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Abstract

This report considers BACOLI and BACOLRI, two recently developed
members of a family of software packages for the error controlled numer-
ical solution of systems of one-dimensional partial differential equations
(PDEs). The two original members of this family, BACOL and BACOLR,
employ a spatial discretization scheme based on B-spline Gaussian collo-
cation which is coupled with spatial error estimation and adaptive mesh
refinement to provide spatial error control. For the error controlled time
integration, BACOL employs a package called DASSL, which is based
on a family of Backward Differentiation Formulas (BDFs). BACOLR, a
modification of BACOL, replaces DASSL with RADAUS5, which is based
on a fifth order implicit Runge-Kutta method. The first of the new pack-
ages, BACOLI, was developed from BACOL; the second new package,
BACOLRI, was developed from BACOLR. The fundamental difference
between each new package and their corresponding earlier versions is a
more efficient spatial error estimation computation based on the intro-
duction of two new interpolation-based schemes. In this report, we pro-
vide extensive numerical results to compare the performances of the two
new packages. We show that BACOLRI has comparable performance to
that of BACOLI on a standard set of test problems and that, for prob-
lems where BACOLI fails due to stability issues associated with the BDF
time integration methods, it is able to efficiently compute error controlled
numerical solutions.
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1 Introduction

In this report we consider B-spline [7] Gaussian collocation software that im-
plements adaptive control of estimates of the spatial and temporal errors for
a system of one-dimensional (1D) partial differential equations (PDEs). The
software computes a numerical solution such that corresponding high quality
estimates of the spatial and temporal errors satisfy a user-prescribed tolerance.
An error controlled computation provides two advantages:

e The user can have reasonable confidence that the returned numerical so-
lution has an error that is consistent with the requested tolerance.

e The user can expect that the computational costs will be consistent with
the requested tolerance.

The B-spline Gaussian collocation process is used to perform the spatial dis-
cretization, leading to an approximation of the original PDE system by a larger
system of time-dependent ODEs which is coupled with the boundary conditions
to give a system of time-dependent Differential-Algebraic Equations (DAEs).
The DAE system is solved using a high quality DAE solver that controls an
estimate of the temporal error using adaptive time-stepping and possibly also
adaptive method order selection. The spatial adaptivity, through which control
of the spatial error estimate is obtained, involves the adaptive refinement of a
spatial mesh which partitions the spatial domain.

The problem class we consider in this report is a PDE system of size NPDE
of the form,

w(z,t) = f (6o, ), u, (2, 1), u, (2, 1), a<z<b t=to, (1)
with boundary conditions,
by (tu(a, t),u,(a, 1)) =0, bp(tu(b,t),u,(b,1)) =0, t>to, (2)
and initial conditions,
u(z, to) = ug(x), a <z <bh. (3)

This reports focuses on two recently developed members of a family of er-
ror control B-spline Gaussian collocation software packages for the numerical
solution of systems of PDEs having the above form. The earliest member of
this family is BACOL [20, 22], which was developed about 15 years ago. BA-
COL uses the DAE solver DASSL [5], which is based on a family of multi-step
methods known as Backward Differentiation Formulas (BDFs) [5]. DASSL uses
both adaptive time stepping and BDF order selection to control an estimate of
the temporal error. BACOL has been shown, in a comparison with comparable
software for 1D PDEs, to provide superior performance, especially for problems
with solutions exhibiting sharp moving layers and for sharp tolerances [21].
The second member of this family, developed about 10 years ago, is BACOLR,;



this package is a modification of BACOL that replaces DASSL with the DAE
solver RADAUS5 [11], which is based on a 5th order implicit Runge-Kutta (IRK)
method of Radau ITA type [11]. In [19], numerical comparisons of BACOL and
BACOLR show that the two codes perform similarly on standard test problems
and that BACOLR has much superior performance on problems for which the
stability of the higher order BDFs is an issue. Such problems are characterized
as those which lead to DAE systems which have Jacobians with eigenvalues near
the imaginary axis, such as, Schrodinger problems.

The B-spline Gaussian collocation algorithm assumes that the numerical
solution is expressed in terms of a C''-continuous B-spline basis of degree p on
a mesh that partitions [a,b]. In both BACOL and BACOLR, the spatial error
estimate s obtained by computing a second numerical solution which is based
on B-splines of degree p+1. The computation of the second numerical solution
essentially doubles the overall execution time.

This issue has recently been addressed in the modified version of BACOL
known as BACOLI [15], released about three years ago. In BACOLI, the compu-
tation of the degree p + 1 numerical solution is replaced with the more efficient
computation of an interpolant to the degree p numerical solution. BACOLI
provides two new interpolation-based spatial error estimation schemes, each of
which employs a corresponding spatial error control mode. The BACOLI project
also includes a Fortran 95 wrapper that greatly simplifies the use of BACOLI
compared to what is required to use BACOL.

The most recently developed member of this family of software packages
is a modified version of BACOLR known as BACOLRI [1]. This package was
developed from BACOLR; the computation of the degree p+1 numerical solution
is replaced with an option to use one of two new interpolants that then serve as
the basis for the spatial error estimation scheme. These new interpolants are the
same ones that have been implemented in BACOLI. This project also includes
a Fortran 95 wrapper that greatly simplifies the use of BACOLRI compared to
what is required to use BACOLR. Because it is based on BACOLR, BACOLRI
also avoids the stability issues that arise for BDFs for certain types of problems
such as Schrodinger problems.

The following diagram shows the relationship among the four packages.

BACOL = Improved Temporal Stability = BACOLR

I I
Improved Improved
Spatial Spatial
Error Error
FEstimate FEstimate
I I

BACOLI = Improved Temporal Stability = BACOLRI

As mentioned earlier, BACOL was compared with a number of comparable
packages in [21], and BACOLR was compared with BACOL in [19]. The recent



papers [15, 18] and report [17] compare BACOL with BACOLI and the recent
report [16] compares BACOLR with BACOLRI. The purpose of this report is to
complete the comparison process by providing numerical results that compare
the two newest packages, BACOLI and BACOLRI.

This report is organized as follows. In Section 2, we provide a review of
the details of the algorithms implemented in BACOL, BACOLR, BACOLI, and
BACOLRI. In Section 3, we provide numerical results based on an extensive set
of tests performed to compare BACOLI with BACOLRI. We close, in Section
4, with a summary, our conclusions, and suggestions for future work.

