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Abstract

This report considers a family of software packages for the error con-
trolled numerical solution of systems of one-dimensional partial differential
equations. B-spline Gaussian collocation is used for the spatial discretiza-
tion; the time integration is performed in the two earliest members of
this family, BACOL and BACOLR, using multi-step and Runge-Kutta
methods, respectively. BACOLR was shown to have better performance
than BACOL for problems where the multi-step methods have stability
issues. The recently released third member of this family, called BACOLI,
is a modification of BACOL that improves the efficiency of the spatial er-
ror estimation computation by introducing two new interpolation-based
schemes. In this report, we consider the newest member of this fam-
ily, BACOLRI, a modification of BACOLR, that combines the improved
Runge-Kutta stability of the time integration employed by BACOLR with
the improved efficiency of the interpolation-based spatial error estimation
schemes employed by BACOLI. We describe the modifications undertaken
to obtain BACOLRI from BACOLR and provide extensive numerical re-
sults to compare the performances of the two packages.
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1 Introduction

In this report we consider B-spline [6] Gaussian collocation software that im-
plements adaptive control of estimates of the spatial and temporal errors for
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a system of one-dimensional (1D) partial differential equations (PDEs). The
software computes a numerical solution such that corresponding high quality
estimates of the spatial and temporal errors satisfy a user-prescribed tolerance.
An error controlled computation provides two advantages:

e The user can have reasonable confidence that the returned numerical so-
lution has an error that is consistent with the requested tolerance.

e The user can expect that the computational costs will be consistent with
the requested tolerance.

The B-spline Gaussian collocation process is used to perform the spatial dis-
cretization, leading to an approximation of the original PDE system by a larger
system of time-dependent ODEs which is coupled with the boundary conditions
to give a system of time-dependent Differential-Algebraic Equations (DAES).
The DAE system is solved using a high quality DAE solver that controls an
estimate of the temporal error using adaptive time-stepping and possibly also
adaptive method order selection, depending on which DAE solver is employed.
The spatial adaptivity, through which control of the spatial error estimate is
obtained, involves the adaptive refinement of a spatial mesh which partitions
the spatial domain.

The problem class we consider in this report is a PDE system of size NPDE
of the form,

w(w,t) = f(t, 2,0z, ), u, (7, 1), Uy, (2,1), a<z<b t>ty, (1)
with boundary conditions,
by (tula,t),u,(a, 1)) =0, b (t,ulbt),u,(bt) =0, t=to, (2)
and initial conditions,
u(z, to) = ug(x), a<z<hbh. (3)

The earliest member of the error control B-spline Gaussian collocation soft-
ware family we consider in this report is BACOL [17, 19], which was developed
about 15 years ago. BACOL uses the DAE solver DASSL [4], which is based
on a family of multi-step methods known as Backward Differentiation Formulas
(BDFs) [4]. DASSL uses both adaptive time stepping and BDF order selection
to control an estimate of the temporal error. BACOL has been shown, in a
comparison with comparable software for 1D PDEs, to provide superior per-
formance, especially for problems with solutions exhibiting sharp moving layers
and for sharp tolerances [18]. The second member of this family, developed
about 10 years ago, is BACOLR; this package, a modification of BACOL, re-
places DASSL with the DAE solver RADAUS5 [10], which is based on a 5th order
implicit Runge-Kutta method of Radau ITA type [10]. In [16], numerical com-
parisons of BACOL and BACOLR show that the two codes perform similarly
on standard test problems and that BACOLR has much superior performance



on problems for which the stability of the higher order BDFs is an issue. Such
problems are characterized as those which lead to DAE systems which have
Jacobians with eigenvalues near the imaginary axis, such as, Schrodinger type
problems.

The B-spline Gaussian collocation algorithm assumes that the numerical
solution is expressed in terms of a C''-continuous B-spline basis of degree p on
a mesh that partitions [a, b]. In both BACOL and BACOLR, the spatial error
estimate is obtained by computing a second numerical solution which is based
on B-splines of degree p+ 1. The computation of the second numerical solution
essentially doubles the overall execution time.

This issue has recently been addressed in the modified version of BACOL
known as BACOLI [14], released about two years ago. In BACOLI, the compu-
tation of the degree p+1 numerical solution is replaced with the efficient compu-
tation of a special type of interpolant to the degree p numerical solution.BACOLI
provides two new interpolation-based spatial error estimation schemes, each of
which employs a different spatial error control mode. We review details of the
BACOL, BACOLR, and BACOLI packages in the next section of this report.

In this report, we introduce the newest member of this software family, BA-
COLRI, which is a modification of BACOLR to remove the computation of the
degree p+ 1 numerical solution and instead employ the new interpolation-based
spatial error estimation schemes that were introduced in BACOLI. BACOLRI
therefore has both the improved performance for Schrodinger type problems
that was introduced in BACOLR and the improved spatial error estimation
schemes that were introduced in BACOLI.

The following diagram shows the relationship among the four packages.

BACOL = Improved Temporal Stability = BACOLR

I I
Improved Improved
Spatial Spatial
Error Error
FEstimate FEstimate
4 I

BACOLI = Improved Temporal Stability = BACOLRI

This report is organized as follows. In Section 2, we provide a review of the
details of the algorithms implemented in the BACOL, BACOLR, and BACOLI.
In Section 3, we review the software development efforts associated with these
packages and then describe the modification process that was used to develop
BACOLRI from BACOLR. We also describe the differences between the inter-
faces for BACOLR and BACOLRI. This section also describes the new Fortran
95 wrapper we have developed for BACOLRI that significantly improves the
ease-of-use of the new package. In Section 4, we provide numerical results from
an extensive set of tests performed to compare BACOLR with BACOLRI. We
close, in Section 5, with a summary, our conclusions, and suggestions for future
work.



2 Review of BACOL, BACOLR, and BACOLI

BACOL, BACOLR, and BACOLI assume a spatial mesh, {x;} NN which par-
titions [a,b]. NINT is the number of spatial subintervals defined by this mesh.
Based on this mesh, and for a given degree p, the numerical solution is expressed
as a linear combination of C'-continuous, degree p, piecewise polynomials, rep-
resented in terms of a B-spline basis. The numerical solution, U(x,t), has the
form,

NC
Uz, t) = Z Y, ;()Bp,i(2), (4)

where Y, ;(t) is the (unknown) time dependent (vector) coefficient of the i-th

B-spline basis function, By ;(z), and NC, = NINT(p — 1) + 2. The Gaussian
collocation spatial discretization process involves requiring that U(x,t) satisfy
(1) at p—1 collocation points within each spatial mesh subinterval; these points
are the images of the order p—1 Gauss points, {p; }?;% ,on [0,1]. The collocation
points, §,l=2,...,NC}, — 1, are given by,

& = xi1+hip;, where I=1+(G—-1)(p—1)+,
for i=1,...,NINT, j=1,....,p—1, (5)

where h; = x;—1 — x;. The corresponding collocation conditions are

U, (&,t) = [ (t,6,U(&,1), Uy (6,1), Upy (8158)) ;L =14(=1)(p—1)+4, (6)

where i = 1,...,NINT,j5 = 1,...,p — 1. The numerical solution, U(z,t), is
also required to also satisfy the boundary conditions at the points, £&; = a and
§Nnc, = b; this gives the conditions,

by, (ta Q(CL, t)a u, (CL, t)) =0, QR (ta Q(ba t)a u, (ba t)) =0. (7)

The B-spline coefficients, gpi(t), for a given time ¢, are computed (using

temporal error control) by solving the DAE system consisting of the coupled
system of collocation conditions, (6), and boundary conditions, (7). Once these
are computed at time ¢, the numerical solution, for any = € [a, b], can be obtained
from (4). Because the codes use Gaussian collocation based on Gauss points of
order p — 1, the numerical solution has a spatial error that is O(hP*!), where
h = max¥INT h, [8, 5].

As mentioned in the previous section, BACOL and BACOLI solve (6), (7),
using DASSL while BACOLR uses RADAUS5. In either case, the DAE solvers
require, as a central part of their computations, the solution of linear systems,
that, due to the use of B-spline collocation, have an almost block diagonal (ABD)
structure [7]. In BACOL, BACOLR, and BACOLI, these linear systems are
therefore treated using the software package, COLROW [7], which is designed
to efficiently handle such systems. Within COLROW, the CRDCMP routine
performs factorizations of the ABD coefficient matrices, while the CRSLVE rou-
tine performs backsolves on the factored ABD systems. In BACOLR, because of



the type of implicit Runge-Kutta method employed by RADAUS, it is also nec-
essary to solve ABD systems that involve complex numbers. BACOLR therefore
also employs the complex version of COLROW known as COMPLEXCOLROW
[12]; the routine CCRCMP performs factorizations of the complex ABD coeffi-
cient matrices, while the routine CCRSLV performs backsolves of the factored
complex ABD systems. See [16], pages 15:8-15:9, for further details.

After each accepted time step, the BACOL, BACOLR, and BACOLI pack-
ages compute an estimate of the spatial error. If the spatial error estimate does
not satisfy the tolerance, the numerical solution is rejected and a remeshing (i.e.,
a redistribution and possible refinement of the spatial mesh) is performed. The
spatial mesh adaption algorithm is based on the principle of equidistributing
the spatial error estimate. Both the location and number of mesh points can be
changed during a remeshing in order to adapt to the size (with respect to the
user tolerance) and distribution of the spatial error estimate over the spatial
domain. See [19] for further details.

As mentioned in the previous section, BACOL and BACOLR obtain the
spatial error estimates by computing a second approximate solution, U(z,t),
on the same spatial mesh, using the B-spline collocation spatial discretization
algorithm described earlier, followed by the solution of a time-dependent DAE
system. The only differences from the computation associated with U(z, t) are
the use of B-splines of degree p+ 1 and collocation points that are the images of
the order p Gauss points mapped onto to each spatial subinterval. This implies
that the spatial error of U(z,t) is O(hP*2). A scaled difference of U(z,t) and
U(xz,t) is then computed to provide a spatial error estimate for U(z,t). The
computation of U(z,t), as mentioned earlier, essentially doubles the overall cost
and represents an obvious inefficiency in the computation.

More recent work has involved the goal of trying to avoid the computation
of U(z,t) and obtain a spatial error estimate in a more efficient manner. One
direction of investigation [1] is based on the observation that, at certain points
within the spatial domain, the spatial accuracy of U(z,t) is at least one order
higher, i.e., O(hP*2), than it is at an arbitrary point in the spatial domain; these
solution values are said to be superconvergent. The points at which U(z,t) is
superconvergent include the mesh points as well as certain other points (see
[1]) internal to each subinterval. It is also the case that the U (x,t) values
at the mesh points are superconvergent. Using these superconvergent U(x,t)
and U, (z,t) values, a Hermite-Birkhoff polynomial interpolant associated with
each spatial mesh subinterval can be constructed. A sufficient number of higher
order values are interpolated in order to ensure that the interpolation error is
dominated by the spatial error of the interpolated values. The spatial error
of these interpolants is therefore O(hP*2). Over [a,b], these Hermite-Birkhoff
interpolants give a C''-continuous piecewise SuperConvergent Interpolant, which
we call the SCI. Further details of this scheme are given in [1]. In this approach,
the computation of U(x,t) is replaced by the construction of the SCI and the
latter then replaces U(z,t) in the computation of the spatial error estimate for
Ua,1).

As explained earlier, the spatial error estimation and control scheme imple-



mented in BACOL and BACOLR, computes two numerical solutions, U(z,t),
of order p + 1, and U(z,t), of order p + 2. The higher order solution, U(x,t),
is computed only for use in the computation of a spatial error estimate for the
lower order solution, U(x,t). The numerical solution U(x,t) is returned to the
user and the spatial error estimate for U(z,t) is controlled to be less than the
user tolerance and is used to drive the spatial mesh adaptation process. This is
an example of what is known as standard (ST) spatial error control.

However, it could be argued that it might be preferable to return to the
user the higher order, i.e., more accurate, numerical solution, U(z,t). This
could be done with a simple modification to BACOL or BACOLR since these
packages compute both U(x,t) and U(x,t) for every time step. However, while
U(z,t) would be returned to the user, the spatial error control would of course
continue to be based on the spatial error estimate for U(x,t). That is, while the
packages compute both U(x,t) and U(z,t) and either of these could be returned
to the user, the difference between the two gives a spatial error estimate only
for U(z,t). To reiterate, in the case where the higher order solution U(x, ) is
returned to the user, the spatial error control is still based on the spatial error
estimate for the lower order solution, U(z,t). This alternative type of error
control has been used for many decades in the context of Runge-Kutta formula
pairs for the numerical solution of initial value ordinary differential equations
(IVODEsS) - see, e.g., [9] - and is known as local extrapolation (LE) error control.

The point raised in the previous paragraph suggests an alternative approach
to addressing the inefficient computation of the two numerical solutions that
is done in BACOL and BACOLR. Rather than removing the computation of
U(z,t) and replacing it with the construction of the SCI, another possibility is
to remove the computation of U(x,t) and replace it with an interpolant. The
idea is to construct an interpolant whose error would be the same as that of
U(x,t). Then the difference between U(z,t) and this interpolant would provide
an estimate that would be the same as is currently computed in BACOL or BA-
COLR. In this case, U(z,t) would be returned to the user and the spatial error
estimate and control would be the same as described in the previous paragraph,
namely, LE error control.

The interpolant required for this alternative approach is again a Hermite-
Birkhoff polynomial interpolant on each subinterval. However it is of a different
type than that upon which the SCI is based. It interpolants U (z,t) and U (w, t)
at the mesh points but the remaining interpolation points (which are internal
to the subinterval) are chosen so that the interpolation error of this Hermite-
Birkhoff interpolant is asymptotically equivalent to the spatial error for U(z,t).
The leading order term in the spatial error for U(x,t) has a known form - see,
e.g., [3] - and it is possible to construct an interpolant whose interpolation error
has this same form. In this case the interpolation error dominates the spatial
error associated with the U(x,t) and U, (w,t) values upon which the interpolant
is based. Over [a, b], these Hermite-Birkhoff interpolants give a C''-continuous
interpolant which is has an error that is O(h?*1), one order lower than that of
U(x,t). This interpolant is referred to as the Lower Order Interpolant (LOI).
See [2] for further details. A scaled difference of U(z,t) and the LOI then gives



the spatial error estimate. Since U(x,t) is returned to the user but the spatial
error control is based on a spatial error estimate that is for a numerical solution
that is of one lower spatial order, this is an example of LE spatial error control.

Although in the above we have described the SCI as being associated with
the case where U(z,t) is the returned solution and the LOI being associated
with the case where U(z,t) is the returned solution, in fact the situation is
somewhat simpler. When BACOLI is called with a given input value for p, it
computes and returns a numerical solution based on B-splines of degree p. If
the ST spatial error control mode is chosen, then BACOLI constructs the SCI
based on the degree p numerical solution and uses it to generate the spatial
error estimate. If the LE spatial error control mode is chosen, then BACOLI
constructs the LOI based on the degree p numerical solution and uses it to
generate the spatial error estimate. Thus the availability of the two types of
interpolants provides an option for two modes of spatial error control, ST mode
or LE mode, similar to what is available when a Runge-Kutta formula pair is
used to provide error control for an IVODE.

The report [15] provides extensive numerical results comparing BACOL, in
ST and LE spatial error control modes, with BACOLI, in ST and LE spatial
error control modes. The packages are tested on a standard set of test prob-
lems over a range of tolerances and p values. The results show that, generally,
BACOLI is approximately twice as fast as BACOL.

3 Development of BACOLRI and BACOLRI95

In this section we first provide an overview of the previous software development
projects that have led to the BACOL, BACOLR, and BACOLI packages. We
then discuss the details of the software development process associated with the
modification of the Fortran 77 package BACOLR to obtain the corresponding
Fortran 77 package, BACOLRI. This is followed by a description of the devel-
opment of the Fortran 95 wrapper, BACOLRI95, which was obtained through
a modification of the Fortran 95 wrapper for BACOLI, known as BACOLI95
[14].

3.1 Background Software Development

As mentioned earlier, the original member of the software family considered in
this report is the Fortran 77 code, BACOL. The paper [17] describes the develop-
ment of BACOL. This includes a detailed description of where the ABD systems
arise during the solution of a DAE system by DASSL as well as a detailed expla-
nation of the specific structure of these ABD matrices. The paper also describes
the modifications that were made to DASSL. These include introducing a ca-
pability for solving ABD systems and the scaling of the algebraic equations to
improve the conditioning of the ABD matrices. As well, the paper discusses the
details of the implementations of the BACOL algorithms associated with the
efficient calling of DASSL after a remeshing (known as a warm start) and the



construction of consistent initial conditions for the first call to DASSL. (A warm
start requires that BACOL save solution information for up to five previous time
steps and interpolate this information from the current spatial mesh to the new
spatial mesh after a remeshing. This is necessary because DASSL uses multi-
step methods.) The paper [17] also describes in detail the subroutines which
make up the core of the BACOL package as well as identifying subroutines from
the B-spline and DASSL packages that are used within BACOL. Figure 4 of [17]
provides a structure diagram to explain how the subroutines interact with each
other. There is also a brief description of the subroutines that must be supplied
by the user. As well, there is an on-line appendix to the paper that explains all
the arguments in the calling sequence for BACOL and provides an example of
how to use the package to solve a specific PDE. The original BACOL software
is available at http://cs.smu.ca/~muir/BACOLI-3_Webpage.htm.

