPROXIMATION OF THE
! SPATIAL DERIVATIVE OF THE SOLUTION AT
! THE POINT (T,XA) .
!
! OUTPUT:

double precision : : bval (npde)
! BVAL(1 :NPDE) IS THE BOUNDARY CONTIDITION
! AT THE LEFT BOUNDARY POINT.
!−−−
! PROBLEM CONSTANTS
!

double precision : : n0 , gam 1 , gam 2 , gam 3 , gam 4 , mu, s ig , mu b , pi b , &
e , be , k b

common /SIBR/ n0 , gam 1 , gam 2 , gam 3 , gam 4 , mu, s ig , mu b , pi b , e , &
be , k b

!−−−
bval (1) = ux (1)
bval (2) = ux (2)
bval (3) = ux (3)
bval (4) = ux (4)

end subroutine bndxb

!−−−
! PURPOSE:
! THIS FUNCTION PROVIDES THE EXACT SOLUTION OF THE PDE.
!−−−
subroutine truu (t , x , u , npde)
! INPUT:

integer : : npde
! THE NUMBER OF PDES IN THE SYSTEM.
!

double precision : : t
! THE CURRENT TIME COORDINATE.
!

double precision : : x
! THE CURRENT SPATIAL COORDINATE.
!
! OUTPUT:

double precision : : u (npde)
! U(1 :NPDE) IS THE EXACT SOLUTION AT THE
! POINT (T,X) .
!−−−
! t r u e s o l u t i o n i s unknown

u (1) = 0 .0 d0
u (2) = 0 .0 d0
u (3) = 0 .0 d0
u (4) = 0 .0 d0

end subroutine truu

!−−−
! PURPOSE:
! THIS SUBROUTINE IS USED TO RETURN THE NPDE−VECTOR OF INITIAL
! CONDITIONS OF THE UNKNOWN FUNCTION AT THE INITIAL TIME T = T0
! AT THE SPATIAL COORDINATE X.
!−−−
subroutine u i n i t (x , u , npde)
! SUBROUTINE PARAMETERS:
! INPUT:

double precision : : x
! THE SPATIAL COORDINATE.
!

integer : : npde
! THE NUMBER OF PDES IN THE SYSTEM.
!
! OUTPUT:

double precision : : u (npde)
! U(1 :NPDE) IS VECTOR OF INITIAL VALUES OF
! THE UNKNOWN FUNCTION AT T = T0 AND THE
! GIVEN VALUE OF X.
!−−−
! PROBLEM CONSTANTS
!

double precision : : n0 , gam 1 , gam 2 , gam 3 , gam 4 , mu, s ig , mu b , pi b , &
e , be , k b

common /SIBR/ n0 , gam 1 , gam 2 , gam 3 , gam 4 , mu, s ig , mu b , pi b , e , &
be , k b

double precision : : p i
! Used in sumu la t ion 2 :
pi = acos (−1.0d0)

48

!−−−
! For s imu l a t i o n 1 :
! u (1) = 2989.29 d0
! u (2) = 9.17889 d0
! u (3) = 278.148 d0
! u (4) = 701.53 d0

! For s imu l a t i o n 2 :
u (1) = 3500.0 d0

i f (x >= 0.0 d0 .and . x <=0.5d0) then
u (2) = 100∗ pi ∗cos (p i ∗x)
u (3) = 10∗ pi ∗cos (p i ∗x)

else
u (2) = 0
u (3) = 0

end i f

u (4) = 100

end subroutine u i n i t

!−−−
! purpose :
! t h i s s u b r ou t i n e w r i t e s a header d e s c r i b i n g t h e npde d imens iona l
! p a r a b o l i c p a r t i a l d i f f e r e n t i a l e qua t i on
! u t = f (t , x , u , ux , uxx) .
!−−−
subroutine header (nout)
! s u b r ou t i n e parameters :
! i npu t :

integer : : nout
! nout i s t h e ou tpu t un i t number .
!−−−
! c on s t an t s :

double precision , parameter : : t0 = 0 .0 d0
!