2 Review of BACOL Software Family

BACOL, BACOLR, BACOLI, and BACOLRI assume a spatial mesh, {z; }VINT
which partitions [a,b]. NINT is the number of spatial subintervals defined by
this mesh. Based on this mesh, and for a given positive integer p (4 < p < 11),
the numerical solution is expressed as a linear combination of C!-continuous,
degree p, piecewise polynomials, represented in terms of a B-spline basis. The
numerical solution, U(x, t), has the form,

Z gp i ’1 ’ (4)

where Y, ;(t) is the (unknown) time dependent (vector) coefficient of the i-th

B-spline basis function, By ;(z), and NC, = NINT (p — 1) + 2. The Gaussian
collocation spatial discretization process involves requiring that U(z,t) satisfy
(1) at p—1 collocation points within each spatial mesh subinterval; these points
are the images of the order p—1 Gauss points, {p; }?_;, on [0, 1]. The collocation
points, §,l=2,...,NC), — 1, are given by,

Jl’

& = xi1+hip;, where I=1+(G—1)(p—1)+,
for i=1,...,NINT, j=1,....,p—1, (5)

where h; = x;—1 — x;. The corresponding collocation conditions are

Qt(&a ) f(t §la (gla )an(glat)anx(gl;t))a l= 1+(Z_1)(p_1)+]5 (6)

where i = 1,...,NINT,j5 = 1,...,p — 1. The numerical solution, U(z,t), is
also required to also satisfy the boundary conditions at the points, £&; = a and
§Nnc, = b; this gives the conditions,

by (t,U(a,t),Uy(a,t)) =0,  bg(t,U(b,t),U,(b,t)) =0. (7)

The B-spline coefficients, Y, ;(t), for a given time ¢, are computed (using
temporal error control) by a DAE solver which solves the DAE system consisting
of the collocation conditions, (6), and boundary conditions, (7). Once these
coefficients are computed at time ¢, the numerical solution, for any z € [a, b],



can be obtained from (4). Because the codes use Gaussian collocation based on
Gauss points of order p — 1, the numerical solution has a spatial error that is
O(hP*1), where h = maxYZNT h; [9, 6].

As mentioned in the previous section, BACOL and BACOLI solve (6), (7),
using DASSL while BACOLR and BACOLRI use RADAUS5. In either case,
the DAE solvers require, as a central part of their computations, the solution
of linear systems, that, due to the use of B-spline collocation, have an almost
block diagonal (ABD) structure [8]. In BACOL, BACOLR, BACOLI, and BA-
COLRI these linear systems are treated using the software package, COLROW
[8], which is designed to efficiently handle such systems. Within COLROW,
the CRDCMP routine performs factorizations of the ABD coefficient matrices,
while the CRSLVE routine performs backsolves on the factored ABD systems.
In BACOLR and BACOLRI, because of the type of IRK method employed
by RADAUS, it is also necessary to solve ABD systems that involve complex
numbers. BACOLR and BACOLRI therefore also employ the complex version
of COLROW known as COMPLEXCOLROW [13]; the routine CCRCMP per-
forms factorizations of the complex ABD coefficient matrices, while the routine
CCRSLV performs backsolves of the factored complex ABD systems. See [19],
pages 15:8-15:9, for further details.

After each accepted time step, the BACOL, BACOLR, BACOLI, and BA-
COLRI packages compute an estimate of the spatial error. If the spatial error
estimate does not satisfy the tolerance, the numerical solution is rejected and
a remeshing (i.e., a redistribution and possible refinement of the spatial mesh)
is performed. The spatial mesh adaption algorithm is based on the principle
of equidistributing the spatial error estimate. Both the location and number of
mesh points can be changed during a remeshing in order to adapt to the size
(with respect to the user tolerance) and distribution of the spatial error estimate
over the spatial domain. See [22] for further details.

As mentioned in the previous section, BACOL and BACOLR obtain the
spatial error estimates by computing a second approximate solution, U(x,t),
on the same spatial mesh, using the B-spline collocation spatial discretization
algorithm described earlier, followed by the solution of the corresponding time-
dependent DAE system. The only differences from the computation associated
with U(x, t) are the use of B-splines of degree p + 1 and collocation points that
are the images of the order p Gauss points on [0,1] mapped onto to each spatial
subinterval. This implies that the spatial error of U(z,t) is O(hP*2). A scaled
difference of U(x,t) and U(z,t) is then computed to provide a spatial error
estimate for U(z,t) [22]. The computation of U(x,t), as mentioned earlier,
essentially doubles the overall cost and represents an obvious inefficiency in the
computation.

More recent work has involved the goal of trying to avoid the computation
of U(z,t) and obtain a spatial error estimate in a more efficient manner. One
direction of investigation [2] is based on the observation that, at certain points
within the spatial domain, the spatial accuracy of U(z,t) is at least one order
higher, i.e., O(hPT2), than it is at an arbitrary point in the spatial domain; see
[2] for further details; these solution values are said to be superconvergent. The



points at which U(z, t) is superconvergent include the mesh points as well as cer-
tain other points (see [2]) internal to each subinterval. It is also the case that the
U, (x,t) values at the mesh points are superconvergent. Using these supercon-
vergent U(z,t) and U, (z,t) values, a Hermite-Birkhoff polynomial interpolant
(see [2]) associated with each spatial mesh subinterval can be constructed. A
sufficient number of higher order values are interpolated in order to ensure that
the interpolation error is dominated by the spatial error of the interpolated val-
ues. The spatial error of these interpolants is therefore O(hP™2). Over |[a, b],
these Hermite-Birkhoff interpolants give a C''-continuous piecewise SuperCon-
vergent Interpolant, which we call the SCI. In this approach, the computation
of U(x,t) is replaced by the construction of the SCI and the latter then replaces
U(x,t) in the computation of the spatial error estimate for U(z, ).

As mentioned earlier, the spatial error estimation and control scheme imple-
mented in BACOL and BACOLR, computes two numerical solutions, U(z,t),
of order p + 1, and U(z,t), of order p + 2. The higher order solution, U(x,t),
is computed only for use in the computation of a spatial error estimate for the
lower order solution, U(x,t). The numerical solution U(x,t) is returned to the
user and the spatial error estimate for U(z,t) is controlled to be less than the
user tolerance and is used to drive the spatial mesh adaptation process. This is
an example of what is known as standard (ST) spatial error control.

However, it could be argued that it might be preferable for BACOL and
BACOLR to return the higher order, i.e., more accurate, numerical solution,
U(x,t). This could be done with a simple modification to BACOL or BACOLR
since these packages compute both U(x,t) and U(x, t) for every time step. How-
ever, while either of these solutions could be returned to the user, the difference
between the two gives a spatial error estimate only for U(z,t). In the case where
the higher order solution U(x,t) is returned to the user, the spatial error control
is still based on the spatial error estimate for the lower order solution, U(x,t).
This alternative type of error control has been used for many decades in the
context of Runge-Kutta formula pairs for the numerical solution of initial value
ordinary differential equations (IVODEs) - see, e.g., [10] - and is known as local
extrapolation (LE) error control.

The point raised in the previous paragraph suggests an alternative approach
to addressing the inefficient computation of the two numerical solutions that
is done in BACOL and BACOLR. Rather than removing the computation of
U(z,t) and replacing it with the construction of the SCI, another possibility is to
remove the computation of U(z,t) and replace it with an interpolant. The idea
is to construct an interpolant whose error (at least asymptotically) would be the
same as that of U(x,t). Then the difference between U(z,t) and this interpolant
would provide an estimate that would be the same (at least asymptotically) as
is currently computed in BACOL or BACOLR. In this case, U(z,t) would be
returned to the user and the spatial error estimate and control would be the
same as described in the previous paragraph, namely, LE error control.