As mentioned earlier, in order to address issues associated with the stability
of the BDFs employed by DASSL for certain classes of PDEs, the Fortran 77
code, BACOLR was developed through an extensive modification of BACOL to
replace DASSL with RADAUS5, described in [16]. The paper [16] also includes a
detailed discussion of the modifications that were be made to RADAUS; these
include the introduction of scalings to improve the conditioning of the linear sys-
tems that arise and code for the treatment of the real and complex ABD systems
that arise. Figure 1 of [16] gives a structure diagram for BACOLR. The paper
[16] also includes a detailed description of the differences between the routines
employed by BACOL and BACOLR. A significant difference between BACOL
and BACOLR is that, due to the one-step nature of the implicit Runge-Kutta
method employed by RADAUS, warm starts are not required and it is therefore
not necessary to save and interpolate solution information from previous time
steps. Also included in [16] is a detailed description of the differences in the
calling sequences of BACOL and BACOLR; the authors state that an effort was
made to have to BACOLR employ, as much as possible, the same user supplied
subroutines and the same calling arguments as BACOL. The BACOLR software
is published within the Association for Computing Machinery (ACM) Collected
Algorithms, as Algorithm 874, and is available at calgo.acm.org. The posted
material includes all the software that comprises BACOLR as well as sample
routines that show how to use BACOLR.

As explained earlier, in order to address the efficiency issue associated with
the way in which the spatial error estimate is computed in BACOL, a modifi-
cation of BACOL, the Fortran 77 code, BACOLI, was developed. A detailed
description of the changes that were made to BACOL in order to obtain BA-
COLI are described in [13]; a summary of these changes is also given in [14].
The primary changes involved introducing the SCINT and LOWINT routines
that implement the SCI and LOI error estimation schemes and removing the
code associated with the computation of the degree p + 1 numerical solution.
The specific software development phases associated with developing BACOLI
from BACOL are described. Here we provide a structure diagram for BACOLI
- see Figure 1. This diagram should be compared with that of BACOL (Figure
4 of [17]) in order to see the differences between the two codes. In [13], [14], the
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Figure 1: Structure Diagram for BACOLIL.

differences between the argument lists for BACOL and BACOLI are also de-
scribed. The authors indicate that the arguments list are largely the same except
for several small differences. A significant addition to the software development
effort for BACOLI is the introduction of a Fortran 95 wrapper for the Fortran 77
package. The paper [14] describes this wrapper, known as BACOLI95, and the
simplified argument list that it provides. Both the Fortran 77 BACOLI package
and the Fortran 95 BACOLI95 wrapper are available as Algorithm 962 of the
ACM Collected Algorithms (calgo.acm.org). The posted material includes the
BACOLI software as well as examples of the software that needs to be developed
by the user in order to use BACOLI to solve a PDE. The BACOLI software is
also available at http://cs.smu.ca/~muir/BACOLI-3_Webpage.htm.

3.2 Fortran 77: BACOLR to BACOLRI

In this subsection, we detail the development process which used to construct
the new Fortran 77 code, BACOLRI, from the Fortran 77 code, BACOLR. In
order to obtain BACOLRI from BACOLR, a number of significant modifica-
tions were made to several fundamental components of BACOLR. Much of this
work was guided by the previous work that involved modifying the Fortran 77
code, BACOL, to obtain the Fortran 77 code, BACOLI, as described briefly in
the previous subsection. Several techniques and relevant subroutines developed
during this process were reused in the development of BACOLRI.
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Figure 2: Structure diagram for BACOLRI. Boxes with dashed borders corre-
spond to subroutines which have been modified in the transition from BACOLR
to BACOLRI and those with dotted lines are new subroutines in BACOLRI.

In Figure 2, we provide a structure diagram for the new BACOLRI package
that corresponds to Figure 1 of [16], the structure diagram for BACOLR. In Fig-
ure 2, changes to the module structure are highlighted. These include BACOLR
subroutines which have been modified in the transition from BACOLR to BA-
COLRI as well as new subroutines that have been added to obtain BACOLRI.

The primary challenges in the modification of BACOLR to obtain BACOLRI
were the introduction of the interpolation-based error estimation schemes (based
on the SCT and LOI, as described in the previous section) and the removal of the
code that implements the computation of the degree p + 1 numerical solution.

The introduction of the interpolation-based error estimation schemes in-
volved the following steps:

e New subroutines, SCINT and LOWINT, were added; these routines are
used to evaluate the interpolants required by the ST and LE error control
modes, respectively. These subroutines were carefully optimized for effi-
ciency based on a rigorous performance analysis to ensure that the overall
execution costs associated with these routines is substantially lower than
the computation of the degree p+1 numerical solution. These optimization
steps are described in detail in [13]. The SCINT and LOWINT routines
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are called within the BACOLR subroutine ERREST to obtain the spatial
error estimate at each time step. This is done instead of a second call to
ERRVAL, which was used to evaluate the degree p+ 1 numerical solution.

e In order to accommodate these modifications, several changes had to be
made to the ERREST subroutine. The argument list was modified to
remove arguments related to the evaluation of the degree p + 1 numerical
solution. The arguments z, h, est and errcoef were added. These ar-
guments, respectively, provide the ERREST subroutine with the current
spatial mesh, the current mesh subinterval size sequence, the user’s choice
of spatial error control mode, and the pre-computed Hermite-Birkhoff co-
efficients to be used to evaluate the interpolant (either the SCI or the
LOI) associated with the selected spatial error control mode. The amount
of working memory required by the ERREST routine was substantially
increased to allow calls to the SCINT and LOWINT subroutines. In the
case of the ST spatial error control mode, code has been added which
scales the spatial error estimate by the mesh subinterval ratios in order
to dampen over-estimation of the spatial error due to the dependence of
mesh subinterval ratios in the error term of the SCI. See [13], Page 15, for
further discussion on this point.

e In order for the user to be able to select which of the two new error control
modes to use, an additional (fifth) entry was added to the user level control
array MFLAG which enables this selection.

Once the interpolation-based error estimates had been implemented, this
allowed for the removal of the computation of the degree p+1 numerical solution.
This process involved the following steps:

e In BACOLR, following a remeshing, both the degree p and degree p+1 nu-
merical solutions were reinitialized on the new mesh using the previously
computed degree p + 1 numerical solution through two calls to REINIT.
For BACOLRI, we now require that only one call be made to REINIT
which saves a costly call to the CRDCMP and CRSLVE routines. Addi-
tionally the routines INTY, which initializes the B-spline coefficients, and
COLPNT, which computes the collocation points on the current mesh,
are called only once.

e In BACOLR, each of the two DAE systems associated with the degree
p and degree p + 1 numerical solutions are passed to RADAUS5 to be
solved simultaneously. Without the degree p+1 numerical solution to con-
sider, changes could be made to the ‘NEQ’, “WORK’ , ‘TWORK’, ‘RPAR’,
‘IPAR’ and ‘CWORK’ arguments of RADAUS5, which leads to a substan-
tial reduction in the total memory requirements of BACOLRI. The sub-
routines RADJAC and RADFCN were modified to avoid the computation
of the second DAE system by removing the second call to the CALJAC
and CALFCN subroutines, respectively. Of the efficiency gains obtained

11



in the modification of BACOLR to obtain BACOLRI, the most substan-
tial are those due to the decreased number of real and complex ABD sys-
tems that must be solved, which involves calls to CRDCMP/CRSLVE and
CCRCMP/CCRSLV, respectively, from within RADAU5. In ESTRAD,
the subroutine used for error estimation in RADAUS5, a second call to
CRSLVE was removed. In SLVRAD, duplicate calls to CRSLVE and
CCRSLV were removed. In DECOMR, a duplicate call to CRDCMP was
removed and in DECOMC, a duplicate call to CCRCMP was removed.
In RADCOR, the code associated with scaling the boundary conditions
of the combined system for both collocation solutions was modified such
that the scaling is now appropriate for the single system case.

With these changes, the transition from BACOLR to BACOLRI was complete.

3.3 Fortran 95: BACOLI95 to BACOLRI9S

BACOLRI95 is a user-friendly Fortran 95 module wrapping the Fortran 77
code BACOLRI. BACOLRI95 contains structured data types and subroutines
which provide a vastly simplified user interface for BACOLRI compared to that
of BACOLR. The benefits of this wrapper over the standard FORTRAN 77
interface include automated management of several large work arrays and the
use of optional arguments (with default values) which dramatically decreases
the number of arguments for a standard call to the solver. As mentioned above,
BACOLRI95 is a modification of BACOLI95, the Fortran 95 wrapper developed
for BACOLI. As such, BACOLRI95 is structured much the same as BACOLI95,
with only minor modifications.

The primary modifications made to obtain BACOLRI95 from BACOLI95

are:

e Calls to BACOLI were replaced with calls to BACOLRI. This involved
several other minor modifications such as changes to work array size cal-
culations and to the way control flags are handled.

e Additional considerations associated with the complex work array CPAR
were introduced. CPAR was added to the main structured type SOL. Ad-
ditional code was added to calculate the size of CPAR based on parameter
choices and to dynamically allocate this array.

e The parameters MAXORD, NSTEPS and TSTOP were removed since
these are unused in BACOLRI.

4 Numerical Results

In this section, we present results from numerical experiments that show the
performance of BACOLR and BACOLRI, in each of the ST and LE error control
modes, applied to a collection of test problems. We will employ the following
notation to identify each code/spatial error control combination:
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4.1

(BACOLR/ST): BACOLR in ST Spatial Error Control Mode,
(BACOLR/LE): BACOLR in LE Spatial Error Control Mode,

(BACOLRI/ST): BACOLRI using the SCI Spatial Error Estimation
Scheme, in ST Spatial Error Control Mode,

(BACOLRI/LE): BACOLRI using the LOI Spatial Error Estimation
Scheme, in LE Spatial Error Control Mode.

Based on a standard set of test problems (described below), we will consider
machine independent measures of performance and machine dependent error
vs. execution time comparisons. We will also examine the performance of the
spatial error estimation schemes and corresponding spatial error control modes.
As well, we will investigate the effect that the choice of p, the degree of the
B-spline basis, has on the efficiency of the solvers.

Test Problems

In this subsection we identify the ten test problems to be considered.

OLBE: One Layer Burgers Equation [18]:
Up = €Uy — Ully, (8)

with boundary conditions at z = 0 and z = 1 (¢ > 0) and an initial
condition at tp = 0 (0 < z < 1) chosen so that the exact solution is

11 r—L-1
t)= = — —tanh [ — 24 9
wet) = g = g tonh (T2 )
where € is a problem-dependent parameter. We will consider two instances
of this problem, one with e = 10™% and one with ¢ = 10™%. We solve this
problem from tg = 0 to tepqg = 1.

TLBE: Two Layer Burgers Equation [18]: This equation employs the
same PDE (8) as in the previous problem but the boundary conditions at
x=0and z =1 (¢t > 0) and the initial condition at to =0 (0 < z < 1)
are chosen so that the exact solution is,

0.le4 +0.5e B +¢ ¢
efA +efB +€—C

u(zx,t) =

3

where,

0.05 0.25 0.5
A= =2 (a-0.5+4950), B = =—(2-0.5+0.751), C = -"(a—0.375),

where € is a problem-dependent parameter. We will consider two instances

of this problem involving ¢ = 1073 and ¢ = 10™* respectively. We solve
this problem from tg = 0 to tepg = 1.
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We will also consider generalizations of this problem, which we will refer to
as TLBEx6, which is a system of PDEs consisting of 6 copies of TLBE,
and TLBEx12, which is a system of PDEs consisting of 12 copies of
TLBE.

CSRM: Catalytic Surface Reaction Model [20]:

ug)y = Asugy — Doy — Rusugy® + (u4)zz/Pes, (10)

where v = 1 —u3 — uy, and n,r, Pey, Pes, D1, Do, R, A1, and Ay are prob-
lem dependent parameters. The initial conditions at ¢t =0 (0 < z < 1)
are,

up(z,0)=2—7r, w(z,0)=r, wus(z,0)=u4s(z,0)=0,
and the boundary conditions at x = 0 and z =1 (¢ > 0) are,
(u1)2(0,8) = —Per(2 —r —u1(0,1)), (u2)x(0,1) = —Pes(r —uz(0, 1)),

(u3)2(0,8) = (ua)(0,2) = 0,
(u1)a(L,8) = (u2)2(1,1) = (u3)e(1,) = (ua)x(1,£) = 0.

(To our knowledge, this problem does not have a closed form solution.)
Standard choices for the problem dependent parameters are Pe; = Pey =
10000, Dy = 1.5, D5 = 1.2, R = 1000, = 0.96,n = 1, and A; = Ay = 30.
We solve this problem from ty = 0 to tepg = 18.

SCHR: Nonlinear Schrédinger System [11]:

(1
(e = i (s + s + (ol + pluf) ).
(1 2 2
(uz)e = i 5(u2)ea —n(uz)e + (plua]” +fuzl")uz |,
where i? = —1, i and p are positive constants. The boundary conditions

are,
(ul)m(aa t) = (UQ)I(aa t) = Oa (ul)m(ba t) = (U’Q)m(ba t) = Oa t> Oa
where a — —oo and b — +o00. The initial conditions are,

ui(z,0) = q1(z), wua(z,0)=ga(z), a<ax <D,
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where g1 () and g2 () are chosen so that the modulus for each of the exact
solutions is a soliton; in this case, the exact solutions are given by

w(e,t) = /12—;‘?/) sech (\/ﬂ(m B ¢t)) ei((¢*7])x7<¢2;"2 711)15),
ug(x,t) = 4 12_5/) sech (\/ﬂ(:c - (bt)) ei((¢+n)x7(¢2;n2 7“)t),

where k is a constant and ¢ represents the speed of the soliton.

In order to obtain a version of this problem that can be treated by the
software we consider in this report, we set a = —30 and b = 90, where these
values are chosen so that the solution values outside [a, b] are negligible. In
our numerical experiments we choose ¢ =1, n=1/2, p=2/3 and kK = 1.
Since we have perturbed the boundary points of the original problem, the
exact solutions given above will not be the exact solutions to the problem
on the truncated internal [—30, 90]. We therefore compute a high accuracy
numerical reference solution using BACOLR with a very sharp tolerance
for use in some of the numerical experiments presented in this report where
an error must be computed for a numerical solution.

4.2 Machine Independent Performance Measures

In this subsection, we compare BACOLR/ST, BACOLR/LE, BACOLRI/ST,
and BACOLRI/LE with respect to several machine independent measures of
the algorithms employed in the codes that can contribute significantly to over-
all performance. These machine independent measures provide an important
complement to standard machine dependent timing results; additional insights
regarding code performance can be obtained by considering such measures.

The machine independent measures we consider in this report are: the num-
ber of subintervals in the spatial mesh at the final time (Final NINT), the total
number of accepted time steps (Accepted Time Steps), the total number of
spatial remeshings (Remeshings), the total number of factorizations (Calls
to CRDCMP) and backsolves (Calls to CRSLVE) of real ABD systems,
and the total number of factorizations (Calls to CCRCMP) and backsolves
(Calls to CCRSLV) of complex ABD systems.

We provide results for the ten test problems identified earlier: (i) OLBE
with € = 1073, (ii) OLBE with e = 1074, (iii) TLBE with ¢ = 1072, (iv) TLBE
with € = 1074, (v) TLBEx6 with ¢ = 1072, (vi) TLBEx6 with ¢ = 1074, (vii)
TLBEx12 with ¢ = 1073, (viii)) TLBEx12 with ¢ = 1074, (ix) CSRM, and
(x) SCHR.

Tables 2-11 give machine independent performance measures for the four
codes, for p = 4,5,7,9, and tol = 1074, 107%, 1078, Each table entry consists
of two rows; the first row gives Final NINT, Accepted Time Steps, and
Remeshings; the second row gives [Calls to CRDCMP, Calls to CRSLVE]
and {Calls to CCRCMP, Calls to CCRSLV}. (We note that BACOLRI/ST
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fails on TLBE with ¢ = 1073 when p = 4 and tol = 1075; in this case the
corresponding table entries are blank.)

From these tables can make several observations. We see that for smaller p
values and sharper tolerances, the LE codes have larger Final NINT than do
the ST codes; otherwise the Final NINT values are similar. For a given tol-
erance value, all codes use about the same number of Accepted Time Steps,
independent of p. For all codes, the number of Remeshings is much smaller
than the total number of Accepted Time Steps.

In order to assist with the presentation of the results from Tables 2-11, we
next present figures that provide visualizations of some of the tabular data:

e In Figures 3-32, we plot Final NINT vs. tol for a range of p values
for three of the codes: BACOLR/ST for p = 3, ...,11, BACOLRI/ST for
p = 4,...,11, and BACOLRI/LE for p = 4,...,11. We consider tol =
1072,1073,..., 107'%. There is one plot for each code and problem com-
bination.

From these plots we see that for smaller p values the Final NINT val-
ues grow approximately linearly (on a log-log scale) as the tol values de-
crease, while for larger p values the Final NINT values remain approx-
imately at the lowest value for all tol values. The only exception is for
the SCHR problem where, even for larger p values, we see approximately
linear growth (on a log-log scale) as the tol values decrease.

o In Figures 33-62, we plot Final NINT vs. p for tol = 1072,1073,...,10710
for the three codes: BACOLR/ST for p = 3,...,11, BACOLRI/ST for
p =4,...,11, and BACOLRI/LE for p = 4,...,11. There is one plot for
each code and problem combination.