double precision , parameter : : xa = 0 .0 d0
!

double precision , parameter : : xb = 1 .0 d0
!−−−
!

write (nout , 9 5) ’The SIBR Model ’
write (nout , 9 5) ’ domain : ’
write (nout , 9 6) ’ t0 =’ , t0 , ’ < t , ’
write (nout , 9 6) ’ xa =’ , xa , ’ <= x <= xb =’ , xb , ’ , ’

95 format (a)
96 format (a , e13 . 5 , a , e13 . 5 , a , e13 . 5 , a , e13 . 5 , a)

end subroutine header

! Dr i ver f o r mode l ing s p a t i a l SIBR model from Capone e t . a l 2014 to model
! t h e spread o f c h o l e r a in Ha i t i .

program c h o l e r a h a i t i d r i v e r

use bacoli95 mod , only : b a c o l i 9 5 i n i t , baco l i95 , b a c o l i 9 5 v a l s
use bacoli95 mod , only : b a c o l i 9 5 s o l , ba co l i 9 5 so l t e a rdown

implicit none
integer , parameter : : dp = kind (0 d0)
type (b a c o l i 9 5 s o l) : : s o l

integer , parameter : : npde = 4 , nint max=2000
real (dp) , parameter : : xa = 0 , xb = 1
real (dp) , allocatable : : uout (: , :)
real (dp) : : tout , t s t a r t , tstop , a t o l (npde) , r t o l (npde)

integer : : i , j , k , i e r , ntout
character (len=32) : : fname , npde s t r

external f , bndxa , bndxb , u i n i t

!−−
double precision : : n0 , gam 1 , gam 2 , gam 3 , gam 4 , mu, s ig , mu b , pi b , &

e , be , k b
common /SIBR/ n0 , gam 1 , gam 2 , gam 3 , gam 4 , mu, s ig , mu b , pi b , e , &

be , k b

! Ass ign v a l u e s to prob lem con s t an t s .
n0 = 3700

49

gam 1 = 0.8

! For sumu la t ion 1 :
gam 2 = 0.003
! For s imu l a t i o n 2 :
! gam 2 = 0.1

! For s imu l a t i o n 1 :
gam 3 = 0.002
! For s imu l a t i o n 2 :
! gam 3 = 0.01

gam 4 = 0.5

mu = 0.014
s i g = 1.0678
k b = 10∗∗5
mu b = 1.06
p i b = 0.73
e = 10
! For s imu l a t i o n 1 :
be = 1 .2
! For s imu l a t i o n 2 :
! be = 1 .0

!−−−
! Write out v a l u e o f npde to a l l ow user to conf i rm t h a t i t s v a l u e
! i s a p p r o p r i a t e f o r t h e prob lem to be s o l v e d .

write (6 ,∗) ’The number o f PDEs i s assumed to be ’ , npde
write (6 ,∗)

! Get some user i npu t
! p r i n t ∗ , ” Enter t s t op , t h e end o f t h e tempora l domain . ”
! read (∗ ,∗ , e r r =600) t s t o p
t s top = 2000.0 d0

! p r i n t ∗ , ”At how many e qua l l y−spaced p o i n t s a l ong t he t ime domain” &
! // ” i s ou tpu t d e s i r e d ?”
! read (∗ ,∗ , e r r =600) n tou t
ntout = 2000

! p r i n t ∗ , ” P l ea s e choose an e r r o r t o l e r a n c e ”
! read (∗ ,∗ , e r r =600) a t o l (1)
! For s imu l ua t i on 1 , r t o l = a t o l = 1d−7
! For s imu l a t i o n 2 , r t o l = a t o l = 1d−4
a t o l (1) = 1d−4
r t o l (1) = a to l (1)

!−−−
! I n i t i a l i z a t i o n : A l l o c a t e s t o r a g e and s e t prob lem parameters .