The interpolant required for this alternative approach is again a Hermite-
Birkhoff polynomial interpolant on each subinterval. However it is of a different
type than that upon which the SCI is based. It interpolates U(x,t) and U, (w, t)



at the mesh points but the remaining interpolation points (which are internal
to the subinterval) at which U(z, t) is interpolated, are chosen so that the inter-
polation error of this Hermite-Birkhoff interpolant is asymptotically equivalent
to the spatial error for U(x,t). The leading order term in the spatial error for
U(x,t) on each subinterval has a known form - see, e.g., [4] - and it is possible
to construct an interpolant whose interpolation error has this same form. In
this case the interpolation error dominates the spatial error associated with the
U(x,t) and U, (x,t) values upon which the interpolant is based. Over [a, b],
these Hermite-Birkhoff interpolants give a C'-continuous interpolant which is
has an error that is O(hP*!), one order lower than that of U(x,t). This inter-
polant is referred to as the Lower Order Interpolant (LOI). See [3] for further
details. A scaled difference of U(z,t) and the LOI then gives the spatial error
estimate. As mentioned above, since U(z,t) is returned to the user but the
spatial error control is based on a spatial error estimate that is for a numerical
solution that is of one lower spatial order, this is an example of LE spatial error
control.

Although in the above we have described the SCI as being associated with the
case where U(z, 1) is the returned solution and the LOI as being associated with
the case where U(z, t) is the returned solution, in fact the situation is somewhat
simpler. When BACOLI or BACOLRI is called with a given input value for p,
it computes and returns a numerical solution based on B-splines of degree p. If
the ST spatial error control mode is chosen, then the codes construct the SCI
based on this degree p numerical solution and use this interpolant to generate
a spatial error estimate which is then used as the basis for ST spatial error
control. If the LE spatial error control mode is chosen, then the codes construct
the LOI based on this degree p numerical solution and use this interpolant to
generate a spatial error estimate which is then used to provide LE spatial error
control. Thus the availability of the two types of interpolants provides an option
for two modes of spatial error control, ST mode or LE mode, similar to what
is available when a Runge-Kutta formula pair is used to provide error control
for an IVODE. The report [14] and the paper [15] describe the modifications
made to BACOL to replace the computation of the higher order approximate
solution with the SCI and LOI schemes in order to obtain BACOLI. The report
[16] describes the modifications made to BACOLR to replace the computation
of the higher order approximate solution with the SCI and LOI schemes in order
to obtain BACOLRI.

The report [17] provides extensive numerical results comparing BACOL, in
ST and LE spatial error control modes, with BACOLI, in ST and LE spatial
error control modes. The packages are tested on a standard set of test problems
over a range of tolerances and p values. Similarly, the report [16] provides
extensive numerical results comparing BACOLR and BACOLRI, in both ST
and LE modes on a standard set of test problems over a range of tolerances
and p values. The results from these reports show that, generally, BACOLI is
approximately twice as fast as BACOL, and that BACOLRI is approximately
twice as fast as BACOLR.



3 Numerical Results

In this section, we present results from numerical experiments that show the
performance of BACOLI and BACOLRI, in each of the ST and LE error control
modes, applied to a collection of test problems. We will employ the following
notation to identify each code/spatial error control combination:

e (BACOLI/ST): BACOLI using the SCI Spatial Error Estimation Scheme,
in ST Spatial Error Control Mode,

e (BACOLI/LE): BACOLI using the LOI Spatial Error Estimation Scheme,
in LE Spatial Error Control Mode,

¢ (BACOLRI/ST): BACOLRI using the SCI Spatial Error Estimation
Scheme, in ST Spatial Error Control Mode,

e (BACOLRI/LE): BACOLRI using the LOI Spatial Error Estimation
Scheme, in LE Spatial Error Control Mode.

Based on a standard set of test problems (described below), we will consider ma-
chine independent measures of performance and machine dependent error/tolerance
vs. execution time comparisons. The performance of the spatial error estimation
schemes and corresponding spatial error control modes will also be considered.
As well, we will investigate the effect that the choice of p, the degree of the
B-spline basis, has on the efficiency of the solvers.

3.1 Test Problems
In this subsection we identify the ten test problems to be considered.

e OLBE: One Layer Burgers Equation [21]:
Up = EUgy — Uly, (8)

with boundary conditions at « = 0 and z = 1 (¢ > 0) and an initial
condition at tp = 0 (0 < z < 1) chosen so that the exact solution is

1 1 zg—1t-1
Y= - — Ztanh [ =—2 4
u(xa ) 2 2tan ( de )a (9)

where € is a problem-dependent parameter. We will consider two instances
of this problem, one with ¢ = 10™2 and one with ¢ = 10~%. We solve this
problem from tg = 0 to tepqg = 1.

e TLBE: Two Layer Burgers Equation [21]: This equation employs the
same PDE (8) as in the previous problem but the boundary conditions at
x=0and z =1 (¢t > 0) and the initial condition at to =0 (0 < z < 1)
are chosen so that the exact solution is,

_0le A +05e P +e ¢

u(x,t)— €7A+€7B+efc ’




where,

2
A=250 0544950), B=2Pu 0510750, €= 22 (@—0.375),
€ € €

where € is a problem-dependent parameter. We will consider two instances
of this problem involving ¢ = 1073 and ¢ = 10™* respectively. We solve
this problem from tg = 0 to tepg = 1.

We will also consider larger versions of this problem, which we will refer to
as TLBEx6, which is a system of PDEs consisting of 6 copies of TLBE,
and TLBEx12, which is a system of PDEs consisting of 12 copies of
TLBE.

CSRM: Catalytic Surface Reaction Model [23]:

1)y = —(u1)z + n(Dius — Arury) + (u1)qz/Per,
¢ = —(u2)z + n(Daous — Asuay) + (u2)ez/Per,

'LLQ)
u3)y = Ajury — Diug — Ruguay® + (u3)zz/Pez,
)

(
(
(
(ua)y = Asusy — Dous — Rusuay® + (us)za/Pe2, (10)

where v = 1 —u3 — uyg, and n,r, Pey, Pes, D1, Do, R, A1, and Ay are prob-
lem dependent parameters. The initial conditions at ¢t =0 (0 < z < 1)

are,

up(z,0) =2—7r, wa(z,0)=r, wus(z,0)=u4(z,0)=0,
and the boundary conditions at x = 0 and z =1 (¢t > 0) are,
(u1)2(0,t) = =Per (2 =7 —u1(0,1)),  (u2)2(0,t) = —Per(r —uz(0,1)),
(u3)2(0,1) = (ua)2(0,1) =0,
(u1)z(1,) = (u2)2(1,1) = (uz)z(1,t) = (ua)2(1,1) = 0.
(To our knowledge, this problem does not have a closed form solution.)
Standard choices for the problem dependent parameters are Pe; = Pey =

10000, D; = 1.5, D3 = 1.2, R = 1000, = 0.96,n = 1, and A; = A> = 30.
We solve this problem from ty = 0 to tepg = 18.