From these plots we see that Final NINT has roughly the same small
value for all p values when the tolerance is coarse. This is also true for
sharper tolerances when the p value is large. However, for smaller p val-
ues, the value of Final NINT grows quite dramatically as the tolerance
decreases.

e In Figures 63-92, we plot Accepted Time Steps vs. tol for a range of p

values for each code and problem combination. The codes and correspond-
ing p value ranges are: BACOLR/ST for p = 3,...,11, BACOLRI/ST
for p = 4,...,11, and and BACOLRI/LE for p = 4,...,11. We consider
tol = 10721073, ...,10719.
From these plots we see that over all p values, the Accepted Time Steps
values grow approximately linearly (on a log-log scale) as the tol values
decrease. Furthermore, the results are generally independent of p. The
only exception is that for some problems and for coarse tolerances, the
larger p values correspond to a larger number of Accepted Time Steps
than do the smaller p values.

e In Figures 93-119, we plot Remeshings vs. tol for a range of p val-
ues, for each code and problem combination, except SCHR. For SCHR,
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there are fewer times steps than for the other problems and thus very few
remeshings, making it not worthwhile to plot Remeshings vs. tol for
this case. The codes and corresponding p value ranges are: BACOLR/ST
for p = 3,...,11, BACOLRI/ST for p = 4,...,11, and BACOLRI/LE for
p=4,...,11. We consider tol = 1072,1073,...,1071°,

For a given p value, the Remeshings values grow roughly linearly (on
a log-log scale) as the tol values decrease. The Remeshings values are
generally larger for the smaller p values.

In Figures 120-159, we plot the number of real ABD matrix factoriza-
tions, i.e., Calls to CRDCMP, and the number of backsolves of real
ABD systems, i.e., Calls to CRSLVE, vs. tol for each of the codes
BACOLR/ST, BACOLRI/ST, and BACOLRI/LE. We consider tol =
1072,1073,...,1071% and p values, 4, 5, 7, and 9. There is one plot
for each p value and problem combination.

From these plots we see that for all problems, the Calls to CRSLVE grow
approximately linearly (on a log-log scale) as the tolerances get sharper.
However, except for the CSRM and SCHR. problems, the number of
Calls to CRDCMP is largely independent of tol. For the CSRM and
SCHR problems, the Calls to CRDCMP grow approximately linearly
(on a log-log scale) as the tolerances get sharper. The Calls to CRD-
CMP value is about one order of magnitude smaller than the Calls to
CRSLVE value. The main observation is that the Calls to CRDCMP
and Calls to CRSLVE values for BACOLR/ST are typically double
those of BACOLRI/ST and BACOLRI/LE. The only exception is for
some problems when p is small; in such cases, the number of Calls to
CRDCMP performed by BACOLR and BACOLRI is about the same.
However, even in this case, the number of Calls to CRSLVE performed
by BACOLR is still approximately double that of BACOLRI.

In Figures 160-199, we plot the number of complex ABD matrix fac-
torizations, i.e., Calls to CCRCMP, and the number of backsolves
of complex ABD systems, i.e., Calls to CCRSLV, vs. tol for each of
the codes BACOLR/ST, BACOLRI/ST, and BACOLRI/LE. We consider
tol =1072,1073,...,107 1% and p values, 4, 5, 7, and 9. There is one plot
for each p value and problem combination.

From these plots we again see that the Calls to CCRSLV grow approx-
imately linearly (on a log-log scale) as the tolerances get sharper. And
again, except for the CSRM and SCHR problems, the number of Calls
to CCRCMP is largely independent of tol. For the CSRM and SCHR
problems, the Calls to CCRCMP grow approximately linearly (on a
log-log scale) as the tolerances get sharper. We again see that the Calls
to CCRCMP value is about one order of magnitude smaller than the
Calls to CCRSLV value. Once again, the main observation is that the
Calls to CCRCMP and Calls to CCRSLYV values for BACOLR/ST
are typically double those of BACOLRI/ST and BACOLRI/LE. We again
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see that the only exception is for some problems when p is small; in such
cases, the number of Calls to CCRCMP performed by BACOLR and
BACOLRI is about the same.

4.3 Machine Dependent Timing Results

We next provide machine dependent timing results for each code applied to the
ten test problems identified earlier in this report. For all problems, these tests
were conducted on a system with two Intel(R) Xeon(R) CPU E5-4617 processors
and 172 gigabytes of RAM. The operating system was Ubuntu 16.04.4 LTS and
the Fortran compiler was GNU Fortran (Ubuntu 5.4.0-6ubuntul 16.04.10) 5.4.0.
The tests were run on a virtual machine installed on this system; the virtual ma-
chine was allowed access to 1 CPU and 65 gigabytes of RAM. Each code was run
on each problem for p =4,...,11 and for tol = 1074, 107%, 1078, The results
are provided in Tables 12-21. Instances where a failure occurred correspond to
blank table entries; these occurred for BACOLRI/ST on TLBEx6, TLBEx6
and TLBEx12 with ¢ = 1073, p = 4, tol = 107% BACOLRI/LE on OL-
BEx6, OLBEx6 and OLBEx12 with ¢ = 10~%, SCHR, p = 4, tol = 10710,
BACOLR/LE on SCHR, p = 4, tol = 1071Y, and BACOLR/ST on SCHR,
p =11, tol = 1071°.

From these tables we see that, for midrange to high p values BACOLRI/ST
and BACOLRI/LE are faster - in many cases twice as fast - as the BACOLR/ST
and BACOLR/LE codes. For the smallest p value (p = 4), the BACOLRI/LE
code is sometimes as expensive as BACOLR/ST or BACOLR/LE. For a given
problem, BACOLRI/ST always has the fastest time. For sharper tolerances, the
use of BACOLRI/ST with a larger p value gives the fastest time. (We note that
these are tolerance vs. CPU time comparisons; a more significant comparison
is accuracy vs. CPU time; we discuss these types of comparisons later in this
report.) For a given problem and tolerance, the fastest run by BACOLRI/ST
depends on p; see Table 1.

As mentioned earlier, for sharper tolerances, larger p values lead to the
fastest execution times. However, we also note that for larger systems of PDEs,
slightly smaller p values correspond to faster execution times.

4.4 Error vs. Execution Time across Codes

Here we present error vs. execution time results for BACOLR /ST, BACOLR/LE,
BACOLRI/ST and BACOLRI/LE, for OLBE and TLBE, with ¢ = 102 and
10~*, and SCHR.. We consider p values from 4 to 11. The results were obtained
by running the codes over a range of 81 tolerance values, uniformly distributed
on a log scale, from 1072 to 10710,

In Figures 200-239, we plot error achieved vs. CPU time required. Each
figure gives results, for all four codes, for a given problem and p value. The
plots also show lines fitted to the data for each code to help clarify comparisons
among the codes. We see generally that BACOLRI is substantially faster than
BACOLR in either spatial error control mode.
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tol =10"% [ tol =107° | tol = 1078 | tol = 1010
OLBE, ¢ = 1073 4 4 6 8
OLBE, ¢ = 10~% 4 4 6 7
TLBE, ¢ = 103 4.5 5 6 8,9
TLBE, ¢ = 1074 4 4 6 7
TLBEx6, e = 103 5 5 6 7
TLBEx6, ¢ = 10~% 4 4 4 6
TLBEx12, e =103 5 5 5 7
TLBEx12, e = 104 4 4 4 6
CSRM 4 4 5 6
SCHR 4 45,6 6 7

Table 1: Value of p that corresponds to the fastest BACOLRI/ST run, for a
given problem and tolerance. BACOLRI/ST always gives the fastest run for a
given problem and tolerance. For sharper tolerances, larger p values lead to the
fastest times.

The comparisons among these codes can be seen more clearly if we plot errors
vs. execution time data for BACOLR/LE, BACOLRI/ST, and BACOLRI/LE
relative to that of BACOLR/ST. The plots were developed as follows. We
describe this process for the BACOLR/LE data.

e We first perform a linear fit to the log of the error vs. log of time data as-
sociated with BACOLR/ST in order to obtain a continuous representation
of the baseline BACOLR/ST data.

e Then, for each (error,time) ordered pair from the BACOLR/LE data set,
we use the above mentioned linear fit to the BACOLR/ST data to obtain
a corresponding time estimate for BACOLR/ST (i.e., an estimate of how
much time BACOLR/ST would take to compute a solution with the same
error as BACOLR/LE).

e We then compute the ratio of the actual BACOLR/LE time to this esti-
mated BACOLR/ST time. This yields a set of ordered pairs of the form
(error, time ratio) that we can associate with BACOLR/LE.

e Finally we fit a line to (log of error, time ratio) ordered pairs and plot this
line on a semi-log scale.

This process is repeated for the BACOLRI/ST data and the BACOLRI/LE
data.

In Figures 240-279, we plot error achieved vs. relative CPU time, for BA-
COLR/LE, BACOLRI/ST, and BACOLRI/LE relative to BACOLR/ST, for
a given problem and p value. We see that, generally, BACOLRI/ST and
BACOLRI/LE are substantially less expensive than BACOLR/ST and BA-
COLR/LE. The average costs for BACOLRI/ST and BACOLRI/LE are about
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50% of the costs for BACOLR/ST and BACOLR/LE. (The only exception is
for BACOLRI/LE when p is small and the tolerance is sharp - see below). We
see that for larger errors, i.e., coarser tolerances, the LE error control codes are
generally less expensive than the ST error control codes but as the error gets
smaller, i.e., as the tolerance gets sharper, the LE error control codes generally
become comparable to or sometimes more expensive than the ST error control
codes. The results for small p values differ from the above general behaviour.
For small p values, the LE codes are substantially less expensive than the cor-
responding ST codes for coarse tolerances but substantially more expensive for
sharp tolerances; for small p and sharp tolerances, BACOLRI/LE is substan-
tially more expensive than even BACOLR/ST.

4.5 Error vs. Execution Time across p Values

In this subsection, we consider error vs. execution time results for BACOLR /ST,
BACOLR/LE, BACOLRI/ST, BACOLRI/LE, over a range of p values, 4, ..., 11,
for the OLBE and the TLBE, with ¢ = 1072 and 10~*, and for SCHR.. Be-
cause these graphs give error vs. execution time results over a range of p values,
we can examine the impact that the choice of p has on performance.

Figures 280-299, provide plots, for each problem and code, showing the per-
formance of the codes with respect to error vs. execution time, over a range of
p values.

From an examination of these figures, a general observation is that, for low
accuracy all codes are generally more efficient when p is small, while for higher
accuracy, a larger p value leads to a more efficient computation. For higher
accuracy demands, small p values lead to substantially higher costs than do
higher p values. Intermediate p values provide good performance over the entire
range of errors.

5 Summary, Conclusions, and Future Work

B-spline collocation software for the numerical solution of 1D PDEs that fea-
tures both spatial and temporal error control has been available for about 15
years. The earliest codes from this family are BACOL and BACOLR, which
differ in how the time integration is performed; BACOL uses the DAE solver
DASSL, while BACOLR uses RADAUS5. The recently released code, BACOLI,
a modification of BACOL, improves upon the efficiency of BACOL by employing
interpolation-based schemes for the computation of spatial error estimates. As
well, BACOLI implements, as options through its two error estimation schemes,
a standard (ST) error control scheme as well as an alternative error control
scheme known as local extrapolation (LE) error control. The newest code, BA-
COLRI, a modification of BACOLR, improves the efficiency of BACOLR, by
introducing the interpolation-based schemes for the computation and control of
spatial error estimates that were previously implemented in BACOLI.
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This report describes the development of BACOLRI and presents a detailed
examination of the performance of BACOLR and BACOLRI. It is shown that
the new error estimation and control schemes generally give comparable per-
formance measures, except for the number of real and complex ABD matrix
factorizations and ABD system backsolves; for these measures BACOLRI/ST
and BACOLRI/LE generally use approximately half as many factorizations and
backsolves as do BACOLR/ST and BACOLR/LE. This leads to substantial sav-
ings in execution time. These results also show that for small p and sharp tol,
the codes that run in LE error control mode generally have greater execution
costs than the ST codes. Conversely, for coarser tolerances, the LE codes are
generally observed to be relatively more efficient that the corresponding ST
control codes.

This report also looks at how the choice of p effects performance. For coarser
tolerances, the codes generally have smaller execution times when p is small.
However, as the accuracy demands increase, larger p values lead to better effi-
ciency.

There are several directions for future work. The results of this report sug-
gest that it may be worthwhile to modify the BACOLRI code in order to have it
choose p based on the tolerance requested. Also a modification of BACOLRI to
automate the choice of error control mode may be worthwhile since it appears
that LE error control is better for coarser tolerances while ST error control is
better for sharper tolerances.
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tol 1072 10 1078
p 4
BACOLR/ST 15, 257, 70 24, 603, 97 50, 1341, 120
[706, 3164] {546, 2342} | [648, 5906] {430, 4278} | [580, 12568] {308, 9360}
BACOLR/LE 17, 261, 85 39, 602, 103 111, 1357, 124
[690, 3324] {496, 2428} | [676, 5916] {454, 4278} | [560, 12640] {284, 9390}
BACOLRI/ST 15, 265, 80 25, 606, 91 53, 1350, 139
[382, 1650] {295, 1207} | [386, 2928] {282, 2127} [320, 6479] {157, 4827}
BACOLRI/LE 20, 261, 113 45, 603, 144 130, 1324, 413
[356, 1783] {237, 1290} | [387, 3215] {237, 2318} [847, 6946] {426, 4788}
P 5
BACOLR/ST 15, 257, 63 17, 597, 117 32, 1338, 108
[716, 3152] {570, 2356} | [766, 6212] {508, 4516} | [504, 12568] {268, 9432}
BACOLR/LE 15, 257, 70 24, 603, 97 50, 1341, 120
[706, 3164] {546, 2342} | [648, 5906] {430, 4278} | [580, 12568] {308, 9360}
BACOLRI/ST 14, 262, 58 19, 598, 113 35, 1350, 141
[360, 1555] {296, 1164} | [435, 3076] {313, 2243} [329, 6397] {161, 4738}
BACOLRI/LE 13, 256, 84 26, 599, 113 50, 1341, 148
[375, 1651] {285, 1221} | [349, 2988] {230, 2157} [334, 6280] {180, 4637}
P 7
BACOLR/ST 11, 275, 48 15, 582, 64 16, 1329, 144
[698, 3222] {586, 2448} | [680, 5706] {532, 4258} | [654, 12714] {342, 9446}
BACOLR/LE 13, 256, 54 15, 591, 87 23, 1329, 132
[668, 3118] {544, 2368} | [738, 5944] {544, 4386} | [624, 12582] {324, 9344}
BACOLRI/ST 11, 303, 41 15, 588, 62 19, 1341, 140
[360, 1650] {314, 1244} | [366, 2857] {297, 2134} [472, 6379] {324, 4750}
BACOLRI/LE 13, 253, 67 14, 593, 95 21, 1327, 143
[350, 1579] {278, 1187} | [372, 2979] {271, 2190} [312, 6301] {163, 4682}
P 9
BACOLR/ST 10, 328, 40 15, 574, 56 12, 1312, 90
[746, 3616] {650, 2740} | [660, 5574] {532, 4180} | [1004, 12360] {804, 9348}
BACOLR/LE 11, 276, 46 15, 576, 59 15, 1329, 110
[696, 3212] {588, 2448} | [670, 5632] {532, 4216} | [642, 12666] {402, 9540}
BACOLRI/ST 10, 386, 36 11, 615, 71 15, 1300, 94
[451, 1997] {410, 1510} | [501, 3175] {423, 2361} [651, 6182] {548, 4676}
BACOLRI/LE 11, 259, 55 15, 578, 67 15, 1333, 129

346, 1586] {286, 1211}

323, 2835] {250, 2117}

370, 6351] {235, 4754}

Table 2: Machine independent results for the One Layer Burgers equation with

e = 1073,

We consider p = 4,5,7,9 and tol = 1074,1076,1078.