! c a l l b a c o l i 9 5 i n i t (so l , npde , (/ xa , xb /) , a t o l=a t o l , r t o l=r t o l , d i r i c h l e t =1)
ca l l b a c o l i 9 5 i n i t (so l , npde , (/xa , xb /) , a t o l=ato l , r t o l=r to l , &

nint max=nint max)

allocate (uout (npde , s o l\%nint max+1) , stat=i e r)
i f (i e r /= 0 . or . s o l\%id id == −1000) goto 700
t s t a r t = s o l\%t0

!−−−
! Open f i l e s f o r ou tpu t .
do k = 1 , npde

write (npde str ,∗) k
fname = ’ Points ’ // adjustl (trim (npde s t r))
open(unit=10+k , f i l e=fname)

end do

!−−−
! I n t e g r a t e s o l u t i o n from t=0 to t=t ou t .
print ’ (/”THE INPUT IS ”) ’
print 900 , s o l\%kcol , s o l\%nint , s o l\%npde , t s top
print 901 , s o l\%ato l (1) , s o l\%r t o l (1) , ”LOI”

do j = 2 , ntout

tout = t s t a r t + (j −1)∗(tstop−t s t a r t)/ (ntout−1)

ca l l baco l i 95 (so l , tout , f , bndxa , bndxb , u i n i t)
i f (s o l\%id id <= 0) goto 800
! p r i n t 902 , s o l\%nin t

i f (j == 2) then
do i = 1 , s o l\%nint+1

ca l l u i n i t (s o l\%x(i) , uout (1 , i) , npde)

50

end do
do k = 1 , npde

do i = 1 , s o l\%nint+1
write (10+k ,∗) s o l\%x(i) , t s t a r t , uout (k , i)

end do
end do

end i f

ca l l ba c o l i 9 5 v a l s (so l , s o l\%x (1 : s o l\%nint+1) , uout)

do k = 1 , npde
do i = 1 , s o l\%nint+1

write (10+k ,∗) s o l\%x(i) , s o l\%t0 , uout (k , i)
end do

end do
end do

print ’ (” IDID = ” , i10) ’ , s o l\%id id
print ’ (” nsteps = ” , i 10) ’ , s o l\%num accepted t ime steps

!−−−

ca l l baco l i 9 5 so l t e a rdown (s o l) ; stop
600 print ’ (” Error : Improperly formatted input ”) ’ ; stop
700 print ’ (” Error : Could not a l l o c a t e s to rage ”) ’ ; stop
800 print ’ (” Error : Was not ab le to i n t e g r a t e to tsop ”) ’ ; stop

!−−−
! Formats !

900 format (” kco l = ” , i2 , ” , n int0 = ” , i4 , ” , npde = ” , i3 , ” , tout = ” , es7 . 1)
901 format (” a t o l = ” , es7 . 1 , ” , r t o l = ” , es7 . 1 , ” , ” ,17x , a3)
902 format (”Number o f s ub i n t e r v a l s in the cur rent mesh : ” , i 8)

end program

Plo t f o r c h o l e r a ep idemic models from Capone e t . a l 2014 .

import matp lo t l ib as mpl
from matp lo t l ib import cm
import matp lo t l ib . pyplot as p l t
from mpl t o o l k i t s . mplot3d import Axes3D
import numpy as np

s t y l i n g = {
’ cmap ’ : cm . coolwarm ,
’ l i n ew idth ’ : 0 ,
’ a n t i a l i a s e d ’ : True