SCHR: Nonlinear Schrédinger System [12]:

(1
(e = i (e +nn)s + (uaf? + ol ).
(1 2 2
(w)e = i {5(u2)es —n(u2)s + (plua]” +fuzl")uz ),
where i? = —1, i and p are positive constants. The boundary conditions

are,

(u1)z(a,t) = (u2)z(a,t) =0, (u1)z(b,t) = (u2)(b,t) =0, ¢>0,



where a — —oo and b — +oo. The initial conditions, for a < z < b, are,

given by
25 Vo) ei((6-m)
ui(z,0) = sech ( 2/£:c) e e
1+p

D) _
ug(z,0) = N sech (V2rz) e(@ne).
1+p

where x and ¢ are constants. For our numerical experiments, we choose
¢op=1,n1=1/2, p=2/3 and k = 1. In order to obtain a version of this
problem that can be treated by the software we consider in this report, we
set a = —30 and b = 90. We solve this problem from tg = 0 to tenqg = 1.
For this problem, we need to determine the errors of the numerical solu-
tions that are computed by the software packages; we therefore compute
a high accuracy numerical reference solution with BACOLR, using a tol-
erance of 1076 and extended precision.

This problem is an example of the type of problem that causes difficulties
for BACOLI due to stability issues associated with the BDF's upon which
DASSL is based. Unless we restrict DASSL to use only the first and second
order BDFs (these BDFs are not subject to the stability issues that arise for
the higher order BDFs), BACOLI will not return in a reasonable amount
of time when trying to compute a solution to this problem. If we do restrict
DASSL to use only first and second order BDFs, BACOLI will return but
the numerical solutions provided by the code do not come close to meeting
the user-specified tolerance due to inaccuracies in the computation of the
B-spline coefficients. We provide evidence later in this report to support
this observation.

3.2 Machine Independent Performance Measures by Tol-
erance

In this subsection, we compare BACOLI/ST, BACOLI/LE, BACOLRI/ST, and
BACOLRI/LE with respect to several machine independent measures of the
algorithms employed in the codes that contribute significantly to their over-
all performance. These machine independent measures provide an important
complement to standard machine dependent timing results; additional insights
regarding code performance can be obtained by considering such measures.

The machine independent measures we consider in this report are: the num-
ber of subintervals in the spatial mesh at the final time (Final NINT), the total
number of accepted time steps (Accepted Time Steps), the total number of
spatial remeshings (Remeshings), the total number of factorizations (Calls
to CRDCMP) and backsolves (Calls to CRSLVE) of real ABD systems,
and the total number of factorizations (Calls to CCRCMP) and backsolves
(Calls to CCRSLV) of complex ABD systems. We note, of course, that for
BACOLI, there will be no calls to either CCRCMP or CCRSLV.

10



In this set of tests we consider numerical experiments in which each code is
applied to one of the test problems for a given p and tol combination. We provide
results for the ten test problems identified earlier: (i) OLBE with e = 1073, (ii)
OLBE with ¢ = 10~%, (iii) TLBE with € = 1073, (iv) TLBE with ¢ = 1074,
(v) TLBEx6 with ¢ = 1073, (vi) TLBEx6 with ¢ = 10~%, (vii) TLBEx12
with € = 1073, (viii)) TLBEx12 with ¢ = 1074, (ix) CSRM, and (x) SCHR.
Since BACOLI is not able to compute error controlled solution for the SCHR
problem, we do not include results for BACOLI for this problem.

Tables 5-14 give machine independent performance measures for the four
codes (except for BACOLI/ST and BACOLI/LE for the SCHR problem), for
p=4,57,9and tol = 1074, 1076, 10~8. For each table entry the first row gives
Final NINT, Accepted Time Steps, and Remeshings and the second row
gives [Calls to CRDCMP, Calls to CRSLVE]. For BACOLRI/ST and BA-
COLRI/LE, each table entry has a third row which gives { Calls to CCRCMP,
Calls to CCRSLV}. (We note that for TLBE, TLBEx6, and TLBEx12,
with e = 1073, p = 4 and tol = 1075, BACOLI/ST and BACOLRI/ST fail; in
these cases the corresponding table entries are blank.)

In order to assist with the understanding of the results from Tables 5-14, we
also present figures that provide visualizations of some of the tabular data:

e In Figures 1-38, we plot Final NINT vs. tol for all for codes for p =
4,...,11,and tol = 1072,1073,..., 10710, There is one plot for each code
and problem combination for which results appear in the tables.

From these plots we see that for smaller p values the Final NINT val-
ues grow approximately linearly (on a log-log scale) as the tol values de-
crease, while for larger p values the Final NINT values remain approx-
imately at the lowest value for all tol values. The only exception is for
the SCHR problem where, even for larger p values, we see approximately
linear growth (on a log-log scale) as the tol values decrease. As well, we
note that, for a given tolerance, the Final NINT values decrease as p
gets larger. For small p and sharper tolerances, the LE codes have Final
NINT wvalues that are 1.5 to 3 times larger than those of the ST codes.
There is no significant difference between the ST codes or between the LE
codes with respect to Final NINT values.

e In Figures 39-76, we plot Accepted Time Steps vs. tol for for p =
4,...,11,tol =1072,1073, ...,107 1%, and for each code and problem com-
bination for which results appear in the tables.

From these plots we see that the Accepted Time Steps values grow
approximately linearly (on a log-log scale) as the tol values decrease. Fur-
thermore, the results are generally independent of p. There is no signifi-
cant difference in the Accepted Time Steps values for the ST and LE
versions of the codes. However, the BACOLI codes use about ten times as
many Accepted Time Steps as do the BACOLRI codes.

e In Figures 77-112, we plot Remeshings vs. tol for p = 4,...,11, tol =
1072,1073,...,1071% and for each code and problem combination for
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which results appear in the tables. We do not include results for the
SCHR problem since the number of remeshings is very small.

For a given p value, the Remeshings values grow roughly linearly (on
a log-log scale) as the tol values decrease. The Remeshings values are
generally larger for the smaller p values. There is no significant difference
in the number of remeshings when we compare the ST and LE versions
of each code. As well, there is no significant difference in the number
of remeshings when we compare the BACOLI codes with the BACOLRI
codes. This is significant because the BACOLRI codes take substantially
fewer time steps than do the BACOLI codes. For the BACOLI codes, the
number of remeshings is relatively small compared to the number of time
steps - only around 5%. However for the BACOLRI codes, because there
are fewer time steps in total, the number of remeshings is relatively large
compared to the total number of time steps - around 20% to 50%.

In Figures 113-152, we plot the number of real ABD matrix factoriza-
tions, i.e., Calls to CRDCMP, and the number of backsolves of real
ABD systems, i.e., Calls to CRSLVE, vs. tol for each of the codes BA-
COLI/ST, BACOLI/LE, BACOLRI/ST, and BACOLRI/LE. We consider
tol =1073,1074,...,1071°, and p values, 4, 5, 7, and 9. There is one plot
for each p value and problem combination for which results appear in the
tables.

From these plots we see that for all problems, the Calls to CRDCMP
and the Calls to CRSLVE grow approximately linearly (on a log-log
scale) as the tolerances get sharper. The Calls to CRDCMP value
is about one order of magnitude smaller than the Calls to CRSLVE
value. The number of Calls to CRDCMP and Calls to CRSLVE is
independent of p. There is no significant difference between the ST and
LE versions of the codes in terms of the number of Calls to CRDCMP
and Calls to CRSLVE. The BACOLI codes, for coarse tolerances, have
somewhat fewer Calls to CRDCMP than do the BACOLRI codes but
for sharper tolerances the BACOLI codes have more Calls to CRDCMP
than do the BACOLRI codes. The BACOLI codes have significantly more
Calls to CRSLVE than do the BACOLRI codes.