Table en-

tries are of the form Final Nint, Accepted Time Steps, Remeshings [Calls to
CRDCMP, CRSLVE] {Calls to CCRCMP, CCRSLVE}.
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tol 1072 106 1078
p 4
BACOLR/ST 14, 2654, 767 24, 5851, 1017 49, 13254, 1047
[7614, 33102] {6056, 24394} | [6524, 59372] {4462, 43562} [4298, 124706] {2164, 93952}
BACOLR/LE 18, 2571, 857 36, 5909, 1039 89, 13469, 1134
[7482, 32778] {5744, 24168} | [6288, 59098] {4166, 43060} [4610, 125798] {2314, 94284}
BACOLRI/ST 17, 2613, 708 24, 5955, 864 48, 13823, 1956
[3546, 16146] {2825, 11764} | [3964, 29440] {3058, 21609} [4555, 69752] {2589, 52007}
BACOLRI/LE 20, 2505, 1129 42, 5885, 1335 115, 13128, 3792
[4077, 17837] {2917, 13043} | [3579, 31429] {2237, 22867} [7605, 67684] {3804, 46963}
p 5
BACOLR/ST 14, 2718, 562 17, 5940, 1145 26, 13193, 1187
[7000, 31726] {5852, 23772} | [8760, 62046] {6446, 45550} [4868, 124106] {2446, 92902}
BACOLR/LE 14, 2654, 767 24, 5851, 1017 49, 13254, 1047
[7614, 33102] {6056, 24394} | [6524, 59372] {4462, 43562} [4298, 124706] {2164, 93952}
BACOLRI/ST 15, 2807, 660 19, 5859, 898 30, 13216, 1106
[3584, 16894] {2912, 12346} | [4324, 30089] {3410, 22290} [6266, 63226] {4120, 47758}
BACOLRI/LE 15, 2578, 993 27, 5805, 1093 46, 13264, 1278
[4263, 17835] {3263, 13145} | [3413, 30025] {2312, 22026} [2590, 62487] {1301, 46656}
p 7
BACOLR/ST 14, 2728, 471 14, 5840, 720 17, 13271, 1424
[6792, 31748] {5826, 24236} | [7992, 58998] {6528, 43966} [8042, 127538] {5166, 95256}
BACOLR/LE 15, 2966, 468 13, 5901, 1083 21, 13087, 1304
[6890, 33182] {5930, 24956} | [9690, 62506] {7500, 46116} [6560, 125262] {2928, 93838}
BACOLRI/ST 15, 2924, 401 15, 5874, 791 21, 12810, 1304
[3539, 16310] {3131, 12470} | [4258, 30316] {3458, 22299} [7558, 63265] {6245, 47695}
BACOLRI/LE 15, 2616, 572 14, 5825, 1249 27, 13028, 1368
[3651, 16005] {3072, 12214} | [4999, 31805] {3743, 23300} [3022, 63026] {1646, 47254}
P 9
BACOLR/ST 13, 4252, 327 15, 5962, 543 14, 12805, 954
[7872, 41192] {7198, 30630} | [8426, 59686] {7316, 44886} | [11684, 123034] {9752, 92980}
BACOLR/LE 14, 2771, 449 15, 5776, 559 15, 12945, 1454
[6896, 32258] {5974, 24752} | [7418, 57378] {6276, 43170} | [14578, 127238] {11646, 95450}
BACOLRI/ST 13, 4839, 292 15, 6229, 475 15, 12883, 1459
[5058, 22539] {4759, 16592} | [4702, 30955] {4219, 23298} [6537, 64704] {5066, 47902}
BACOLRI/LE 13, 3568, 448 15, 5762, 615 15, 12861, 1701

(4382, 19211] {3927, 14439}

(3922, 28993] {3300, 21722}

(7378, 64673] {5670, 48313}

e = 10%.
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Table 3: Machine independent results for the One Layer Burgers equation with
We consider p = 4,5,7,9 and tol = 1074,1076,1078.
tries are of the form Final Nint, Accepted Time Steps, Remeshings [Calls to
CRDCMP, CRSLVE] {Calls to CCRCMP, CCRSLVE}.

Table en-




tol 1074 10 1078
P 4
BACOLR/ST 14, 200, 57 21, 446, 83 53, 974, 85
[472, 2358] {338, 1702} | [570, 4548] {384, 3296} | [556, 8752] {374, 6448}
BACOLR/LE 17, 197, 69 40, 445, 83 113, 990, 86
[468, 2458] {310, 1760} | [572, 4518] {394, 3280} | [510, 8846] {318, 6494}
BACOLRI/ST 14, 200, 88 — 52, 968, 148
[320, 1301] {215, 905} — [454, 4641] {253, 3324}
BACOLRI/LE 18, 196, 81 44, 446, 107 133, 978, 363
[252, 1255] {166, 892} | [309, 2381] {198, 1717} | [883, 5209] {513, 3498}
P 5
BACOLR/ST 15, 203, 48 15, 447, 88 29, 970, 93
[440, 2302] {328, 1682} | [544, 4550] {348, 3276} | [560, 8694] {358, 6360}
BACOLR/LE 14, 200, 57 21, 446, 83 53, 974, 85
[472, 2358] {338, 1702} | [570, 4548] {384, 3296} | [556, 8752] {374, 6448}
BACOLRI/ST 14, 206, 50 19, 443, 72 33, 964, 89
[257, 1148] {201, 835} | [258, 2158] {179, 1564} | [275, 4364] {179, 3215}
BACOLRI/LE 14, 197, 64 23, 444, 83 49,971, 105
[248, 1194] {179, 864} | [277, 2246] {189, 1631} | [299, 4400] {189, 3214}
P 7
BACOLR/ST 14, 219, 40 14, 452, 66 15, 966, 103
[500, 2356] {404, 1734} | [506, 4414] {350, 3212} | [574, 8756] {348, 6384}
BACOLR/LE 15, 208, 41 15, 448, 69 21, 964, 93
[446, 2286] {348, 1684} | [500, 4378] {342, 3178} | [584, 8720] {378, 6392}
BACOLRI/ST 14, 206, 36 12, 452, 68 18,977, 107
[233, 1116] {192, 832} | [302, 2218] {228, 1620} | [305, 4472] {192, 3275}
BACOLRI/LE 15, 200, 49 15, 445, 78 19, 964, 102
[226, 1136] {172, 833} | [256, 2193] {172, 1586} | [283, 4388] {175, 3214}
P 9
BACOLR/ST 13, 235, 32 13, 461, 54 14, 1001, 80
[482, 2424] {406, 1804} | [604, 4448] {480, 3284} | [490, 9086] {306, 6730}
BACOLR/LE 11, 248, 38 14, 456, 57 14, 978, 94
[632, 2582] {440, 1908} | [512, 4388] {382, 3226} | [532, 8912] {320, 6546}
BACOLRI/ST 15, 198, 34 15, 451, 47 15, 982, 76
[220, 1098] {182, 828} | [269, 2138] {217, 1588} | [339, 4487] {258, 3346}
BACOLRI/LE 12, 231, 43 15, 446, 60 14, 987, 104

[270, 1269] {222, 940}

260, 2143] {195, 1571}

279, 4488] {168, 3286}

Table 4: Machine independent results for the Two Layer Burgers equation with

e = 1073,

We consider p = 4,5,7,9 and tol = 1074,1076,1078.

Table en-

tries are of the form Final Nint, Accepted Time Steps, Remeshings [Calls to
CRDCMP, CRSLVE] {Calls to CCRCMP, CCRSLVE}.
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tol 1074 10 1078
p 4
BACOLR/ST 14, 2003, 631 22,4361, 812 47, 9628, 844
[6354, 23840] {4032, 17154} | [4594, 43872] {2946, 31868} | [3610, 86996] {1894, 64324}
BACOLR/LE 18, 1936, 758 35, 4415, 927 94, 9831, 964
[5148, 24536] {3608, 17598} | [5286, 45708] {3400, 33124} | [4036, 87786] {2080, 64228}
BACOLRI/ST 15, 1965, 649 23, 4543, 783 49, 9910, 831
[2620, 11946] {1942, 8552} | [2539, 21960] {1719, 15802} | [1824, 44109] {985, 32529}
BACOLRI/LE 23, 1894, 873 39, 4397, 1095 100, 9690, 2891
[2641, 12698] {1762, 9052} | [2701, 23677] {1596, 17080} | [5909, 48923] {3009, 33442}
P 5
BACOLR/ST 15, 2118, 503 16, 4418, 914 28, 9565, 940
[6216, 23598] {4162, 17200} | [5704, 45408] {3852, 32882} | [3990, 86486] {2086, 63562}
BACOLR/LE 14, 2003, 631 22,4361, 812 47, 9628, 844
[6354, 23840] {4032, 17154} | [4594, 43872] {2946, 31868} | [3610, 86996] {1894, 64324}
BACOLRI/ST 15, 2122, 493 19, 4392, 755 32, 9686, 858
[2484, 11747] {1981, 8520} | [2763, 21884] {1983, 15924} | [2601, 43661] {1687, 32203}
BACOLRI/LE 13, 1961, 721 24, 4336, 880 45, 9602, 988
[2822, 12346] {2095, 8911} | [2387, 22055] {1494, 15946} | [2113, 43809] {1115, 32221}
P 7
BACOLR/ST 14, 2570, 424 15, 4502, 730 17,9700, 1079
[6386, 26448] {4514, 19384} | [6336, 45542] {4852, 33452} | [5224, 88444] {3018, 64658}
BACOLR/LE 15, 2353, 436 15, 4448, 906 21, 9508, 990
[6114, 24828] {4218, 18176} | [6660, 46432] {4824, 33816} | [4174, 87094] {2170, 64084}
BACOLRI/ST 14, 2505, 376 15, 4459, 665 19, 9655, 965
[2789, 12854] {2404, 9472} | [3157, 22560] {2483, 16575} | [4090, 44347] {3115, 32727}
BACOLRI/LE 15, 2248, 527 14, 4394, 976 23, 9635, 1017
[2905, 12693] {2366, 9301} | [3449, 23283] {2449, 16856} | [2119, 44013] {1090, 32332}
P 9
BACOLR/ST 14, 3257, 323 15, 4805, 646 14, 9535, 956
[6758, 30616] {5088, 22366} | [7990, 49170] {6674, 36386} | [9220, 89568] {7280, 66492}
BACOLR/LE 15, 2746, 387 15, 4602, 722 14, 9687, 1122
[6468, 27516] {4670, 20196} | [7604, 47504] {6136, 34984} | [7762, 89644] {5486, 65732}
BACOLRI/ST 15, 2876, 352 15, 4843, 625 15, 9548, 992
[3335, 14480] {2975, 10662} | [4017, 24602] {3382, 18190} | [4609, 45240] {3607, 33367}
BACOLRI/LE 15, 2702, 442 14, 4563, 769 14, 9596, 1220

3263, 14226] {2815, 10393}

(3917, 23819] {3141, 17453}

[4149, 45074] {2922, 33014}

Table 5: Machine independent results for the Two Layer Burgers equation with

e = 10%.

We consider p = 4,5,7,9 and tol = 1074,1076,1078.

Table en-

tries are of the form Final Nint, Accepted Time Steps, Remeshings [Calls to
CRDCMP, CRSLVE] {Calls to CCRCMP, CCRSLVE}.
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tol 1072 10 1078
p 4
BACOLR/ST 15, 2003, 610 23, 4360, 770 44,9631, 889
[6264, 23626] {3984, 17046} | [4468, 43368] {2904, 31534} | [3810, 86192] {1988, 63310}
BACOLR/LE 17, 1932, 757 33, 4407, 975 99, 9829, 956
[6144, 24518] {3606, 17592} | [5604, 46340] {3630, 33592} | [4000, 87702] {2060, 64180}
BACOLRI/ST 17, 1966, 610 26, 4504, 763 45, 9881, 837
[2530, 11717] {1890, 8418} | [2566, 21872] {1787, 15807} | [1927, 43853] {1074, 32282}
BACOLRI/LE 20, 1898, 901 38, 4377, 1094 99, 9783, 2877
[2677, 12869] {1770, 9163} | [2715, 23596] {1611, 17021} | [5894, 49263] {3008, 33717}
P 5
BACOLR/ST 15, 2144, 508 16, 4415, 884 29, 9570, 837
[6290, 23718] {4226, 17230} | [5544, 45206] {3752, 32806} | [3580, 86486] {1882, 63964}
BACOLR/LE 15, 2003, 610 23, 4360, 770 44,9631, 889
[6264, 23626] {3984, 17046} | [4468, 43368] {2904, 31534} | [3810, 86192] {1988, 63310}
BACOLRI/ST 15, 2123, 504 20, 4387, 720 36, 9694, 837
[2483, 11805] {1959, 8541} | [2704, 21624] {1962, 15756} | [2596, 43480] {1727, 32080}
BACOLRI/LE 15, 1958, 736 22, 4340, 884 45,9612, 1025
[2853, 12447] {2111, 8984} | [2375, 22108] {1484, 15993} | [2152, 43676] {1117, 32004}
p 7
BACOLR/ST 15, 2479, 399 15, 4501, 784 16, 9679, 1100
[6266, 25620] {4444, 18892} | [6792, 46142] {5200, 33800} | [5248, 88458] {3000, 64630}
BACOLR/LE 15, 2322, 420 15, 4444, 929 21, 9551, 1011
[6062, 24408] {4198, 17938} | [6786, 46564] {4904, 33850} | [4266, 87196] {2220, 64016}
BACOLRI/ST 15, 2360, 423 15, 4465, 673 19, 9560, 951
[2836, 12648] {2404, 9328} | [3193, 22638] {2511, 16629} | [4238, 44026] {3277, 32530}
BACOLRI/LE 14, 2289, 534 14, 4394, 961 27,9542, 1041
[2954, 12903] {2407, 9453} | [3388, 23230] {2415, 16857} | [2177, 43842] {1124, 32206}
P 9
BACOLR/ST 15, 3133, 330 13, 4887, 663 14, 9572, 927
[6662, 29812] {4978, 21790} | [8490, 50250] {7140, 37118} | [8638, 89548] {6748, 66466}
BACOLR/LE 15, 2862, 364 15, 4576, 696 15, 9680, 1131
[6538, 27940] {4786, 20432} | [7276, 46646] {5860, 34434} | [7850, 89778] {5556, 65842}
BACOLRI/ST 15, 2882, 363 15, 4848, 595 15, 9574, 952
[3360, 14632] {2986, 10758} | [4005, 24480] {3398, 18170} | [4417, 45005] {3455, 33211}
BACOLRI/LE 14, 2861, 423 15, 4509, 749 15, 9595, 1261

3460, 14803] {3031, 10812}

3695, 23350] {2939, 17163}

(4155, 45107) {2887, 32964}

Table 6: Machine independent results for the Two Layer Burgers equationx6

with e = 1072,

We consider p = 4,5,7,9 and tol = 1074,1076,1078.

Table

entries are of the form Final Nint, Accepted Time Steps, Remeshings [Calls to
CRDCMP, CRSLVE] {Calls to CCRCMP, CCRSLVE}.
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tol 1072 10 1078
p 4
BACOLR/ST 15, 2003, 610 23, 4360, 770 44,9631, 889
[6264, 23626] {3984, 17046} | [4468, 43368] {2904, 31534} | [3810, 86192] {1988, 63310}
BACOLR/LE 17, 1932, 757 33, 4407, 975 99, 9829, 956
[6144, 24518] {3606, 17592} | [5604, 46340] {3630, 33592} | [4000, 87702] {2060, 64180}
BACOLRI/ST 17, 1966, 610 26, 4504, 763 45, 9881, 837
[2530, 11717] {1890, 8418} | [2566, 21872] {1787, 15807} | [1927, 43853] {1074, 32282}
BACOLRI/LE 20, 1898, 901 38, 4377, 1094 99, 9783, 2877
[2677, 12869] {1770, 9163} | [2715, 23596] {1611, 17021} | [5894, 49263] {3008, 33717}
P 5
BACOLR/ST 15, 2144, 508 16, 4415, 884 29, 9570, 837
[6290, 23718] {4226, 17230} | [5544, 45206] {3752, 32806} | [3580, 86486] {1882, 63964}
BACOLR/LE 15, 2003, 610 23, 4360, 770 44,9631, 889
[6264, 23626] {3984, 17046} | [4468, 43368] {2904, 31534} | [3810, 86192] {1988, 63310}
BACOLRI/ST 15, 2123, 504 20, 4387, 720 36, 9694, 837
[2483, 11805] {1959, 8541} | [2704, 21624] {1962, 15756} | [2596, 43480] {1727, 32080}
BACOLRI/LE 15, 1958, 736 22, 4340, 884 45,9612, 1025
[2853, 12447] {2111, 8984} | [2375, 22108] {1484, 15993} | [2152, 43676] {1117, 32004}
p 7
BACOLR/ST 15, 2479, 399 15, 4501, 784 16, 9679, 1100
[6266, 25620] {4444, 18892} | [6792, 46142] {5200, 33800} | [5248, 88458] {3000, 64630}
BACOLR/LE 15, 2322, 420 15, 4444, 929 21, 9551, 1011
[6062, 24408] {4198, 17938} | [6786, 46564] {4904, 33850} | [4266, 87196] {2220, 64016}
BACOLRI/ST 15, 2360, 423 15, 4465, 673 19, 9560, 951
[2836, 12648] {2404, 9328} | [3193, 22638] {2511, 16629} | [4238, 44026] {3277, 32530}
BACOLRI/LE 14, 2289, 534 14, 4394, 961 27,9542, 1041
[2954, 12903] {2407, 9453} | [3388, 23230] {2415, 16857} | [2177, 43842] {1124, 32206}
P 9
BACOLR/ST 15, 3133, 330 13, 4887, 663 14, 9572, 927
[6662, 29812] {4978, 21790} | [8490, 50250] {7140, 37118} | [8638, 89548] {6748, 66466}
BACOLR/LE 15, 2862, 364 15, 4576, 696 15, 9680, 1131
[6538, 27940] {4786, 20432} | [7276, 46646] {5860, 34434} | [7850, 89778] {5556, 65842}
BACOLRI/ST 15, 2882, 363 15, 4848, 595 15, 9574, 952
[3360, 14632] {2986, 10758} | [4005, 24480] {3398, 18170} | [4417, 45005] {3455, 33211}
BACOLRI/LE 14, 2861, 423 15, 4509, 749 15, 9595, 1261

3460, 14803] {3031, 10812}

3695, 23350] {2939, 17163}

(4155, 45107) {2887, 32964}

Table 7: Machine independent results for the Two Layer Burgers equationx6

with e = 1072,

We consider p = 4,5,7,9 and tol = 1074,1076,1078.