}

For the s u s c e p t a b l e p o pu l a t i o n :
To g e t graphs f o r t h e o t h e r compartments :
−−’Po in t s1 ’ f o r s u s c e p t a b l e .
−−’Po in t s2 ’ f o r i n f e c t e d .
−−’Po in t s3 ’ f o r b a c t e r i a .
−−’Po in t s4 ’ f o r r e co v e r ed .
x , t , u = np . l oadtxt (’ Points1 ’ , unpack=True)

f i g = p l t . f i g u r e ()
ax = f i g . add subplot (111 , p r o j e c t i on=’ 3d ’)
ax . p l o t t r i s u r f (x , t , u , ∗∗ s t y l i n g)

ax . s e t x l a b e l (’ x ’)
ax . s e t y l a b e l (’ t ’)
ax . s e t z l a b e l (’ $Recovered$ ’)

p l t . s a v e f i g (’ tr imesh . png ’)

> r e s t a r t ;
> n0 := 3700;

> gam 1 := . 8 ;

> gam 2 := 0 .3 e−2;

> gam 3 := 0 .2 e−2;

> gam 4 := . 5 ;

> mu := 0.14 e−1;

> s i g := 1 . 0678 ;

51

> k b := 10ˆ5;

> mu b := 1 . 0 6 ;

> p i b := . 7 3 ;

> e := 10 ;

> be := 1 . 2 ;

> PDE1 := d i f f (U1(x , t) , t) = mu∗(n0−U1(x , t))
+gam 1∗(d i f f (U1(x , t) , x , x))−be∗U3(x , t)∗U1(x , t)/ (k b+U3(x , t)) ;

> PDE2 := d i f f (U2(x , t) , t) = be∗U3(x , t)∗U1(x , t)/ (k b+U3(x , t))
−(s i g+mu)∗U2(x , t)+gam 2∗(d i f f (U2(x , t) , x , x)) ;

> PDE3 := d i f f (U3(x , t) , t) = e∗U2(x , t)−(mu b−p i b)∗U3(x , t)
+gam 3∗(d i f f (U3(x , t) , x , x)) ;

> PDE4 := d i f f (U4(x , t) , t) = s i g ∗U2(x , t)−mu∗U4(x , t)
+gam 4∗(d i f f (U4(x , t) , x , x)) ;

> PDE := {PDE1, PDE2, PDE3, PDE4} ;

> IBC := {U1(x , 0) = 2989 .29 , U2(x , 0) = 9.17889 , U3(x , 0) = 278 .148 ,
U4(x , 0) = 701 .53 ,
(D[1] (U1)) (0 , t) = 0 , (D[1] (U1)) (1 , t) = 0 , (D[1] (U2)) (0 , t) = 0 ,
(D[1] (U2)) (1 , t) = 0 , (D[1] (U3)) (0 , t) = 0 ,
(D[1] (U3)) (1 , t) = 0 , (D[1] (U4)) (0 , t) = 0 ,
(D[1] (U4)) (1 , t) = 0} ;

> pds := pdsolve (PDE, IBC , numeric , ab s t o l =10ˆ(−5) , spaces tep =1/1000 ,
t imestep =1/1000);

> p l t1 := pds:−plot3d (U1(x , t) , x = 0 . . 1 , t = 0 . . 2000 ,
axes = boxed , o r i e n t a t i o n = [−120 , 40] ,
c o l o r = [0 , 0 , U1] ,
t i t l e = ” Simulat ion 1 Susceptab le Populat ion ”) ;

> p l t2 := pds:−plot3d (U2(x , t) , x = 0 . . 1 , t = 0 . . 2000 ,
axes = boxed , o r i e n t a t i o n = [−120 , 40] ,
c o l o r = [0 , 0 , U2] ,
t i t l e = ” Simulat ion 1 In f e c t ed Populat ion ”) ;

> p l t3 := pds:−plot3d (U3(x , t) , x = 0 . . 1 , t = 0 . . 2000 ,
axes = boxed , o r i e n t a t i o n = [−120 , 40] ,
c o l o r = [0 , 0 , U3] ,
t i t l e = ” Simulat ion 1 Bacter ia Populat ion ”) ;