In Figures 153-192, we plot the number of complex ABD matrix factoriza-
tions, i.e., Calls to CCRCMP, and the number of backsolves of complex
ABD systems, i.e., Calls to CCRSLV, vs. tol for BACOLRI/ST and
BACOLRI/LE. The BACOLI/ST and BACOLI/LE codes do not make
calls to these routines. We consider tol = 1073,107%,...,107% and p
values, 4, 5, 7, and 9. There is one plot for each p value and problem
combination.

From these plots we see that the Calls to CCRSLV grow approximately
linearly (on a log-log scale) as the tolerances get sharper. And, except for
the CSRM and SCHR problems, the number of Calls to CCRCMP
is largely independent of tol. For the CSRM and SCHR problems, the
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Calls to CCRCMP grow approximately linearly (on a log-log scale)
as the tolerances get sharper. The Calls to CCRCMP value is about
one order of magnitude smaller than the Calls to CCRSLV value. The
number of Calls to CCRCMP and Calls to CCRSLYV is independent
of p. The number of Calls to CCRCMP and Calls to CCRSLV is
about 75% of the number of calls to Calls to CRDCMP and Calls
to CRSLVE for given problem, p value, and tolerance. This is the case
because only about 75% of the real calls are matched with complex calls;
these take place inside RADAUS5. About 25% of the calls to CRDCMP
and CRSLVE take place outside RADAUS5 and in such cases there is no
need to also call the complex versions of these routines.

From the results which consider the number of real and complex calls to
factorization and backsolve routines, we note firstly that the number of
such calls associated with factorizations and backsolves of real matrices is
about the same for BACOLI and BACOLRI, on average. However, ap-
prozimately 75% of the real calls performed by BACOLRI are matched by
complez calls. This means that the total number of these calls performed
by BACOLRI is approximately 1.75 times the number of calls performed
by BACOLI. Furthermore, we have observed from numerical experiments
that the complex routine calls are approrimately twice as expensive as the
calls to the corresponding real routines. This means that the total costs
associated with factorizations and backsolves (real and complex) for BA-
COLRI are approzimately 2.5 times the cost of those of BACOLI.

3.3 Machine Dependent Timing Results by Tolerance and
by Error

We next provide machine dependent timing results for each code applied to the
ten test problems identified earlier in this report (except that BACOLI is not
applied to SCHR). For all problems, these tests were conducted on a system
with two Intel(R) Xeon(R) CPU E5-4617 processors and 172 gigabytes of RAM.
The operating system was Ubuntu 16.04.4 LTS and the Fortran compiler was
GNU Fortran (Ubuntu 5.4.0-6ubuntul 16.04.10) 5.4.0. The tests were run on a
virtual machine installed on this system; the virtual machine was allowed access
to 1 CPU and 65 gigabytes of RAM. Each code was run on each problem for
p=4,...,11 and for tol = 1074, 1076, 1078, 10719,

The results are provided in Tables 15-24. Instances where a failure occurred
correspond to blank table entries; these occurred on OLBE with € = 1074, tol =
10719, for BACOLI/LE and BACOLRI/LE with p = 4; TLBE, TLBEx6 and
TLBEx12 with e = 1073, tol = 107°, for BACOLI/ST and BACOLRI/ST with
p = 4; TLBE with ¢ = 107, tol = 1071°, for BACOLI/LE and BACOLRI/LE
with p = 4; TLBEx12 with e = 1074, tol = 10719, for BACOLI/LE with p = 4;
CSRM, tol = 1075, for BACOLI/ST with p = 6 and p = 11; CSRM, tol =
1078, for BACOLI/LE with p = 11; CSRM, tol = 107!°, for BACOLI/ST
with p =9 and BACOLI/LE with p = 11.

13



From these tables we see that,

e for coarse tolerances, smaller p values lead to the best efficiency for all
codes; however, as the tolerance gets sharper, higher p values correspond
to the fastest CPU times.

e for OLBE and TLBE, the BACOLRI/ST and BACOLRI/LE are gen-
erally comparable to or faster than the BACOLI/ST and BACOLR/LE
codes over all p and tol values. For TLBEx6 and TLBEx12, BACOLI
is faster for coarse and medium tolerances while BACOLRI is faster for
the sharpest tolerance. For CSRM, BACOLI is comparable to or faster
than BACOLRI over all tolerances.

e For small p values, the LE codes are slower than the ST codes but for
larger p values their performance becomes roughly comparable to that of
the ST codes.

It is often the case that for a given problem and for a given tolerance re-
quest, the optimal choice of p is different for different codes. Therefore we next
compare tolerance vs. execution time where the choice for p is chosen optimally
for each code. That is, we compare the codes for each problem and tolerance
combination so that each code uses its best choice of p for that problem and
tolerance combination. These results, given in Table 1, were obtained from from
Tables 15-24. From this table we see that for most problem/tolerance combina-
tions, the best performance associated with the coarsest tolerance usually corre-
sponds to BACOLI/ST and the best performance for sharper tolerances usually
corresponds to BACOLRI/ST. The exceptions to this arise for the TLBEx12
and the CSRM problems, where BACOLI/ST gives the best performance for
almost all tolerances.

For a given problem and tolerance, the fastest run over all codes depends
on p; see Table 2, where, for each problem, we identify the fastest code and
corresponding p value. These results were obtained from Table 1.

From Table 2, we see that for sharper tolerances, larger p values correspond
to the fastest times. We also note that over all cases, BACOLRI/ST has the
most instances where it is the fastest code. The code that has the second
highest number of instances where it is the fastest is BACOLI/ST. The cases
where BACOLI/ST is the fastest correspond to (i) coarser tolerances and (ii)
larger problems, i.e., TLBEx12, which has the largest number of PDEs (12),
and for CSRM which has four PDEs.

We note that the results considered up to this point in this subsection are tol-
erance vs. CPU time comparisons; a more relevant comparison is error achieved
vs. CPU time. We next consider this type of comparison of the codes for
a subset of the test problems, namely, OLBE, TLBE, and TLBEx12 with
e = 1073 and 10~*, and SCHR. In Tables 25-31, we provide error achieved
vs. CPU time for these problems. These results were obtained from the best-fit
lines computed for each code and problem combination as shown in Figures 193-
248, which we will consider later in this report. These best-fit lines allow us to
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obtain CPU time estimates for specific errors achieved. We present results for
each code/problem combination for p = 4,...,11 and for errors of 1074, 1076,
1078, 10710,

From these tables we can make observations that are broadly similar to those
we made earlier from the tables that consider tolerance vs. CPU time. For larger
errors, smaller p values lead to the best efficiency but for smaller errors, larger
p values generally correspond to the fastest CPU times. Overall, BACOLRI is
faster than BACOLI, except for TLBEx12. The LE codes are slower than the
ST codes when p is small but gain in relative efficiency for larger p values.