Table

entries are of the form Final Nint, Accepted Time Steps, Remeshings [Calls to
CRDCMP, CRSLVE] {Calls to CCRCMP, CCRSLVE}.
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tol 1074 10 1078
p 4
BACOLR/ST 15, 2002, 593 23, 4364, 795 47, 9619, 833
[5108, 23482] {3866, 16970} | [4538, 43640] {2924, 31698} | [3544, 86876] {1850, 64266}
BACOLR/LE 19, 1934, 728 35, 4409, 921 96, 9825, 968
[5022, 24298] {3542, 17484} | [5296, 45656] {3430, 33120} | [4044, 87788] {2080, 64226}
BACOLRI/ST 15, 1960, 609 25, 4466, 725 50, 9883, 811
[2507, 11705] {1882, 8415} | [2547, 21719] {1786, 15757} | [1740, 44247] {921, 32734}
BACOLRI/LE 20, 1891, 882 41, 4398, 1097 108, 9677, 3083
[2634, 12726] {1746, 9065} | [2728, 23669] {1621, 17067} | [6302, 49639] {3210, 33787}
P 5
BACOLR/ST 15, 2121, 500 17, 4424, 870 27,9572, 974
[6238, 23520] {4190, 17138} | [5458, 45010] {3694, 32648} | [4126, 86898] {2154, 63824}
BACOLR/LE 15, 2002, 593 23, 4364, 795 47, 9619, 833
[5108, 23482] {3866, 16970} | [4538, 43640] {2924, 31698} | [3544, 86876] {1850, 64266}
BACOLRI/ST 14, 2118, 484 20, 4387, 698 31, 9729, 852
[2445, 11705] {1951, 8489} | [2690, 21573] {1978, 15746} | [2537, 43618] {1656, 32156}
BACOLRI/LE 18, 1958, 741 25, 4330, 902 48, 9616, 1007
[2869, 12423] {2122, 8957} | [2422, 22159] {1507, 16012} | [2112, 43944] {1095, 32304}
P 7
BACOLR/ST 15, 2554, 422 15, 4485, 743 16, 9662, 1096
[6306, 26278] {4438, 19258} | [6402, 45566] {4892, 33452} | [5396, 88300] {3180, 64558}
BACOLR/LE 12, 2316, 456 15, 4450, 856 20, 9501, 982
[6236, 24734] {4300, 18112} | [6372, 45784] {4636, 33370} | [4154, 86962] {2166, 63998}
BACOLRI/ST 14, 2506, 388 15, 4477, 696 18, 9612, 994
[2856, 12891] {2459, 9476} | [3256, 22809] {2550, 16721} | [4219, 44316] {3216, 32674}
BACOLRI/LE 14, 2318, 539 15, 4384, 1021 23, 9486, 1051
[2946, 13045] {2394, 9516} | [3525, 23461] {2475, 16941} | [2184, 43851] {1121, 32251}
P 9
BACOLR/ST 15, 2925, 341 15, 4779, 633 15, 9567, 980
[6416, 28356] {4710, 20856} | [7852, 48578] {6562, 35968} | [9060, 89906] {7052, 66604}
BACOLR/LE 14, 2901, 364 15, 4595, 688 15, 9702, 1077
[6590, 28282] {4838, 20664} | [7370, 46950] {5970, 34644} | [7582, 89306] {5396, 65546}
BACOLRI/ST 14, 3089, 342 15, 4963, 642 15, 9542, 1024
[3531, 15218] {3178, 11177} | [4252, 25212] {3602, 18605} | [4719, 45275] {3686, 33347}
BACOLRI/LE 13, 3099, 411 15, 4524, 761 17, 9623, 1196

3722, 15604] {3305, 11331}

(3797, 23519] {3029, 17239}

4020, 45042] {2817, 32999}

Table 8: Machine independent results for the Two Layer Burgers equationx12

with e = 1072,

We consider p = 4,5,7,9 and tol = 1074,1076,1078.

Table

entries are of the form Final Nint, Accepted Time Steps, Remeshings [Calls to
CRDCMP, CRSLVE] {Calls to CCRCMP, CCRSLVE}.
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tol 1074 10 1078
p 4
BACOLR/ST 15, 2002, 593 23, 4364, 795 47, 9619, 833
[5108, 23482] {3866, 16970} | [4538, 43640] {2924, 31698} | [3544, 86876] {1850, 64266}
BACOLR/LE 19, 1934, 728 35, 4409, 921 96, 9825, 968
[5022, 24298] {3542, 17484} | [5296, 45656] {3430, 33120} | [4044, 87788] {2080, 64226}
BACOLRI/ST 15, 1960, 609 25, 4466, 725 50, 9883, 811
[2507, 11705] {1882, 8415} | [2547, 21719] {1786, 15757} | [1740, 44247] {921, 32734}
BACOLRI/LE 20, 1891, 882 41, 4398, 1097 108, 9677, 3083
[2634, 12726] {1746, 9065} | [2728, 23669] {1621, 17067} | [6302, 49639] {3210, 33787}
P 5
BACOLR/ST 15, 2121, 500 17, 4424, 870 27,9572, 974
[6238, 23520] {4190, 17138} | [5458, 45010] {3694, 32648} | [4126, 86898] {2154, 63824}
BACOLR/LE 15, 2002, 593 23, 4364, 795 47, 9619, 833
[5108, 23482] {3866, 16970} | [4538, 43640] {2924, 31698} | [3544, 86876] {1850, 64266}
BACOLRI/ST 14, 2118, 484 20, 4387, 698 31, 9729, 852
[2445, 11705] {1951, 8489} | [2690, 21573] {1978, 15746} | [2537, 43618] {1656, 32156}
BACOLRI/LE 18, 1958, 741 25, 4330, 902 48, 9616, 1007
[2869, 12423] {2122, 8957} | [2422, 22159] {1507, 16012} | [2112, 43944] {1095, 32304}
P 7
BACOLR/ST 15, 2554, 422 15, 4485, 743 16, 9662, 1096
[6306, 26278] {4438, 19258} | [6402, 45566] {4892, 33452} | [5396, 88300] {3180, 64558}
BACOLR/LE 12, 2316, 456 15, 4450, 856 20, 9501, 982
[6236, 24734] {4300, 18112} | [6372, 45784] {4636, 33370} | [4154, 86962] {2166, 63998}
BACOLRI/ST 14, 2506, 388 15, 4477, 696 18, 9612, 994
[2856, 12891] {2459, 9476} | [3256, 22809] {2550, 16721} | [4219, 44316] {3216, 32674}
BACOLRI/LE 14, 2318, 539 15, 4384, 1021 23, 9486, 1051
[2946, 13045] {2394, 9516} | [3525, 23461] {2475, 16941} | [2184, 43851] {1121, 32251}
P 9
BACOLR/ST 15, 2925, 341 15, 4779, 633 15, 9567, 980
[6416, 28356] {4710, 20856} | [7852, 48578] {6562, 35968} | [9060, 89906] {7052, 66604}
BACOLR/LE 14, 2901, 364 15, 4595, 688 15, 9702, 1077
[6590, 28282] {4838, 20664} | [7370, 46950] {5970, 34644} | [7582, 89306] {5396, 65546}
BACOLRI/ST 14, 3089, 342 15, 4963, 642 15, 9542, 1024
[3531, 15218] {3178, 11177} | [4252, 25212] {3602, 18605} | [4719, 45275] {3686, 33347}
BACOLRI/LE 13, 3099, 411 15, 4524, 761 17, 9623, 1196

3722, 15604] {3305, 11331}

(3797, 23519] {3029, 17239}

4020, 45042] {2817, 32999}

Table 9: Machine independent results for the Two Layer Burgers equationx12

with e = 1072,

We consider p = 4,5,7,9 and tol = 1074,1076,1078.

Table

entries are of the form Final Nint, Accepted Time Steps, Remeshings [Calls to
CRDCMP, CRSLVE] {Calls to CCRCMP, CCRSLVE}.
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tol 1072 10 1078
p 4
BACOLR/ST 19, 923, 226 41, 1694, 358 86, 3068, 407
[4150, 16296] {3682, 13524} | [6652, 29024] {5912, 24168} | [8806, 45678] {7968, 37872}
BACOLR/LE 28, 957, 253 98, 1705, 478 220, 3109, 488
[4454, 16662] {3932, 13714} | [7408, 30926] {6428, 25570} | [9364, 47580] {8364, 39368}
BACOLRI/ST 18, 910, 162 44,1687, 300 95, 3058, 422
[1679, 6870] {1510, 5626} [3139, 13625] {2829, 11328} | [4386, 22729] {3952, 18815}
BACOLRI/LE 28, 926, 260 78, 1761, 381 237, 3613, 881
[2213, 8346] {1947, 6892} [3542, 15054] {3155, 12524} | [6385, 30254] {5497, 24871}
P 5
BACOLR/ST 14, 926, 220 34, 1754, 394 52, 3110, 475
[3906, 16084] {3446, 13320} | [7134, 29926] {6322, 24798} | [9300, 47648] {8326, 39488}
BACOLR/LE 19, 923, 226 41, 1694, 358 86, 3068, 407
[4150, 16296] {3682, 13524} | [6652, 29024] {5912, 24168} | [8806, 45678] {7968, 37872}
BACOLRI/ST 14, 957, 147 30, 1670, 283 49, 3028, 383
[1664, 6853] {1512, 5595} [3116, 13434] {2820, 11184} | [4254, 22282] {3865, 18482}
BACOLRI/LE 15, 861, 180 40, 1683, 343 82, 3119, 476
[1824, 7378] {1639, 6151} [3324, 14219] {2975, 11844} | [4668, 23672] {4184, 19590}
p 7
BACOLR/ST 14, 1037, 216 21, 1784, 337 27, 3107, 453
[3764, 16566] {3312, 13550} | [6848, 29264] {6150, 24288} | [9194, 47248] {8264, 39184}
BACOLR/LE 15, 971, 231 26, 1732, 337 35, 3075, 439
[3872, 16540] {3390, 13628} | [6766, 28566] {6068, 23706} | [8942, 46478] {8040, 38534}
BACOLRI/ST 13, 1085, 121 21, 1757, 331 26, 3091, 414
[1667, 7185] {1539, 5833} [3302, 14354] {2961, 11919} | [4430, 23044] {4009, 19118}
BACOLRI/LE 15, 995, 188 24, 1715, 341 35, 3040, 426
[1877, 7942] {1683, 6560} [3330, 14280] {2982, 11868} | [4380, 22820] {3947, 18921}
P 9
BACOLR/ST 12, 1284, 193 16, 1918, 425 20, 3230, 480
[3948, 17876] {3542, 14216} | [7196, 31846] {6322, 26014} | [9916, 48586] {8932, 40150}
BACOLR/LE 15, 1145, 208 17, 1869, 380 22, 3148, 461
[3832, 17094] {3396, 13748} | [7190, 31024] {6406, 25672} | [9304, 47664] {8358, 39478}
BACOLRI/ST 15, 1297, 98 15, 1914, 307 18, 3176, 444
[1807, 7948] {1703, 6399} [3285, 14660] {2971, 12044} | [4728, 23583] {4277, 19511}
BACOLRI/LE 15, 1209, 149 18, 1880, 460 22, 3130, 491

(1888, 8337] {1733, 6752}

3762, 16139] {3295, 13287}

[4645, 23894] {4146, 19766}

Table 10: Machine independent results for the Catalytic Surface Reaction Model.

We consider p = 4,5,7,9 and tol = 1074,1076,1078.

Table entries are of

the form Final Nint, Accepted Time Steps, Remeshings [Calls to CRDCMP,
CRSLVE] {Calls to CCRCMP, CCRSLVE}.
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tol 1072 10=6 1078
P 4
BACOLR/ST 31,9,4 76, 15, 2 166, 24, 0
[62, 136] {34, 74} | [60, 138] {40, 78} | [82, 186] {58, 104}
BACOLR/LE 49,9, 1 155, 14, 1 497,24, 1
[44, 94] {26, 50} | [70, 150] {40, 78} | [92, 204] {62, 112}
BACOLRI/ST 30,9, 6 71,14, 6 179, 26, 8
[29, 57] {15, 28} [32, 71] {20, 39} [43, 122] {26, 71}
BACOLRI/LE 59, 8, 4 178, 14, 6 640, 25, 6
[21, 47] {12, 26} [27, 79] {15, 47} [37, 107] {24, 63}
P 5
BACOLR/ST 21,9, 2 40, 14, 0 80, 24, 0
[64, 116] {30, 62} | [50, 114] {34, 64} | [64, 156] {52, 92}
BACOLR/LE 31,9,4 76, 15, 2 166, 24, 0
[62, 136] {34, 74} | [60, 138] {40, 78} | [82, 186] {58, 104}
BACOLRI/ST 22,9, 7 40, 14, 7 93, 24, 4
[32, 62] {16, 30} [36, 77] {21, 41} [38, 88] {28, 50}
BACOLRI/LE 27,8, 4 80, 14, 2 173, 24, 6
[22, 45] {12, 23} [22, 52] {16, 30} [44, 97] {30, 53}
P 7
BACOLR/ST 15,9,0 24, 15, 2 36, 25, 3
[40, 84] {24, 44} | [64, 150] {40, 84} | [86, 220] {60, 130}
BACOLR/LE 17, 10, 2 32,15, 2 56, 25, 2
[66, 124] {32, 68} | [64, 150] {40, 84} | [78, 198] {58, 118}
BACOLRI/ST 13, 10, 6 22,14, 5 37,24, 5
[28, 62] {16, 34} [30, 67] {19, 37} [40, 93] {29, 53}
BACOLRI/LE 18,9, 6 33,14, 6 53, 24, 6
[27, 57] {15, 30} [32, 71] {20, 39} [41, 98] {30, 57}
P 9
BACOLR/ST 11,9, 0 13, 16, 2 22, 26, 5
[40, 84] {24, 44} | [64, 164] {40, 96} | [84, 256] {54, 156}
BACOLR/LE 12,9,0 17, 16, 2 28, 25, 2
[40, 84] {24, 44} | [60, 158] {36, 90} | [74, 218] {50, 132}
BACOLRI/ST 12,8, 3 16, 14, 4 22, 25,6
[19, 40] {11, 21} [28, 62] {18, 34} [42, 104] {29, 60}
BACOLRI/LE 12,8, 3 18, 15, 6 29,24, 6

19, 40] {11, 21}

32, 75] {20, 42}

39, 103] {27, 61}

Table 11: Machine independent results for the Schrodinger Problem. We con-

sider p = 4,5,7,9 and tol = 1074,1075,1078.

Table entries are of the form

Final Nint, Accepted Time Steps, Remeshings [Calls to CRDCMP, CRSLVE]
{Calls to CCRCMP, CCRSLVE}.
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Figure 3: BACOLR/ST Number of Subintervals vs. Error Tolerance: One Layer
Burgers Equation, e = 1072 with p =3...11
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Figure 4: BACOLRI/ST Number of Subintervals vs. Error Tolerance: One
Layer Burgers Equation, e = 1073 withp =4...11
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Figure 5: BACOLRI/LE Number of Subintervals vs. Error Tolerance: One
Layer Burgers Equation, e = 1072 withp =4...11
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Figure 6: BACOLR/ST Number of Subintervals vs. Error Tolerance: One Layer
Burgers Equation, e = 107 with p =3...11
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Figure 7: BACOLRI/ST Number of Subintervals vs. Error Tolerance: One
Layer Burgers Equation, e = 107* with p =4...11
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Figure 8: BACOLRI/LE Number of Subintervals vs. Error Tolerance: One
Layer Burgers Equation, e = 107* withp =4...11
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Figure 9: BACOLR/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equation, e = 1072 with p =3...11
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Figure 10: BACOLRI/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equation, e = 1073 withp =4...11
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Figure 11: BACOLRI/LE Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equation, e = 1072 withp =4...11
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Figure 12: BACOLR/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equation, e = 107% with p =3...11
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Figure 13: BACOLRI/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equation, e = 107* with p =4...11
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Figure 14: BACOLRI/LE Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equation, e = 107* withp =4...11

39



—o— p=3
—o— p=4
—e— p=5
—o— p=6

@ —o— p=7

© —e— p=8

2 p=9

£102{ —— p=10

8 —o— p=11

>

(]

w“

(=]

@

o

£

>

-]

©

£

[T

101.

10-2 103 10¢ 10 10-¢® 10~7 10" 10° 10710
Error Tolerance

Figure 15: BACOLR/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx6, ¢ = 1073 with p = 3...11
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Figure 16: BACOLRI/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx6, ¢ = 1073 with p = 4...11
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Figure 17: BACOLRI/LE Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx6, ¢ = 1073 with p = 4...11
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Figure 18: BACOLR/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx6, e = 1074 with p =3...11
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Figure 19: BACOLRI/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx6, e = 1074 withp =4...11
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Figure 20: BACOLRI/LE Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx6, e = 1074 withp =4...11
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Figure 21: BACOLR/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx12, ¢ = 1073 with p =3...11
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Figure 22: BACOLRI/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx12, ¢ = 1073 with p=4...11
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Figure 23: BACOLRI/LE Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx12, ¢ = 1073 with p=4...11
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Figure 24: BACOLR/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx12, e = 10™* with p = 3...11
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Figure 25: BACOLRI/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx12, e = 10™* with p =4...11
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Figure 26: BACOLRI/LE Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx12, e = 10™* with p =4...11

45



—o— p=3
—o— p=4
—e— p=5
—o— p=6

" —o— p=7

© —e— p=8

: p=9

= —o— p=10

§ 02| * P=1

)

w

(=]

o

o

£

>

-]

©

£

[T

101.