> p l t4 := pds:−plot3d (U4(x , t) , x = 0 . . 1 , t = 0 . . 2000 ,
axes = boxed , o r i e n t a t i o n = [−120 , 40] ,
c o l o r = [0 , 0 , U4] ,
t i t l e = ” Simulat ion 1 Recovered Populat ion ”) ;

> r e s t a r t ;
> n0 := 3700;

> gam 1 := . 8 ;

> gam 2 := . 1 ;

> gam 3 := 0 .1 e−1;

> gam 4 := . 5 ;

> mu := 0.14 e−1;

> s i g := 1 . 0678 ;

> k b := 10ˆ5;

> mu b := 1 . 0 6 ;

> p i b := . 7 3 ;

> e := 10 ;

> be := 1 . 0 ;

> PDE1 := d i f f (U1(x , t) , t) = mu∗(n0−U1(x , t))+gam 1∗(d i f f (U1(x , t) , x , x))
−be∗U3(x , t)∗U1(x , t)/ (k b+U3(x , t)) ;

> PDE2 := d i f f (U2(x , t) , t) = be∗U3(x , t)∗U1(x , t)/ (k b+U3(x , t))

52

−(s i g+mu)∗U2(x , t)+gam 2∗(d i f f (U2(x , t) , x , x)) ;

> PDE3 := d i f f (U3(x , t) , t) = e∗U2(x , t)−(mu b−p i b)∗U3(x , t)
+gam 3∗(d i f f (U3(x , t) , x , x)) ;

> PDE4 := d i f f (U4(x , t) , t) = s i g ∗U2(x , t)−mu∗U4(x , t)
+gam 4∗(d i f f (U4(x , t) , x , x)) ;

> PDE := {PDE1, PDE2, PDE3, PDE4} ;

> UINIT1 := U1(x , 0) = 3500 ;

> UINIT2 := U2(x , 0) = p i e c ew i s e (0 <= x and x <= .5 , 100∗Pi∗ cos (Pi∗x) ,
. 5 < x and x <= 1 , 0) ;

> UINIT3 := U3(x , 0) = p i e c ew i s e (0 <= x and x <= .5 , 10∗Pi∗ cos (Pi∗x) ,
. 5 < x and x <= 1 , 0) ;

> UINIT4 := U4(x , 0) = 100 ;

> IBC := {UINIT1 , UINIT2 , UINIT3 , UINIT4 , (D[1] (U1)) (0 , t) = 0 ,
(D[1] (U1)) (1 , t) = 0 , (D[1] (U2)) (0 , t) = 0 ,
(D[1] (U2)) (1 , t) = 0 , (D[1] (U3)) (0 , t) = 0 , (D[1] (U3)) (1 , t) = 0 ,
(D[1] (U4)) (0 , t) = 0 , (D[1] (U4)) (1 , t) = 0} ;

> pds := pdsolve (PDE, IBC , numeric , t imestep = 1/20 , spaces tep = 1/20) ;

> p l t1 := pds:−plot3d (U1(x , t) , x = 0 . . 1 , t = 0 . . 2000 ,
axes = boxed , o r i e n t a t i o n = [−120 , 40] , c o l o r = [0 , 0 , U1] ,
t i t l e = ” Simulat ion 2 Susceptab le Populat ion ”) ;

> p l t2 := pds:−plot3d (U2(x , t) , x = 0 . . 1 , t = 0 . . 2000 ,
axes = boxed , o r i e n t a t i o n = [−120 , 40] , c o l o r = [0 , 0 , U2] ,
t i t l e = ” Simulat ion 2 In f e c t ed Populat ion ”) ;

> p l t3 := pds:−plot3d (U3(x , t) , x = 0 . . 1 , t = 0 . . 2000 ,
axes = boxed , o r i e n t a t i o n = [−120 , 40] , c o l o r = [0 , 0 , U3] ,

t i t l e = ” Simulat ion 2 Bacter ia Populat ion ”) ;

> p l t4 := pds:−plot3d (U4(x , t) , x = 0 . . 1 , t = 0 . . 2000 ,
axes = boxed , o r i e n t a t i o n = [−120 , 40] , c o l o r = [0 , 0 , U4] ,
t i t l e = ” Simulat ion 2 Recovered Populat ion ”) ;

References

[1] L. Allen et al. Mathematical Epidemiology. Vol. 1945. Springer, 2008.