As mentioned above, is often the case that for a given problem and for a
given error attained, the optimal choice of p is different for different codes.
Therefore we next compare error attained vs. execution time where the choice
for p is chosen optimally for each code. That is, we compare the codes for each
problem and error attained combination so that each code uses its best choice
of p for that problem and error combination. These results are given in Table 3.
They were obtained from from Tables 25-31. From this table we see that, for
OLBE and TLBE with ¢ = 1073, BACOLI is faster for larger errors while
BACOLRI is faster for smaller errors. For OLBE and TLBE with € = 1074,
BACOLRI/ST is the fastest code for all errors. For TLBEx12, BACOLI/LE
is typically the fastest code over all errors. We also note that smaller p values
are more efficient for large errors and that larger p values correspond to faster
run times when the error is smaller.

For a given problem and error, the fastest run over all codes depends on p; see
Table 4, where, for each problem we identify the fastest code and corresponding
p value for a given error attained, based on the Table 3.

From Table 4, we see that for smaller errors, larger p values generally corre-
spond to the fastest times while smaller p values correspond to the fastest times
for larger errors. Of the 34 entries in this table, BACOLRI/ST is the fastest
code 16 times, while BACOLI/LE is the fastest code 11 times. Most of the
instances where BACOLI/LE is the fastest code arise for TLBEx12. For the
smaller problems, BACOLRI/ST is the fastest code when the error is smaller
or the problem is more difficult. BACOLI/LE is the fastest code for the largest
problem, TLBEx12.

It is important to compare Table 4, in which the execution times are com-
pared by error achieved, with Table 2, in which the execution times are compared
by tolerance requested. The most striking difference between the two tables is
that while BACOLRI/ST is the fastest code in the majority of entries in both
tables, it is BACOLI/LE rather than BACOLI/ST that has the second highest
number of appearances when we consider error achieved instead of tolerance
requested. This happens because the LOI based error estimates that are em-
ployed by BACOLI/LE are known to represent over estimates of the true error.
This means that for a given tolerance request, BACOLI/LE does more work
that BACOLI/ST. This suggests that a slight scaling of the LOI error estimate
to reduce the size of the error estimate is likely appropriate. It is not clear why
this effect is less important for BACOLRI.
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3.4 Error vs. Execution Time across Codes

Here we present error vs. execution time results for BACOLI/ST, BACOLI/LE,
BACOLRI/ST and BACOLRI/LE, for OLBE, TLBE, and TLBEx12, with
e = 1072 and 1074, and SCHR. We consider p values from 4 to 11. The
results were obtained by running the codes over a range of 81 tolerance values,
uniformly distributed on a log scale, from 1072 to 1071°.

In Figures 193-248, we plot error achieved vs. CPU time required. Each
figure gives results, for all four codes, for a given problem and p value. The
plots also show lines fitted to the data for each code to help clarify comparisons
among the codes. For OLBE and TLBE, we see, generally that, for larger
errors BACOLI is faster but that for smaller errors, BACOLRI is faster. This
is however not the case for TLBEx12 where we see that BACOLI is the faster
code over the entire range of errors.

Some additional comments must be made regarding the performance of BA-
COLI on the SCHR problem. Recall that BACOLI must run with DASSL
restricted to orders 1 and 2 in order to be able to even return with a solution.
However, even with this restriction imposed, from an inspection of Figures 241-
248, we see that, while BACOLI is faster for larger errors, the code is not able
to compute a numerical solution for which the corresponding error is less than
approximately 107 even when the requested tolerance is as sharp as 10710,
The data points for the BACOLI codes that appear nearest to top of the fig-
ures correspond to runs where the the requested tolerance was 10719 but we
see that the achieved error is only about 10~7. (Recall that the data plotted in
these figures correspond to requested tolerance values from 1072 to 10710.) This
result is attributable to DASSL since the results for BACOLRI, which are ob-
tained using RADAUSb rather than DASSL, show good correlation between the
requested tolerance and the achieved accuracy. For example, an examination of
the right hand side of the figures shows that for a tolerance request of 10719, the
BACOLRI codes compute numerical solutions for which the achieved accuracy
is a small multiple of 1071, (This same behavior is evident for all codes when
applied to the OLBE and TLBE problems.)

The comparisons among these codes can be seen more clearly if we plot
errors achieved vs. execution time data for BACOLI/LE, BACOLRI/ST, and
BACOLRI/LE relative to that of BACOLI/ST. The plots were developed as
follows. We describe this process for the BACOLI/LE data.

o We first perform a linear fit to the log of the error vs. log of time data as-
sociated with BACOLI/ST in order to obtain a continuous representation
of the baseline BACOLI/ST data.

e Then, for each (error,time) ordered pair from the BACOLI/LE data set,
we use the above mentioned linear fit to the BACOLI/ST data to obtain
a corresponding time estimate for BACOLI/ST (i.e., an estimate of how
much time BACOLI/ST would take to compute a solution with the same
error as BACOLI/LE).
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e We then compute the ratio of the actual BACOLI/LE time to this esti-
mated BACOLI/ST time. This yields a set of ordered pairs of the form
(error, time ratio) that we can associate with BACOLI/LE.

e Finally we fit a line to (log of error, time ratio) ordered pairs and plot this
line on a semi-log scale.

This process is repeated for the BACOLRI/ST data and the BACOLRI/LE
data.

In Figures 249-280, we plot error achieved vs. relative CPU time, for BA-
COLR/LE, BACOLRI/ST, and BACOLRI/LE relative to BACOLR/ST, for
a given problem and p value. We do not include the SCHR problem since
the results for BACOLI are not relevant since, as mentioned above, the evi-
dence shows that for this problem, BACOLI does not approximately meet the
requested tolerance. The behavior of BACOLI/ST is of course represented by
the horizontal line at 1.00 in each figure.

We see that, for OLBE and TLBE, and p = 4, compared to BACOLI/ST,
BACOLI/LE is better for large errors but worse for small errors. On the other
hand, both BACOLRI/ST and BACOLRI/LE are worse than BACOLI/ST for
large errors but better than BACOLI/ST for small errors. For TLBEx12, BA-
COLI/LE is comparable to BACOLI/ST but BACOLRI/ST and BACOLRI/LE
are much worse for large errors and at best comparable for small errors.

3.5 Error vs. Execution Time across p Values

In this subsection, we consider error vs. execution time results for BACOLI/ST,
BACOLI/LE, BACOLRI/ST, BACOLRI/LE, over a range of p values, 4, . .., 11,
for OLBE, TLBE, TLBEx12 with ¢ = 1072 and 1074, and for SCHR. For
the SCHR problem, we provide results only for the BACOLRI codes. Because
these graphs give error vs. execution time results over a range of p values, we
can examine the impact that the choice of p has on performance.

Figures 297-322, provide plots, for each problem and code, showing the per-
formance of the codes with respect to error vs. execution time, over a range of
p values.