10-2 103 10¢ 10 10-¢® 10~7 10" 10° 10710
Error Tolerance

Figure 27: BACOLR/ST Number of Subintervals vs. Error Tolerance: Catalytic
Surface Reaction Model with p=3...11
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Figure 28: BACOLRI/ST Number of Subintervals vs. Error Tolerance: Cat-
alytic Surface Reaction Model with p=4...11
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Figure 29: BACOLRI/LE Number of Subintervals vs. Error Tolerance: Cat-
alytic Surface Reaction Model with p=4...11
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Figure 30: BACOLR/ST Number of Subintervals vs. Error Tolerance:
Schrédinger Equation with p=3...11
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Figure 33: BACOLR/ST Number of Subintervals vs p: One Layer Burgers
Equation, € = 1073 with tol = 107%,i=2...10
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Figure 34: BACOLRI/ST Number of Subintervals vs p: One Layer Burgers
Equation, € = 1073 with tol = 107%,i=2...10
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Figure 35: BACOLRI/LE Number of Subintervals vs p: One Layer Burgers
Equation, € = 1073 with tol = 107%,i=2...10
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Figure 36: BACOLR/ST Number of Subintervals vs p: One Layer Burgers
Equation, € = 10™% with tol = 107%,i=2...10
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Figure 37: BACOLRI/ST Number of Subintervals vs p: One
Equation, € = 10™% with tol = 107%,i=2...10
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Figure 38: BACOLRI/LE Number of Subintervals vs p: One Layer Burgers
Equation, € = 10™% with tol = 107%,i=2...10
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Figure 39: BACOLR/ST Number of Subintervals vs p: Two Layer Burgers
Equation, € = 1073 with tol = 107%,i=2...10
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Figure 40: BACOLRI/ST Number of Subintervals vs p: Two Layer Burgers
Equation, € = 1073 with tol = 107%,i=2...10
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Figure 41: BACOLRI/LE Number of Subintervals vs p: Two Layer Burgers
Equation, € = 1073 with tol = 107%,i=2...10
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Figure 42: BACOLR/ST Number of Subintervals vs p: Two Layer Burgers
Equation, € = 10™% with tol = 107%,i=2...10
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Figure 43: BACOLRI/ST Number of Subintervals vs p: Two
Equation, € = 10™% with tol = 107%,i=2...10
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Figure 44: BACOLRI/LE Number of Subintervals vs p: Two Layer Burgers
Equation, € = 10™% with tol = 107%,i=2...10
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Figure 45: BACOLR/ST Number of Subintervals vs p: Two Layer Burgers
Equationx6, € = 10~2 with tol = 107%,i =2...10
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Figure 46: BACOLRI/ST Number of Subintervals vs p: Two Layer Burgers
Equationx6, € = 10~2 with tol = 107%,i =2...10
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Figure 47: BACOLRI/LE Number of Subintervals vs p: Two Layer Burgers
Equationx6, € = 10~2 with tol = 107%,i =2...10
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Figure 48: BACOLR/ST Number of Subintervals vs p: Two Layer Burgers
Equationx6, € = 10~* with tol = 107%,i =2...10
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Figure 49: BACOLRI/ST Number of Subintervals vs p: Two Layer Burgers
Equationx6, € = 10~* with tol = 107%,i =2...10
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Figure 50: BACOLRI/LE Number of Subintervals vs p: Two Layer Burgers
Equationx6, € = 10~* with tol = 107%,i =2...10
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Figure 51: BACOLR/ST Number of Subintervals vs p: Two Layer Burgers
Equationx12, € = 1072 with tol = 107%,i =2...10
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Figure 52: BACOLRI/ST Number of Subintervals vs p: Two Layer Burgers
Equationx12, € = 10~2 with tol = 107%,i =2...10
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Figure 53: BACOLRI/LE Number of Subintervals vs p: Two Layer Burgers
Equationx12, € = 1072 with tol = 107%,i =2...10
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Figure 54: BACOLR/ST Number of Subintervals vs p: Two Layer Burgers
Equationx12, e = 10~* with tol = 107%,i=2...10
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Figure 55: BACOLRI/ST Number of Subintervals vs p: Two Layer Burgers
Equationx12, e = 10~* with tol = 107%,i=2...10
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Figure 56: BACOLRI/LE Number of Subintervals vs p: Two Layer Burgers
Equationx12, e = 10~* with tol = 107%,i=2...10
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Figure 57: BACOLR/ST Number of Subintervals vs p: Catalytic Surface Reac-
tion Model with tol = 1074, =2...10
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Figure 58: BACOLRI/ST Number of Subintervals vs p: Catalytic Surface Re-
action Model with tol = 1074, =2...10
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Figure 59: BACOLRI/LE Number of Subintervals vs p: Catalytic Surface Re-
action Model with tol = 1074, =2...10
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Figure 60: BACOLR/ST Number of Subintervals vs p: Schrodinger Equation
with tol =107%,i=2...10
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Figure 61: BACOLRI/ST Number of Subintervals vs p: Schrodinger Equation
with tol =107%,i=2...10
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Figure 62: BACOLRI/LE Number of Subintervals vs p: Schrodinger Equation
with tol =107%,i=2...10
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Figure 63: BACOLR/ST Number of Accepted Time Steps vs. Error Tolerance:
One Layer Burgers Equation, e = 1073 with p = 3...11
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Figure 64: BACOLRI/ST Number of Accepted Time Steps vs. Error Tolerance:
One Layer Burgers Equation, e = 1073 with p =4...11
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Figure 65: BACOLRI/LE Number of Accepted Time Steps vs. Error Tolerance:
One Layer Burgers Equation, e = 1073 with p =4...11
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Figure 66: BACOLR/ST Number of Accepted Time Steps vs. Error Tolerance:
One Layer Burgers Equation, e = 107* with p =3...11
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Figure 67: BACOLRI/ST Number of Accepted Time Steps vs. Error Tolerance:
One Layer Burgers Equation, e = 107* with p =4...11
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Figure 68: BACOLRI/LE Number of Accepted Time Steps vs. Error Tolerance:
One Layer Burgers Equation, e = 107* with p =4...11
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Figure 69: BACOLR/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equation, e = 1072 with p=3...11
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Figure 70: BACOLRI/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equation, e = 1072 with p=4...11
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Figure 71: BACOLRI/LE Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equation, e = 1072 with p=4...11
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Figure 72: BACOLR/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equation, e = 1074 with p = 3...11

68



—o— p=4
—e— p=5
- p=6
—o— p=17

8 g4 —o p=8

2 —e— p=9

e p=10

£ —o— p=11

5

o

L

[=%

[

5

<

w

[=]

)

o

£

2

103.

10-2 103 10¢ 10 10-¢® 10~7 10" 10° 10710
Error Tolerance

Figure 73: BACOLRI/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equation, e = 1074 with p =4...11
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Figure 74: BACOLRI/LE Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equation, e = 1074 with p =4...11
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Figure 75: BACOLR/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx6, e = 1073 with p = 3...11
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Figure 76: BACOLRI/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx6, e = 1073 with p =4...11
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Figure 77: BACOLRI/LE Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx6, e = 1073 with p =4...11
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Figure 78: BACOLR/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx6, e = 104 with p = 3...11
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Figure 79: BACOLRI/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx6, e = 1074 with p = 4...11
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Figure 80: BACOLRI/LE Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx6, e = 1074 with p = 4...11
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Figure 81: BACOLR/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx12, e = 1073 with p = 3...11
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Figure 82: BACOLRI/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx12, e = 1073 with p = 4...11
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Figure 83: BACOLRI/LE Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx12, e = 1073 with p = 4...11
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Figure 84: BACOLR/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx12, e = 104 with p = 3...11
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Figure 85: BACOLRI/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx12, e = 1074 with p = 4...11
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Figure 86: BACOLRI/LE Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx12, e = 1074 with p = 4...11
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Figure 87: BACOLR/ST Number of Accepted Time Steps vs. Error Tolerance:
Catalytic Surface Reaction Model with p =3...11
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Figure 83: BACOLRI/ST Number of Accepted Time Steps vs. Error Tolerance:
Catalytic Surface Reaction Model with p =4...11
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Figure 89: BACOLRI/LE Number of Accepted Time Steps vs. Error Tolerance:
Catalytic Surface Reaction Model with p =4...11
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Figure 90: BACOLR/ST Number of Accepted Time Steps vs. Error Tolerance:
Schrédinger Equation with p=3...11
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Figure 91: BACOLRI/ST Number of Accepted Time Steps vs. Error Tolerance:
Schrédinger Equation with p=4...11
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Figure 92: BACOLRI/LE Number of Accepted Time Steps vs. Error Tolerance:
Schrédinger Equation with p=4...11
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Figure 93: BACOLR/ST Number of Remeshings vs. Error Tolerance: One
Layer Burgers Equation, e = 1072 with p =3...11
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Figure 94: BACOLRI/ST Number of Remeshings vs. Error Tolerance: One
Layer Burgers Equation, e = 1073 withp =4...11

79



103 { —e— p=4
—e— p=5

- p=6

—o— p=7

—o— p=8

—e— p=9
p=10

—o— p=11

102 4

Number of Remeshings

10-2 103 10¢ 10 10-¢® 10~7 10" 10° 10710
Error Tolerance

Figure 95: BACOLRI/LE Number of Remeshings vs. Error Tolerance: One
Layer Burgers Equation, e = 1072 withp =4...11
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Figure 96: BACOLR/ST Number of Remeshings vs. Error Tolerance: One
Layer Burgers Equation, e = 107% with p =3...11
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Figure 97: BACOLRI/ST Number of Remeshings vs. Error Tolerance: One
Layer Burgers Equation, e = 107* with p =4...11
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Figure 98: BACOLRI/LE Number of Remeshings vs. Error Tolerance: One
Layer Burgers Equation, e = 107* withp =4...11
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Figure 99: BACOLR/ST Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equation, e = 1072 with p =3...11
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Figure 100: BACOLRI/ST Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equation, e = 1073 withp =4...11
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Figure 101: BACOLRI/LE Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equation, e = 1072 withp =4...11

—o— p=3
—e— p=4
103 { —&— p=5
—o— p=6
—o— p=17
—e— p=8
& p=9
£ —o— p=10
G —o— p=11
[
£
Q
-4
w“
[=]
o
£
3102-

10-2 103 10¢ 10 10-¢® 10~7 10" 10° 10710
Error Tolerance

Figure 102: BACOLR/ST Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equation, e = 107% with p =3...11
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Figure 103: BACOLRI/ST Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equation, e = 107% with p =4...11
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Figure 104: BACOLRI/LE Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equation, e = 107% with p =4...11
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Figure 105: BACOLR/ST Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx6, ¢ = 1073 with p = 3...11
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Figure 106: BACOLRI/ST Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx6, ¢ = 1073 with p = 4...11
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Figure 107: BACOLRI/LE Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx6, ¢ = 1073 with p = 4...11
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Figure 108: BACOLR/ST Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx6, e = 1074 with p =3...11
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Figure 109: BACOLRI/ST Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx6, e = 107* with p =4...11
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Figure 110: BACOLRI/LE Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx6, e = 107* with p =4...11
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Figure 111: BACOLR/ST Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx12, ¢ = 1073 with p =3...11
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Figure 112: BACOLRI/ST Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx12, ¢ = 1073 with p=4...11
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Figure 113: BACOLRI/LE Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx12, ¢ = 1073 with p=4...11
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Figure 114: BACOLR/ST Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx12, e = 10™* with p = 3...11
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Figure 115: BACOLRI/ST Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx12, e = 10™* with p =4...11
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Figure 116: BACOLRI/LE Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx12, e = 10™* with p =4...11
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Figure 117: BACOLR/ST Number of Remeshings vs. Error Tolerance: Cat-
alytic Surface Reaction Model with p=3...11
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Figure 118: BACOLRI/ST Number of Remeshings vs. Error Tolerance: Cat-
alytic Surface Reaction Model with p=4...11
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Figure 119: BACOLRI/LE Number of Remeshings vs. Error Tolerance: Cat-
alytic Surface Reaction Model with p=4...11
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Figure 120: Number of Matrix Factorizations and Backsolves vs. Tolerance:
One Layer Burgers Equation, € = 1072 with p = 4
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Figure 121: Number of Matrix Factorizations and Backsolves vs. Tolerance:
One Layer Burgers Equation, € = 1073 with p = 5
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Figure 122: Number of Matrix Factorizations and Backsolves vs. Tolerance:
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Figure 123: Number of Matrix Factorizations and Backsolves vs. Tolerance:
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Figure 124: Number of Matrix Factorizations and Backsolves vs. Tolerance:
One Layer Burgers Equation, e = 10™* with p = 4
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Figure 125: Number of Matrix Factorizations and Backsolves vs. Tolerance:
One Layer Burgers Equation, e = 107% with p = 5
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Figure 126: Number of Matrix Factorizations and Backsolves vs. Tolerance:
One Layer Burgers Equation, e = 10™* with p = 7
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Figure 127: Number of Matrix Factorizations and Backsolves vs. Tolerance:
One Layer Burgers Equation, e = 107* with p = 9
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Figure 128: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equation, e = 1072 with p = 4
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Figure 129: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equation, € = 1073 with p =5
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Figure 130: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equation, € = 1072 with p = 7
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Figure 131: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equation, € = 1073 with p = 9
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Figure 132: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equation, e = 107 with p = 4
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Figure 133: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equation, e = 10™* with p = 5
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Figure 134: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equation, ¢ = 10™* with p =7
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Figure 135: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equation, ¢ = 10™* with p = 9
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Figure 136: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equationx6, ¢ = 1073 with p = 4
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Figure 137: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equationx6, e = 1072 with p = 5
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Figure 138: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equationx6, e = 1073 with p = 7
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Figure 139: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equationx6, e = 1072 with p = 9
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Figure 140: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equationx6, e = 104 with p = 4
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Figure 141: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equationx6, ¢ = 10™* with p = 5
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Figure 142: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equationx6, ¢ = 107 with p =7
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Figure 143: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equationx6, ¢ = 10™* with p = 9
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Figure 144: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equationx12, ¢ = 1073 with p = 4
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Figure 145: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equationx12, € = 1073 with p = 5
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Figure 146: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equationx12, ¢ = 1073 with p = 7
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Figure 147: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equationx12, € = 1073 with p = 9

106



—®— BACOLR/ST-Decompositions v

-® BACOLR/ST-Backsolves -7

—8— BACOLRI/LE-Decompositions X 2e

105 { -® BACOLRI/LE-Backsolves e
—8— BACOLRI/ST-Decompositions

-®- BACOLRI/ST-Backsolves -7

104 4

Matrix Decompositions & Backsolves

103 4

102 103 10~ 10 10 10~ 10-® 10-° 10-1°
Error Tolerance

Figure 148: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equationx12, e = 10~ with p = 4
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Figure 149: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equationx12, e = 10~* with p =5
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Figure 150: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equationx12, e = 10™* with p = 7
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Figure 151: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equationx12, e = 10~* with p = 9
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Figure 152: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Catalytic Surface Reaction Model with p =4
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Figure 153: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Catalytic Surface Reaction Model with p =5
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Figure 154: Number of Matrix Factorizations and Backsolves vs. Tolerance:

Catalytic Surface Reaction Model with p =7
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Figure 155: Number of Matrix Factorizations and Backsolves vs. Tolerance:

Catalytic Surface Reaction Model with p =9
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Figure 156: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Schrédinger Equation with p =4
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Figure 157: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Schrédinger Equation with p =5
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Figure 158: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Schrédinger Equation with p =7
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Figure 159: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Schrédinger Equation with p =9
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Figure 160: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: One Layer Burgers Equation, e = 1072 with p = 4
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Figure 161: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: One Layer Burgers Equation, e = 1072 with p =5
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Figure 163: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
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Figure 164: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: One Layer Burgers Equation, e = 10™* with p = 4
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Figure 165: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: One Layer Burgers Equation, e = 1074 with p = 5

115



—8— BACOLR/ST-Decompositions .9

-® BACOLR/ST-Backsolves el
—8— BACOLRI/LE-Decompositions X o
5 | -® BACOLRI/LE-Backsolves -
10° 7 —e— BACOLRI/ST-Decompositions w g °
-®- BACOLRI/ST-Backsolves - P od

104 4

Complex Matrix Decompositions & Backsolves

10-2 103 10¢ 10 10-¢® 10~7 10" 10° 10710
Error Tolerance

Figure 166: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: One Layer Burgers Equation, e = 10™* with p = 7

—®— BACOLR/ST-Decompositions o )
-® BACOLR/ST-Backsolves -7
—8— BACOLRI/LE-Decompositions X 28
-® BACOLRI/LE-Backsolves el
105 | —o— BACOLRI/ST-Decompositions Y i