[2] C. Althaus. Estimating the Reproduction Number of Ebola Virus (EBOV)
During the 2014 Outbreak in West Africa. PLoS Currents 6 (2014).

[3] M. Andraud et al. Dynamic Epidemiological Models for Dengue Trans-
mission: A Systematic Review of Structural Approaches. PloS ONE
7.11 (2012), pp. 1–14.

[4] S. Anita and V. Capasso. Reaction-Diffusion Systems in Epidemiology.
ArXiv e-prints (2017).

[5] J. Arino and P. Van Den Driessche. Time Delays in Epidemic Mod-
els. Delay Differential Equations and Applications. Springer, 2006,
pp. 539–578.

[6] K. Atkinson, W. Han, and D.E. Stewart. Numerical Solution of Ordi-
nary Differential Equations. Vol. 108. John Wiley & Sons, 2011.

[7] E. Bertuzzo et al. On Spatially Explicit Models of Cholera Epidemics.
Journal of the Royal Society Interface (2009), pp. 321–333.

53

[8] F. Brauer. Mathematical Epidemiology: Past, Present, and Future. In-
fectious Disease Modelling 2.2 (2017), pp. 113 –127.

[9] F. Capone, V. De Cataldis, and R. De Luca. Influence of Diffusion
on the Stability of Equilibria in a Reaction–Diffusion System Model-
ing Cholera Dynamic. Journal of Mathematical Biology 71.5 (2015),
pp. 1107–1131.

[10] F. Chalub and M. Souza. Discrete and Continuous SIS Epidemic Mod-
els: A Unifying Approach. Ecological Complexity 18 (2014), pp. 83–
95.

[11] J. C. Dı́az, G. Fairweather, and P. Keast. Algorithm 603: COLROW
and ARCECO: FORTRAN Packages for Solving Certain Almost Block
Diagonal Linear Systems by Modified Alternate Row and Column Elim-
ination. ACM Transactions on Mathematical Software (TOMS) 9 (1983),
pp. 376–380.

[12] P. Van den Driessche and J. Watmough. Reproduction Numbers and
Sub-Threshold Endemic Equilibria for Compartmental Models of Dis-
ease Transmission. Mathematical Biosciences 180.1 (2002), pp. 29–48.

[13] Hairer E. and Lubich C. Numerical Solution of Ordinary Differential
Equations. The Princeton Companion to Applied Mathematics (2012).

[14] L. Elelstein-Keshet. Applications of Continuous Models to Population
Dynamics. Mathematical Models in Biology. Society for Industrial and
Applied Mathematics, 2004. Chap. 6.

[15] Scilab Enterprises. Scilab: Free and Open Source Software for Numer-
ical Computation. Scilab Enterprises. Orsay, France, 2012.

[16] R.A. Erickson et al. A Dengue Model with a Dynamic Aedes Albopictus
Vector Population. Ecological Modelling 221.24 (2010), pp. 1–14.

[17] G. Everstine. Numerical Solution of Partial Differential Equations.
2010.

[18] K.R. Green and R.J. Spiteri. Extended BACOLI: Solving One-Dimensional
Multiscale Parabolic PDE Systems with Error Control. Submitted to
ACM Transactions on Mathematical Software (TOMS) (2017).

[19] H. Hethcote. The Mathematics of Infectious Diseases. SIAM review
42.4 (2000), pp. 599–653.

[20] A. Hindmarsh. LSODE and LSODI, Two New Initial Value Ordinary
Differential Equation Solvers. ACM Signum Newsletter 15.4 (1980),
pp. 10–11.