From an examination of these figures, a general observation is that, OLBE,
TLBE, for low accuracy requirements, all codes are generally more efficient
when p is small, while for higher accuracy requirements, a larger p value leads
to a more efficient computation. For higher accuracy demands, small p values
lead to substantially higher costs than do higher p values. Intermediate p values
provide good performance over the entire range of errors. Even for a tolerance of
1071%, p = 7 or 8 provides performance comparable to that exhibited from the
use higher p values. This suggests that a reasonable working range of p values
should the range from 4 to 8. For TLBEx12, the above observations are correct
for p = 4 but for higher p values there tends to be less relative improvement as
the errors get smaller; that is, even for small errors, the smaller p values deliver
better performance. This is also the case for the SCHR problem.
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4 Summary, Conclusions, and Future Work

B-spline collocation software for the numerical solution of 1D PDEs that fea-
tures both spatial and temporal error control has been available for about 15
years. The earliest codes from this family are BACOL and BACOLR, which
differ in how the time integration is performed; BACOL uses the DAE solver
DASSL, while BACOLR uses RADAUS5. The recently released code, BACOLI,
a modification of BACOL, improves upon the efficiency of BACOL by employing
interpolation-based schemes for the computation of spatial error estimates. As
well, BACOLI implements, as options through its two spatial error estimation
schemes, standard (ST) spatial error control as well as an alternative spatial
error control known as local extrapolation (LE) error control. The newest code,
BACOLRI, a modification of BACOLR, improves the efficiency of BACOLR,
by introducing the interpolation-based schemes for the computation and control
of spatial error estimates that were previously implemented in BACOLI.

This report presents a detailed examination of the performance of the two
newest codes, BACOLI and BACOLRI. The results (see in particular Table 4
where we compare error achieved vs. CPU time) show that for the test problems
that have a small number of PDEs, and where the difficult of the problem is
greater (due to a smaller € value or a sharper tolerance), BACOLRI with ST
spatial error control gives the best performance overall; for the easier versions
of these test problems, BACOLI/LE or BACOLRI/LE have the better or com-
parable performance. For the larger problems, TLBEx12, BACOLI/LE is the
generally the fastest code. For the SCHR problem, BACOLRI/ST is faster
than BACOLRI/LE. BACOLI/ST is the fastest only for the simpler version of
OLBE with the largest error.

It should be noted that when one compares tolerance requested vs. CPU
time, BACOLI/ST appears to offer much better performance. This is due to
the fact that the LE codes employ an overestimate of the error and thus for
a given tolerance, they have to work harder than to the ST codes, typically
delivering more accuracy than requested. This suggests that a modification of
the LE error control is warranted to better match it to the actual error of the
numerical solution.

This report also looks at how the choice of p effects performance. For coarser
tolerances, the codes generally have smaller execution times when p is small.
However, as the accuracy demands increase, larger p values lead to better effi-
ciency. For larger PDE systems, the advantage associated with larger p values
is less apparent.

A final observation from this study is that for problems, such as the SCHR
problem, that lead to stability issues for the BDFs implemented in DASSL,
BACOLI, which is based on DASSL, cannot be used. BACOLI will not termi-
nate unless DASSL is restricted to use BDFs of orders one and two, and even
when this restriction is applied, BACOLI cannot compute numerical solutions
for which the corresponding error is a small multiple of the requested tolerance.
This is due to DASSL being unable to adequately control the time error of the
B-spline coefficients it is asked to compute.
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There are several directions for future work. The results of this report sug-
gest that it may be worthwhile to modify the BACOLI and BACOLRI codes
in order to have them choose p based on the tolerance requested. Also, as
mentioned above, a modification of the codes to improve the LE spatial error
estimate appears to be worthwhile.

The results from this work may also be useful in the development of improved
methods for Boundary Value ODEs and 2D PDEs.
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| Problem | Code | tol = 107% | tol =107° | tol = 1078 | tol =10~1° |
OLBE LI/ST 4, 0.02 4, 0.09 6, 0.27 8, 0.76
e=10"3 LI/LE | 4,5,0.03 5, 0.09 8, 0.30 8, 0.76
RI/ST 4, 0.03 4-6, 0.07 6, 0.18 8, 0.47
RI/LE 4,0.04 5, 0.08 7,0.21 9, 0.51
OLBE LI/ST 4, 0.28 4,0.91 6, 2.76 7,7.49
e=10"* LI/LE 4,0.32 5, 1.04 7, 3.07 7, 8.77
RI/ST 4, 0.23 4, 0.53 6, 1.69 7,8, 4.72
RI/LE 4,0.31 5,0.71 7, 2.07 8, 5.38
TLBE LI/ST 4, 0.02 5,6, 0.08 6, 0.23 9, 0.69
e=10"3 LI/LE | 4-6,0.03 5, 0.08 7, 0.26 8, 0.77
RI/ST | 4,5,0.03 5, 0.06 6, 0.15 8, 0.40
RI/LE | 4,5,0.03 6,7, 0.07 7-9, 0.18 9-11, 0.46
TLBE LI/ST 4,0.27 4, 0.89 6, 2.69 8, 7.64
e=10"1 LI/LE 4, 0.30 5, 0.92 7, 3.01 8, 8.42
RI/ST 4, 0.22 4, 0.51 5,6, 1.57 7, 4.28
RI/LE 4,0.27 5, 0.67 7,1.88 8, 5.05
TLBEx6 LI/ST 4, 0.11 5, 0.41 6, 1.54 6, 5.19
e=10"3 LI/LE 4,0.12 5, 0.42 6, 1.63 8, 5.16
RI/ST | 4,5,0.34 5, 0.59 5,6, 1.47 7, 4.50
RI/LE 4,0.32 6, 0.76 7, 2.00 9, 5.79
TLBEx6 LI/ST 4, 1.26 4, 4.55 5, 17.38 7, 57.39
e=10"* LI/LE 4,1.47 5, 4.89 6, 18.89 7, 59.15
RI/ST 4,2.01 4, 4.27 4, 12.72 6, 40.16
RI/LE 4, 2.49 5, 6.17 6, 17.61 8, 56.29
TLBEx12 | LI/ST 5, 0.39 5, 1.32 6, 5.69 6, 20.52
e=10"3 LI/LE 4,0.43 5,1.48 6, 5.42 8, 20.12
RI/ST 4,1.37 5, 2.66 5, 7.26 7, 25.71
RI/LE 4,1.47 6, 3.73 7, 10.65 8, 34.83
TLBEx12 | LI/ST 4, 3.80 4, 13.42 4, 55.00 6, 238.42
e=10"* LI/LE 4, 4.87 5, 15.70 5, 64.20 7, 244.37
RI/ST 4,9.79 4, 18.54 5, 63.64 6, 221.16
RI/LE 4,12.17 5, 31.11 6, 95.75 7, 326.85
CSRM LI/ST | 4,5, 0.01 | 4,5, 0.05 5, 0.19 7, 0.68
LI/LE | 4-6,0.02 6,7, 0.08 6, 0.25 7, 0.69
RI/ST | 4,5,0.08 4,5,0.13 5, 0.27 6, 0.79
RI/LE | 4-6,0.10 6, 0.17 6, 0.41 8, 1.12
SCHR RI/ST 4, 0.13 5,6, 0.15 | 5,6, 0.19 | 7,10, 0.32
RI/LE | 4,5, 0.13 | 5,6, 0.15 6,7, 0.22 10,11, 0.35