-o- BACOLRI/ST-Backsolves - -

104 4

Complex Matrix Decompositions & Backsolves

10-2 103 10¢ 10 10-¢® 10~7 10" 10° 10710
Error Tolerance

Figure 167: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: One Layer Burgers Equation, e = 104 with p = 9
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Figure 168: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equation, € = 1073 with p = 4
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Figure 169: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equation, e = 1072 with p =5
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Figure 170: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equation, ¢ = 1073 with p =7
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Figure 171: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equation, ¢ = 1072 with p = 9
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Figure 172: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equation, e = 10™* with p = 4
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Figure 173: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equation, e = 10~* with p =5
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Figure 174: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equation, e = 107% with p = 7
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Figure 175: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equation, e = 10~* with p = 9
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Figure 176: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx6, € = 1073 with p = 4
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Figure 177: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx6, ¢ = 1073 with p=5
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Figure 178: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx6, ¢ = 1073 with p =17
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Figure 179: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx6, ¢ = 1073 with p =9
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Figure 180: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx6, ¢ = 1074 with p = 4
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Figure 181: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx6, e = 10~* with p =5
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Figure 182: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx6, e = 107% with p = 7
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Figure 183: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx6, e = 10~* with p = 9
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Figure 184: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx12, e = 1073 with p = 4
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Figure 185: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx12, e = 1073 with p=5
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Figure 186: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx12, e = 1073 with p = 7
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Figure 187: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx12, ¢ = 1073 with p =9
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Figure 188: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx12, e = 10™* with p = 4
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Figure 189: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx12, e = 10~* with p =5
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Figure 191: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
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Figure 194: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Catalytic Surface Reaction Model with p =7
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Figure 195: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Catalytic Surface Reaction Model with p =9
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Figure 196: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Schrodinger Equation with p =4
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Figure 197: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Schrodinger Equation with p =5
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Figure 198: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Schrodinger Equation with p =7
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Figure 199: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Schrodinger Equation with p =9
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tol =10~%/p = 4 5 6 7 8 9 10 11

BACOLR/ST 0.06 | 0.07 | 0.08 | 0.09 | 0.11 | 0.13 | 0.15 | 0.19
BACOLR/LE 0.06 | 0.06 | 0.07 | 0.08 | 0.09 | 0.11 | 0.13 | 0.15
BACOLRI/ST 0.03 | 0.04 | 0.04 | 0.04 | 0.06 | 0.07 | 0.08 | 0.10
BACOLRI/LE | 0.04 | 0.04 | 0.05 | 0.05 | 0.06 | 0.06 | 0.07 | 0.09

tol =107 %/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 0.13]0.13 |0.14 | 0.16 | 0.19 | 0.23 | 0.27 | 0.28
BACOLR/LE 0.16 | 0.13 | 0.13 | 0.14 | 0.16 | 0.19 | 0.23 | 0.27
BACOLRI/ST 0.06 | 0.07 | 0.07 | 0.08 | 0.09 | 0.10 | 0.13 | 0.14
BACOLRI/LE | 0.11 | 0.08 | 0.08 | 0.08 | 0.09 | 0.12 | 0.13 | 0.16

tol =108 /p = 4 ) 6 7 8 9 10 11

BACOLR/ST 0.45| 0.38 | 0.35 | 0.34 | 0.37 | 0.40 | 0.47 | 0.50
BACOLR/LE 0.67 | 0.45 | 0.38 | 0.35 | 0.34 | 0.37 | 0.40 | 0.47
BACOLRI/ST 0.22]0.19 | 0.18 | 0.19 | 0.20 | 0.22 | 0.23 | 0.25
BACOLRI/LE | 0.62 | 0.28 | 0.23 | 0.21 | 0.21 | 0.22 | 0.24 | 0.26
tol =10719/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 2.03 | 1.26 | 1.01 | 0.90 | 0.89 | 0.88 | 0.87 | 0.96
BACOLR/LE 4.14 1 2.03 | 1.26 | 1.01 | 0.90 | 0.89 | 0.88 | 0.87
BACOLRI/ST 0.92 | 0.65 | 0.52 | 0.48 | 0.46 | 0.49 | 0.52 | 0.55
BACOLRI/LE | 4.06 | 1.26 | 0.73 | 0.63 | 0.54 | 0.52 | 0.54 | 0.53

Table 12: Machine dependent timings (in seconds), One Layer Burgers equation,
e=10"3,p=4,...,11, tol = 1074,1076,1078, 10710,
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tol = 10~%/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 0.46 | 0.55 | 0.67 | 0.88 | 1.12 | 1.29 | 1.61 | 2.01

BACOLR/LE 0.38 | 0.46 | 0.55 | 0.67 | 0.88 | 1.12 | 1.29 | 1.61

BACOLRI/ST 023 | 029 | 0.33 | 045|056 | 0.72 | 0.90 | 1.18

BACOLRI/LE 031 | 0.34 | 0.36 | 0.44 | 0.54 | 0.68 | 0.79 | 1.09

tol =107%/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 1.08 | 1.19 | 1.36 | 1.49 | 1.78 | 2.17 | 2.59 | 3.35

BACOLR/LE 1.13 | 1.08 | 1.19 | 1.36 | 1.49 | 1.78 | 2.17 | 2.59

BACOLRI/ST 0.54 | 0.61 | 0.64 | 0.77 | 090 | 1.13 | 1.40 | 1.63

BACOLRI/LE 0.89 | 0.72 | 0.7 | 0.88| 090 | 1.06 | 1.27 | 1.53

tol = 1078 /p = 4 ) 6 7 8 9 10 11

BACOLR/ST 3.95 | 3.32 | 3.35 | 3.54 | 4.01 | 4.14 | 4.54 | 5.43

BACOLR/LE 5.19 | 3.95 | 3.32 | 3.35 | 3.54 | 4.01 | 414 | 4.54

BACOLRI/ST 2.31 1.78 | 1.69 | 1.94 | 2.08 | 2.39 | 2.40 | 2.81

BACOLRI/LE 5.20 | 245 | 2.16 | 2.09 | 2.24 | 2.53 | 2.45 | 2.62

tol =10719/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 17.17 | 11.23 | 9.63 | 894 | 8.96 | 9.10 | 10.21 | 10.74

BACOLR/LE 33.75 | 17.17 | 11.23 | 9.63 | 894 | 896 | 9.10 | 10.21

BACOLRI/ST 7.40 | 5.66 | 4.83 | 4.71 | 4.76 | 5.30 | 5.58 | 6.35

BACOLRI/LE — 9.90 | 6.90 | 5.78 | 543 | 5.50 | 5.57 | 6.38

Table 13: Machine dependent timings (in seconds), One Layer Burgers equation,
e=10"% p=4,...,11, tol =1074,1076,1078,1071°.
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tol =10~%/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | 0.11 | 0.14 | 0.16
BACOLR/LE 0.05 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | 0.11 | 0.14
BACOLRI/ST 0.03 | 0.03 | 0.04 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08
BACOLRI/LE | 0.03 | 0.03 | 0.04 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08
tol =107 %/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 0.12 0.12 | 0.12 | 0.13 | 0.15 | 0.17 | 0.19 | 0.23
BACOLR/LE 0.15]0.12 | 0.12 | 0.12 | 0.13 | 0.15 | 0.17 | 0.19

BACOLRI/ST — 1 0.06 | 0.07 | 0.07 | 0.08 | 0.09 | 0.10 | 0.12
BACOLRI/LE | 0.10 | 0.07 | 0.07 | 0.07 | 0.08 | 0.09 | 0.10 | 0.11
tol =108 /p = 4 5 6 7 8 9 10 11

BACOLR/ST 0.42 ] 0.32 | 0.30 | 0.29 | 0.30 | 0.33 | 0.39 | 0.44
BACOLR/LE 0.66 | 0.42 | 0.32 | 0.30 | 0.29 | 0.30 | 0.33 | 0.39
BACOLRI/ST 0.23]0.17 | 0.15 ] 0.16 | 0.17 | 0.18 | 0.20 | 0.24
BACOLRI/LE | 0.66 | 0.26 | 0.20 | 0.18 | 0.18 | 0.18 | 0.20 | 0.22
tol =10719/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 1.88 | 1.19 | 0.92 | 0.82 | 0.77 | 0.76 | 0.76 | 0.80
BACOLR/LE 3.90 | 1.88 | 1.19 | 0.92 | 0.82 | 0.77 | 0.76 | 0.76
BACOLRI/ST 0.95| 0.58 | 0.46 | 0.42 | 0.41 | 0.41 | 0.43 | 0.45
BACOLRI/LE | 4.41 | 1.22 | 0.73 | 0.55 | 0.49 | 0.47 | 0.47 | 0.46

Table 14: Machine dependent timings (in seconds), Two Layer Burgers equation,
e=10"3,p=4,...,11, tol = 1074,1076,1078, 10710,
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tol =10~%/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 0.41 | 0.50 | 0.63 | 0.80 | 1.05 | 1.29 | 1.56 | 2.01
BACOLR/LE 0.35 | 041 | 0.50 | 0.63 | 0.80 | 1.05 | 1.29 | 1.56
BACOLRI/ST 022 | 024 | 0.29 | 0.38 | 0.51 | 0.64 | 0.82 | 0.98
BACOLRI/LE 0.27 | 0.28 | 0.33 | 0.41 | 0.52 | 0.65 | 0.86 | 1.03
tol =107 %/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 1.03 | 1.11 1.28 | 1.47 | 1.84 | 2.23 | 2.70 | 3.48
BACOLR/LE 1.20 | 1.03 | 1.11 | 1.28 | 1.47 | 1.84 | 2.23 | 2.70
BACOLRI/ST 0.53 | 057 | 0.61 |0.73]0.89 | 1.13 | 1.38 | 1.77
BACOLRI/LE 0.85 | 0.68 | 0.70 | 0.81 | 0.90 | 1.10 | 1.33 | 1.62

tol =107 8/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 3.60 | 3.08 [ 3.01 | 3.12 | 3.51 | 3.94 | 4.61 | 5.41
BACOLR/LE 5.54 | 3.60 | 3.08 | 3.01 | 3.12 | 3.51 | 3.94 | 4.61
BACOLRI/ST 1.73 | 1.61 1.55 | 1.70 | 1.85 | 2.06 | 2.36 | 2.79
BACOLRI/LE 498 | 232 | 1.95 | 1.86 | 1.99 | 2.16 | 2.37 | 2.79
tol =10719/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 15.78 | 10.73 | 8.93 | 8.24 | 8.26 | 8.41 | 9.00 | 9.62
BACOLR/LE 30.78 | 15.78 | 10.73 | 8.93 | 8.24 | 8.26 | 8.41 | 9.00
BACOLRI/ST 7.51 | 520 | 4.50 | 4.28 | 4.31 | 4.58 | 4.89 | 5.39
BACOLRI/LE | 30.82 | 10.42 | 6.53 | 5.36 | 5.09 | 5.04 | 5.15 | 5.67

Table 15: Machine dependent timings (in seconds), Two Layer Burgers equation,
e=10"% p=4,...,11, tol = 1074,1076,1078, 10710,
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tol = 10~%/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 0.64 | 0.80 | 1.08 | 1.32 | 1.67 | 2.44 | 3.47 | 4.22
BACOLR/LE 0.55 | 0.64 | 0.80 | 1.08 | 1.32 | 1.67 | 2.44 | 3.47
BACOLRI/ST 036 | 0.34 | 045 | 059 | 0.76 | 1.06 | 1.36 | 1.72
BACOLRI/LE 033 | 036 | 046 | 0.59 | 0.72 | 1.00 | 1.32 | 1.60
tol =107%/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 1.29 | 1.34 | 1.51 | 1.94 | 2.55 | 3.41 | 4.13 | 5.72
BACOLR/LE 1.46 | 1.29 | 1.34 | 1.51 1.94 | 255 | 3.41 | 4.13
BACOLRI/ST — 0.60 | 0.70 | 0.87 | 1.14 | 1.41 | 1.77 | 2.47
BACOLRI/LE 096 | 0.74 | 0.6 | 0.87 | 1.07 | 1.32 | 1.67 | 2.12
tol = 1078 /p = 4 ) 6 7 8 9 10 11

BACOLR/ST 4.70 | 3.70 | 3.63 | 3.76 | 3.96 | 4.77 | 6.48 | 8.77
BACOLR/LE 729 | 470 | 3.70 | 3.63 | 3.76 | 3.96 | 4.77 | 6.48
BACOLRI/ST 217 | 147 | 145 | 1.62 | 1.96 | 2.53 | 3.10 | 3.96
BACOLRI/LE 772 | 264 | 209 | 1.95 | 213 | 2.12 | 2.63 | 3.16
tol =109 /p = 4 ) 6 7 8 9 10 11

BACOLR/ST 27.23 | 16.87 | 13.35 | 12.58 | 12.06 | 12.14 | 12.74 | 13.49
BACOLR/LE 52.44 | 27.23 | 16.87 | 13.35 | 12.58 | 12.06 | 12.14 | 12.74
BACOLRI/ST 9.19 | 541 | 453 | 437 | 454 | 483 | 5.14 | 5.99
BACOLRI/LE | 63.10 | 15.73 | 855 | 6.45 | 5.95 | 5.69 | 6.00 | 5.97

Table 16: Machine dependent timings (in seconds), Two Layer Burgers

equationx6, e = 1072, p=4,...,11, tol =107%,1076,1078,1071°.
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tol =10~%/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 4.80 6.99 10.68 | 16.10 | 24.07 | 32.86 | 42.87 | 60.14
BACOLR/LE 3.43 4.80 6.99 10.68 | 16.10 | 24.07 | 32.86 | 42.87
BACOLRI/ST 2.02 2.78 4.09 6.42 9.56 14.10 | 20.75 | 28.21
BACOLRI/LE 2.51 3.21 4.50 6.49 9.48 14.04 | 21.90 | 29.29
tol =107 %/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 9.90 12.35 | 17.77 | 24.32 | 35.26 | 50.19 | 68.30 | 99.44
BACOLR/LE 10.23 9.90 12.35 | 17.77 | 24.32 | 35.26 | 50.19 | 68.30
BACOLRI/ST 4.24 5.46 6.82 9.86 13.69 | 20.48 | 28.83 | 42.04
BACOLRI/LE 7.20 6.09 7.51 10.19 | 13.34 | 19.17 | 26.28 | 37.77
tol =107%/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 35.29 | 31.97 | 33.07 | 38.85 | 54.37 | 72.98 | 101.37 | 139.70
BACOLR/LE 57.42 | 35.29 | 31.97 | 33.07 | 38.85 | 54.37 | 72.98 | 101.37
BACOLRI/ST 12.65 | 13.40 | 14.54 | 19.44 | 24.21 | 29.82 | 39.80 | 57.01
BACOLRI/LE 49.31 | 20.02 | 17.71 18.20 | 22.12 | 28.63 | 37.60 | 50.56
tol =10719/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 213.53 | 139.61 | 118.58 | 114.23 | 118.34 | 125.05 | 146.05 | 197.02
BACOLR/LE 387.40 | 213.53 | 139.61 | 118.58 | 114.23 | 118.34 | 125.05 | 146.05
BACOLRI/ST 64.19 | 43.67 | 39.70 | 40.57 | 44.37 | 55.41 | 67.47 | 86.79
BACOLRI/LE — 118.19 | 68.97 | 57.56 | 55.76 | 57.42 | 63.27 | 76.48

Table 17: Machine dependent timings (in seconds), Two Layer Burgers
equationx6, e = 1074, p=4,....11, tol =107%,1076,1078,1071°.
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tol = 10~%/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 2.94 4.07 6.03 | 7.80 | 10.22 | 14.20 | 19.79 | 25.13
BACOLR/LE 2.37 2.94 4.07 | 6.03 | 7.80 | 10.22 | 14.20 | 19.79
BACOLRI/ST 1.73 1.67 227 | 317 | 434 | 6.35 | 851 | 11.05
BACOLRI/LE 1.44 1.70 226 | 3.07 | 3.98 | 543 | 8.03 | 10.02
tol =107%/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 6.62 6.97 8.28 | 11.11 | 14.88 | 20.11 | 26.09 | 34.15
BACOLR/LE 7.27 6.62 6.97 | 8.28 | 11.11 | 14.88 | 20.11 | 26.09
BACOLRI/ST — 2.69 3.38 | 452 | 6.06 | 8.74 | 11.48 | 15.73
BACOLRI/LE 4.69 3.70 3.86 | 450 | 592 | 8.11 | 10.85 | 13.27
tol = 1078 /p = 4 ) 6 7 8 9 10 11

BACOLR/ST 23.23 | 19.93 | 20.57 | 20.51 | 23.64 | 28.01 | 37.83 | 48.90
BACOLR/LE 32.38 | 23.23 | 19.93 | 20.57 | 20.51 | 23.64 | 28.01 | 37.83
BACOLRI/ST 10.88 7.15 7.18 | 8.19 | 11.52 | 14.18 | 19.52 | 25.70
BACOLRI/LE 40.13 | 14.57 | 10.92 | 10.71 | 12.24 | 12.58 | 15.39 | 21.97
tol =109 /p = 4 ) 6 7 8 9 10 11

BACOLR/ST 120.49 | 75.17 | 65.21 | 63.22 | 62.52 | 64.92 | 71.02 | 81.04
BACOLR/LE 196.35 | 120.49 | 75.17 | 65.21 | 63.22 | 62.52 | 64.92 | 71.02
BACOLRI/ST 46.26 | 30.44 | 26.19 | 25.65 | 26.53 | 28.68 | 33.10 | 39.39
BACOLRI/LE 288.69 | 78.40 | 47.19 | 37.79 | 34.51 | 36.26 | 39.92 | 41.02