[21] A. Hindmarsh. ODEPACK - A Systematized Collection of ODE Solvers.
IMACS Transactions on Scientific Computation 1 (1983), pp. 55–64.

54

[22] A. Huppert and G. Katriel. Mathematical Modelling and Prediction In
Infectious Disease Epidemiology. Clinical Microbiology and Infection
19.11 (2013), pp. 999–1005.

[23] P. Keast. LAMPACK - Software for the Factorization of Almost Block
Diagonal Systems. Unpublished Software.

[24] M. Keeling and P. Rohani. Modeling Infectious Diseases In Humans
and Animals. Princeton University Press, 2008.

[25] B.L. Keyfitz and N. Keyfitz. The McKendrick Partial Differential
Equation and Its Uses In Epidemiology and Population Study. Math-
ematical and Computer Modelling 26.6 (1997), pp. 1–9.

[26] C.M.L. Kon, J.S. Labadin, and J. Tiga. Generic Reaction-Diffusion
Model For Transmission Of Mosquito-Borne Diseases: Results Of Sim-
ulation With Actual Cases. European Conference on Modelling and
Simulation. 2016, pp. 1–4.

[27] E.M. Lotfi et al. Partial Differential Equations of an Epidemic Model
with Spatial Diffusion. International Journal of Partial Differential
Equations 2014 (2014).

[28] P. Munz et al. When Zombies Attack!: Mathematical Modelling of an
Outbreak of Zombie Infection. Infectious Disease Modelling Research
Progress 4 (2009), pp. 133–150.

[29] J.D. Murray. Mathematical Biology II: Spatial Models and Biomedical
Applications. Interdisciplinary Applied Mathematics (2013).

[30] D.P. O’Leary. Scientific Computing with Case Studies. Society for In-
dustrial and Applied Mathematics, 2009.

[31] P. Peterson. F2PY: a Tool For Connecting Fortran and Python Pro-
grams. International Journal of Computational Science and Engineer-
ing 4 (2009).

[32] L. Petzold. A Description of DASSL: A Differential/Algebraic System
Solver. Scientific Computing 1 (1982), pp. 65–68.

[33] J. Pew, Z. Li, and P. Muir. Algorithm 962: BACOLI: B-spline Adaptive
Collocation Software for PDEs with Interpolation-Based Spatial Error
Control. ACM Transactions on Mathematical Software (TOMS) 42.3
(2016), pp. 1–17.

[34] J.R. Rice. Numerical Methods in Software and Analysis. Elsevier, 2014.

[35] E. Rusu. Network Models in Epidemiology: Considering Discrete and
Continuous Dynamics. arXiv preprint arXiv:1511.01062 (2015).

[36] M. Samsuzzoha, M. Singh, and D. Lucy. Numerical Study of an In-
fluenza Epidemic Model with Diffusion. Applied Mathematics and Com-
putation 217.7 (2010), pp. 3461–3479.

55

[37] D.L. Smith et al. Ross, Macdonald, and a Theory for the Dynamics
and Control of Mosquito-Transmitted Pathogens. PLoS Pathogens 8.4
(2012), pp. 1–13.

[38] R. Wang, P. Keast, and P. Muir. BACOL: B-spline Adaptive Colloca-
tion Software for 1-D Parabolic PDEs. ACM Transactions on Mathe-
matical Software (TOMS) 30.4 (2004), pp. 454–470.

[39] K. Yamazaki and X. Wang. Global Stability and Uniform Persistence
of the Reaction-Convection-Diffusion Cholera Epidemic Model. arXiv
Preprint (2017).

[40] J. Yang, S. Liang, and Y. Zhang. Travelling Waves of a Delayed SIR
Epidemic Model with Nonlinear Incidence Rate and Spatial Diffusion.
PLOS ONE 6 (2011), pp. 1–14.

[41] Eric J. et. al. SciPy: Open Source Scientific Tools for Python. 2001.

56