Table 18: Machine dependent timings (in seconds), Two Layer Burgers
equationx12, e = 1073, p=4,...,11, tol = 10*,107%,1078, 107 1°.
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tol =10~%/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 26.79 43.38 | 64.51 | 95.33 | 139.98 | 180.60 | 257.60 | 341.84
BACOLR/LE 16.43 26.79 | 43.38 | 64.51 | 95.33 | 139.98 | 180.60 | 257.60
BACOLRI/ST 9.84 14.42 | 23.74 | 37.75 | 60.11 | 88.15 | 127.47 | 185.86
BACOLRI/LE 12.51 17.40 | 25.55 | 39.08 | 58.32 | 91.80 | 132.70 | 192.89
tol =107 %/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 54.82 70.18 | 101.78 | 141.27 | 209.24 | 288.91 | 414.65 | 559.11
BACOLR/LE 50.29 54.82 | 70.18 | 101.78 | 141.27 | 209.24 | 288.91 | 414.65
BACOLRI/ST 19.37 27.24 | 37.12 | 55.94 | 85.33 | 128.31 | 181.19 | 269.66
BACOLRI/LE 35.77 32.33 | 40.83 | 61.38 | 79.55 | 119.74 | 173.98 | 225.42
tol =107%/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 185.55 | 171.09 | 181.80 | 218.50 | 286.54 | 416.69 | 588.50 | 776.33
BACOLR/LE 253.16 | 185.55 | 171.09 | 181.80 | 218.50 | 286.54 | 416.69 | 588.50
BACOLRI/ST 57.90 66.57 | 77.52 | 111.62 | 137.44 | 189.13 | 246.85 | 359.23
BACOLRI/LE 274.80 | 112.43 | 98.81 | 102.78 | 124.60 | 169.11 | 235.49 | 328.76
tol =10719/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 952.93 | 609.53 | 558.62 | 548.26 | 592.67 | 656.21 | 760.71 | 1046.63
BACOLR/LE 1398.00 | 952.93 | 609.53 | 558.62 | 548.26 | 592.67 | 656.21 | 760.71
BACOLRI/ST 329.52 | 241.92 | 226.28 | 232.36 | 272.72 | 335.29 | 434.17 | 550.88
BACOLRI/LE — 570.95 | 379.06 | 329.05 | 327.68 | 348.56 | 399.72 | 478.84

Table 19: Machine dependent timings (in seconds), Two Layer Burgers
equationx12, e = 1074, p=4,...,11, tol = 107*,107%,1078, 10~ 1°.
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tol = 10~%/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 2.36 2.80 | 3.49 | 445 | 539 | 7.31 | 9.92 | 13.05
BACOLR/LE 2.03 236 | 2.80 | 349 | 445 | 539 | 7.31 | 9.92
BACOLRI/ST 0.77 095 | 1.26 | 1.78 | 2.26 | 3.00 | 4.02 | 5.41
BACOLRI/LE 1.24 1.19 | 143 | 1.78 | 2.27 | 299 | 3.93 | 5.17
tol =107%/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 6.83 8.06 | 9.51 | 11.54 | 14.16 | 17.03 | 20.11 | 24.89
BACOLR/LE 8.33 6.83 | 8.06 | 9.51 | 11.54 | 14.16 | 17.03 | 20.11
BACOLRI/ST 2.30 2.80 | 3.38 | 426 | 5.18 | 6.29 | 7.86 | 9.99
BACOLRI/LE 4.62 3.96 | 431 | 488 | 589 | 745 | 8.84 | 10.65
tol = 1078 /p = 4 ) 6 7 8 9 10 11

BACOLR/ST 19.48 | 19.96 | 19.56 | 22.47 | 25.14 | 30.24 | 36.25 | 41.71
BACOLR/LE 34.91 | 19.48 | 19.96 | 19.56 | 22.47 | 25.14 | 30.24 | 36.25
BACOLRI/ST 7.04 6.95 | 7.04 | 831 | 940 | 11.24 | 13.79 | 16.13
BACOLRI/LE 28.59 | 11.31 | 10.08 | 10.26 | 11.18 | 12.59 | 14.87 | 17.75
tol =109 /p = 4 ) 6 7 8 9 10 11

BACOLR/ST 83.59 | 57.96 | 46.63 | 46.69 | 46.20 | 51.45 | 54.73 | 59.65
BACOLR/LE 210.76 | 83.59 | 57.96 | 46.63 | 46.69 | 46.20 | 51.45 | 54.73
BACOLRI/ST 29.36 | 19.08 | 16.62 | 17.13 | 17.48 | 19.96 | 22.13 | 25.10
BACOLRI/LE 173.76 | 49.53 | 28.04 | 23.51 | 22.67 | 23.71 | 25.08 | 26.74

Table 20: Machine dependent timings (in seconds), Catalytic Surface Reaction

Model, p=4,...,11, tol = 107*,107%,1078, 10~ 1°.
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tol =10~%/p = 4 ) 6 7 8 9 10 11

BACOLR/ST 0.16 | 0.15 | 0.17 | 0.17 | 0.18 | 0.20 | 0.21 | 0.23
BACOLR/LE 0.15] 0.16 | 0.15 | 0.17 | 0.17 | 0.18 | 0.20 | 0.21
BACOLRI/ST 0.08 | 0.08 | 0.08 | 0.08 | 0.09 | 0.09 | 0.10 | 0.11
BACOLRI/LE | 0.08 | 0.07 | 0.08 | 0.09 | 0.08 | 0.09 | 0.10 | 0.10

tol =107%/p = 4 5 6 7 8 9 10 11

BACOLR/ST 0.19 | 0.18 | 0.21 | 0.22 | 0.22 | 0.24 | 0.26 | 0.28
BACOLR/LE 0.23 1 0.19 | 0.18 | 0.21 | 0.22 | 0.22 | 0.24 | 0.26
BACOLRI/ST 0.09 | 0.09 | 0.09 | 0.10 | 0.11 | 0.11 | 0.12 | 0.13
BACOLRI/LE 0.12 { 0.09 | 0.10 | 0.11 | 0.11 | 0.12 | 0.13 | 0.13

tol =108 /p = 4 ) 6 7 8 9 10 11

BACOLR/ST 0.37 | 0.27 | 0.30 | 0.32 | 0.31 | 0.34 | 0.35 | 0.40
BACOLR/LE 0.59 | 0.37 | 0.27 | 0.30 | 0.32 | 0.31 | 0.34 | 0.35
BACOLRI/ST 0.16 | 0.14 | 0.13 | 0.14 | 0.14 | 0.16 | 0.16 | 0.19
BACOLRI/LE | 0.40 | 0.22 | 0.16 | 0.17 | 0.17 | 0.17 | 0.17 | 0.18

tol =10719/p = 4 ) 6 7 8 9 10 11
BACOLR/ST 1.22 | 0.88 | 0.67 | 0.63 | 0.57 | 0.56 | 0.59 | —
BACOLR/LE — | 1.22 ] 0.88 | 0.67 | 0.63 | 0.57 | 0.56 | 0.59
BACOLRI/ST 0.50 | 0.35 | 0.29 | 0.26 | 0.28 | 0.29 | 0.27 | 0.28
BACOLRI/LE — 1079|051 | 0.41 | 0.33 | 0.31 | 0.29 | 0.30

Table 21: Machine dependent timings (in seconds), Schrodinger Equation, p =
4,...,11, tol =107*,1076,1078,1071°.
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Figure 200: Work vs. Accuracy: One Layer Burgers equation, e = 1073, p =4
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Figure 201: Work vs. Accuracy: One Layer Burgers equation, e = 1073,p =5
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Figure 202: Work vs. Accuracy: One Layer Burgers equation, e = 1073,p =6

10° 4 data fit to logy = mlogx + b -
—— BACOLR/ST sos
—— BACOLR/LE R s
—— BACOLRI/ST A o (Y
== BACOLRI/LE Al (3o

10—1 4

CPU Time (s)

102 T T T T T
102 104 10-¢ 10-8 10-10
L2-norm error

Figure 203: Work vs. Accuracy: One Layer Burgers equation, e = 1073,p =17
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Figure 204: Work vs. Accuracy: One Layer Burgers equation, e = 1073,p = 8
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Figure 205: Work vs. Accuracy: One Layer Burgers equation, e = 1073,p =9
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Figure 206: Work vs. Accuracy: One Layer Burgers equation, e = 1073, p = 10
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Figure 207: Work vs. Accuracy: One Layer Burgers equation, e = 1073, p = 11
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Figure 208: Work vs. Accuracy: One Layer Burgers equation, ¢ = 1074,p =4
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Figure 209: Work vs. Accuracy: One Layer Burgers equation, e = 1074, p =5
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Figure 210: Work vs. Accuracy: One Layer Burgers equation, e = 1074, p =6
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Figure 211: Work vs. Accuracy: One Layer Burgers equation, ¢ = 1074, p =7
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Figure 212: Work vs. Accuracy: One Layer Burgers equation, e = 1074,p = 8
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Figure 213: Work vs. Accuracy: One Layer Burgers equation, e = 107%,p =9
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Figure 214: Work vs. Accuracy: One Layer Burgers equation, ¢ = 1074, p = 10
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Figure 215: Work vs. Accuracy: One Layer Burgers equation, ¢ = 1074, p = 11
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Figure 216: Work vs. Accuracy: Two Layer Burgers equation, e = 1073, p = 4
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Figure 217: Work vs. Accuracy: Two Layer Burgers equation, e = 1073, p =5
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Figure 218: Work vs. Accuracy: Two Layer Burgers equation, e = 1073, p = 6
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Figure 219: Work vs. Accuracy: Two Layer Burgers equation, e = 1073, p =7

152



10°

data fit to logy = mlogx + b v
—— BACOLR/ST _‘a-
== BACOLR/LE ad .
—— BACOLRI/ST
== BACOLRI/LE

10—1 -

CPU Time (s)

102 104 10-¢ 10-8 10-10
L2-norm error

Figure 220: Work vs. Accuracy: Two Layer Burgers equation, e = 1073, p =8
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Figure 221: Work vs. Accuracy: Two Layer Burgers equation, e = 1073, p =9
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Figure 222: Work vs. Accuracy: Two Layer Burgers equation, e = 1073, p = 10
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Figure 223: Work vs. Accuracy: Two Layer Burgers equation, e = 1073, p = 11
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Figure 224: Work vs. Accuracy: Two Layer Burgers equation, e = 1074, p = 4
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Figure 225: Work vs. Accuracy: Two Layer Burgers equation, e = 1074, p =5
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Figure 226: Work vs. Accuracy: Two Layer Burgers equation, e = 1074, p =6
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Figure 227: Work vs. Accuracy: Two Layer Burgers equation, e = 1074, p =7

156



10t
data fit to logy = mlogx + b -
—— BACOLR/ST Iy M
== BACOLR/LE
—— BACOLRI/ST D
== BACOLRI/LE R "

10°

CPU Time (s)

104 10-¢ 10-8 10-10
L2-norm error

1072

Figure 228: Work vs. Accuracy: Two Layer Burgers equation, e = 1074, p = 8
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Figure 229: Work vs. Accuracy: Two Layer Burgers equation, e = 1074, p =9
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Figure 230: Work vs. Accuracy: Two Layer Burgers equation, e = 1074, p = 10

Figure 231: Work vs. Accuracy: Two Layer Burgers equation, ¢ = 1074, p = 11
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Figure 232: Work vs. Accuracy: Schrodinger System, p = 4
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Figure 233: Work vs. Accuracy: Schréodinger System, p = 5
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Figure 234: Work vs. Accuracy: Schrédinger System, p = 6
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Figure 235: Work vs. Accuracy: Schréodinger System, p =7
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Figure 236: Work vs. Accuracy: Schréodinger System, p = 8
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Figure 237: Work vs. Accuracy: Schréodinger System, p =9
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Figure 238: Work vs. Accuracy: Schrodinger System, p = 10
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Figure 239: Work vs. Accuracy: Schrodinger System, p = 11
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Figure 240: Rel. Work-Accuracy:
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One Layer Burgers equation, e = 1073, p = 4

1.4 4 — = BACOLR/LE
- —— BACOLRI/ST
— = BACOLRI/LE
B 12- e T
b= —
e -
& 1.0 e
g /”’
[«]
2 081 e =
- -
o -
8 - —
“2’ 0.6 1 —
- -
©
E /
o 041
£
'_
0.2 1
0.0 T T T T T
1072 1074 10-6 10-8 10-1°0

Figure 241: Rel. Work-Accuracy:
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One Layer Burgers equation, e = 1073, p =5
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Figure 242: Rel. Work-Accuracy: One Layer Burgers equation, e = 1073, p =6
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Figure 243: Rel. Work-Accuracy: One Layer Burgers equation, e = 1073, p =7
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Figure 244: Rel. Work-Accuracy: One Layer Burgers

equation, e = 1073,p =8
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Figure 245: Rel. Work-Accuracy: One Layer Burgers equation, e = 1073, p =9
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Figure 246: Rel. Work-Accuracy: One Layer Burgers equation, e = 1073, p = 10
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Figure 247: Rel. Work-Accuracy: One Layer Burgers equation, e = 1073, p = 11
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One Layer Burgers equation, e = 1074, p = 4
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One Layer Burgers equation, e = 1074, p =5
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Figure 250: Rel. Work-Accuracy: One Layer Burgers equation, e = 1074, p = 6
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Figure 251: Rel. Work-Accuracy: One Layer Burgers equation, e = 1074, p =7
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Figure 252: Rel. Work-Accuracy: One Layer Burgers equation, e = 1074, p =8
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Figure 253: Rel. Work-Accuracy: One Layer Burgers equation, e = 1074, p =9
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Figure 254: Rel. Work-Accuracy: One Layer Burgers equation, e = 1074, p = 10
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Figure 255: Rel. Work-Accuracy: One Layer Burgers equation, e = 1074, p = 11
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Figure 256: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1073, p = 4
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Figure 257: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1073, p =5
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Figure 258: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1073, p =6
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Figure 259: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1073, p =7
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Figure 260: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1073, p = 8
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Figure 261: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1073, p =9
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Figure 262: Rel. Work-Accuracy:
10

Figure 263: Rel. Work-Accuracy: Two Layer Burgers equation, € = 1073, p
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Figure 264: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1074, p = 4
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Figure 265: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1074, p =5
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Figure 266: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1074, p = 6
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Figure 267: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1074, p =7
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Figure 268: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1074, p = 8
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Figure 269: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1074, p =9
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Figure 270: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1074, p

10

Time relative to BACOLR/ST (fitted)

144 —— BACOLR/LE
. —— BACOLRI/ST
—— BACOLRI/LE
1.2
1.0
0.8 i =
0.6 -
0.4
0.2
0.0 = : T . .
107t 103 10-5 1077 10-9

L2-norm error

Figure 271: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1074, p
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Figure 272: Rel. Work-Accuracy: Schrodinger System, p = 4
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Figure 273: Rel. Work-Accuracy: Schrédinger System, p =5
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Figure 274: Rel. Work-Accuracy: Schrédinger System, p = 6
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Figure 275: Rel. Work-Accuracy: Schrédinger System, p = 7
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Figure 276: Rel. Work-Accuracy: Schrédinger System, p = 8
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Figure 277: Rel. Work-Accuracy: Schrédinger System, p =9
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Figure 278: Rel. Work-Accuracy: Schrédinger System, p = 10
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Figure 279: Rel. Work-Accuracy: Schrédinger System, p = 11
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Figure 280: BACOLR/ST Work vs. Accuracy: One Layer Burgers equation
e=10"3%p=4...11
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Figure 281: BACOLR/LE Work vs. Accuracy: One Layer Burgers equation
e=10"3%p=4...11
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Figure 282: BACOLRI/ST Work vs. Accuracy: One Layer Burgers equation
e=10"3%p=4...11
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Figure 283: BACOLRI/LE Work vs. Accuracy: One Layer Burgers equation
e=10"3%p=4...11
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Figure 284: BACOLR/ST Work vs. Accuracy: One Layer Burgers equation
e=10"%p=4...11
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Figure 285: BACOLR/LE Work vs. Accuracy: One Layer Burgers equation
e=10"%p=4...11
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Figure 286: BACOLRI/ST Work vs. Accuracy: One Layer Burgers equation
e=10"%p=4...11
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Figure 287: BACOLRI/LE Work vs. Accuracy: One Layer Burgers equation

e=10"%p=4...11
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data fit to logy = mlogx + b
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Figure 288: BACOLR/ST Work vs. Accuracy: Two Layer Burgers equation
e=10"3%p=4...11
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Figure 289: BACOLR/LE Work vs. Accuracy: Two Layer Burgers equation
e=10"3%p=4...11
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Figure 290: BACOLRI/ST Work vs. Accuracy: Two Layer Burgers equation
e=10"3%p=4...11
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Figure 291: BACOLRI/LE Work vs. Accuracy: Two Layer Burgers equation
e=10"3%p=4...11
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Figure 292: BACOLR/ST Work vs. Accuracy: Two Layer Burgers equation
e=10"%p=4...11
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Figure 293: BACOLR/LE Work vs. Accuracy: Two Layer Burgers equation
e=10"%p=4...11
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data fit to logy = mlogx + b
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Figure 294: BACOLRI/ST Work vs. Accuracy: Two Layer Burgers equation
e=10"%p=4...11
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Figure 295: BACOLRI/LE Work vs. Accuracy: Two Layer Burgers equation
e=10"%p=4...11
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Figure 296: BACOLR/ST Work vs. Accuracy: Schrédinger System; p = 3...11
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Figure 297: BACOLR/LE Work vs. Accuracy: Schrédinger System; p =4...11
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Figure 298: BACOLRI/ST Work vs. Accuracy: Schrodinger System; p =
4...11
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Figure 299: BACOLRI/LE Work vs. Accuracy: Schrodinger System; p =
4...11
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