Table 1: FEach table entry gives p and CPU time corresponding to the fastest
run, for each code, for each problem and tolerance requested. BACOLI/ST
= LI/ST, BACOLI/LE = LI/LE, BACOLRI/ST = RI/ST, BACOLRI/LE =
RI/LE. Best time and corresponding p value shown in bold.
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| Problem | tol = 10~* | tol =107 | tol = 1078 | tol = 10710 |
| OLBE, ¢ = 1073 | LI/ST, 4 | RI/ST, 4-6 | RI/ST, 6 | RI/ST, 8 |
| OLBE, e=10""1 | RI/ST, 4 | RI/ST, 4 | RI/ST, 6 | RI/ST, 7,8 |
| TLBE, e = 103 | LI/ST, 4 | RI/ST, 5 | RI/ST, 6 | RI/ST, 8 |
| TLBE, e =101 | RI/ST, 4 | RI/ST, 4 | RI/ST, 5,6 | RI/ST, 7 |
| TLBEx6, ¢ = 1073 | LI/ST, 4 | LI/ST, 5 | RI/ST, 5,6 | RI/ST, 7 |
| TLBEx6, e = 102 | LI/ST, 4 | RI/ST, 4 | RI/ST, 4 | RI/ST, 6 |
| TLBEx12, ¢ = 1073 | LI/ST, 4 | LI/ST, 5 | , 6 | , 8 |
| TLBEx12, e = 104 | LI/ST, 4 | LI/ST, 4 | LI/ST, 4 | RI/ST, 6 |
| CSRM | LI/ST, 4 | LI/ST, 4,5 | LI/ST, 5 | LI/ST, 7 |
SCHR RI/ST,4 | RI/ST,5,6 | RI/ST, 5,6 | RI/ST, 7,10
RI/LE, 4,5 | RI/LE, 5.6

Table 2: Code and value of p that corresponds to the fastest run, for a given
problem and tolerance. BACOLI/ST = L1/ST, BACOLI/LE =
COLRI/ST = RI1/ST, BACOLRI/LE = RI/LE.
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| Problem | Code | error = 1072 | error = 107 | error = 1078 | error = 1010 |
OLBE LI/ST 4-6, 0.02 5-7, 0.08 6,7, 0.24 8, 0.65
e=10"3 LI/LE 4-6, 0.02 5, 0.06 7, 0.20 7,0.57
RI/ST 4-7,0.03 4-7,0.07 6, 0.15 8, 0.32
RI/LE 5, 0.02 5-8, 0.07 7-9, 0.16 9-10, 0.32
OLBE LI/ST 4,6, 0.44 6, 1.08 6, 2.65 8, 6.37
e=10""1 LI/LE 4,0.35 6, 1.12 6, 3.03 6, 8.20
RI/ST 4, 0.31 6, 0.76 6, 1.54 6, 3.15
RI/LE 5, 0.34 6, 0.87 8, 1.96 11, 3.77
TLBE LI/ST 4-7,0.02 5-7, 0.07 6, 0.21 10, 0.62
e=10"3 LI/LE 4-5, 0.01 5-6, 0.05 6-7, 0.17 7,0.51
RI/ST 5, 0.02 5-8, 0.06 6-8, 0.13 8, 0.28
RI/LE 4-7,0.02 6-7, 0.05 7-8, 0.13 9, 0.27
TLBE LI/ST 4-5,0.37 6, 1.04 6, 2.63 7, 6.57
e=10""1 LI/LE 4,0.29 6, 1.05 6, 2.89 8, 7.21
RI/ST 4, 0.26 5, 0.67 6, 1.55 7, 3.13
RI/LE 5, 0.30 6, 0.78 6, 1.80 8, 3.61
TLBEx12 | LI/ST 5, 0.30 5, 1.15 5, 4.37 6, 15.28
e=10"3 LI/LE 4, 0.20 5, 0.89 6, 3.22 7, 10.27
RI/ST 5, 1.20 5, 2.68 6, 5.94 6, 11.73
RI/LE 4, 0.82 5, 2.86 7,7.12 8, 14.50
TLBEx12 | LI/ST 4,5.79 5, 18.93 5, 57.01 6, 165.00
e=10"* LI/LE 4, 4.71 5, 18.52 6, 51.68 6, 140.68
RI/ST 4,9.99 4, 23.06 4,53.24 6, 112.26
RI/LE 4,12.26 5, 38.43 6, 79.74 6, 154.54
SCHR RI/ST 5, 0.05 5, 0.10 6, 0.17 7, 0.28
RI/LE 4, 0.05 6, 0.12 7, 0.22 8, 0.38

Table 3: Each table entry gives p and CPU time corresponding to the fastest run,
for each code, for each problem and error achieved. BACOLI/ST = LI/ST,
BACOLI/LE = LI/LE, BACOLRI/ST = RI/ST, BACOLRI/LE = RI/LE
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| Problem | error = 1074 | error = 107° | error = 1078 | error = 10710 |

OLBE, e =10° LI/ST, 4-6 5 RI/ST, 6 RI/ST, 8
, 4-6 RI/LE, 9,10
RI/LE, 5
[OLBE,e=10" | RI/ST,4 | RI/ST,6 | RI/ST,6 | RI/ST,6 |
TLBE, c =107 , 4,5 ,56 | RI/ST,6-8 | RI/LE,9
RI/LE, 6,7 | RI/LE, 7.8
[ TLBE,e=10"" | RI/ST,4 | RI/ST,5 | RI/ST,6 | RI/ST,7 |
| TLBEx12, e = 1077 | 4] 5] 6] 7]
| TLBEx12, e = 10" | 4] 5 ] ,6 [ RI/ST,6 |
SCHR RI/ST, 5 RI/ST, 5 RI/ST, 6 RI/ST, 7
RI/LE, 4

Table 4: Code and value of p that corresponds to the fastest run, for a given prob-
lem and error. BACOLI/ST =1L1/ST, BACOLI/LE = , BACOLRI/ST
= RI/ST, BACOLRI/LE = RI/LE.

25



tol 107* 107° 107%
p 4
BACOLI/ST 14, 1285, 71 24, 3015, 103 54, 6970, 135
(187, 2151] [402, 4543] [1123, 10540
BACOLI/LE 17, 1102, 131 | 45, 2178, 154 | 124, 5715, 468
[280, 2217] [336, 3511] (962, 9905]
BACOLRI/ST 15, 264, 78 25, 609, 148 53, 1349, 193
[383, 1623] [483, 3174] [406, 6614]
{304, 1194} {334, 2268} {212, 4878}
BACOLRI/LE 20, 261, 118 53, 602, 134 130, 1325, 414
[359, 1804] [369, 3158] [845, 6945]
{240, 1306} | {234, 2287} {430, 4791}
p 5
BACOLI/ST 13, 1196, 66 20, 3046, 121 35, 6564, 113
[163, 1981] [491, 4992] [1050, 9701]
BACOLI/LE 15, 1153, 91 | 25, 2463, 123 | 57, 4885, 142
[202, 2020] [282, 3799] [346, 6478]
BACOLRI/ST | 15, 254, 62 18, 600, 110 | 34, 1333, 122
[357, 1520] [419, 3051] [259, 6365]
{294, 1140} | {308, 2230} {136, 4787}
BACOLRI/LE 15, 255, 80 26, 600, 119 50, 1339, 145
[366, 1621] [349, 3014] [324, 6250]
{285, 1205} | {229, 2175} {178, 4620}
p 7
BACOLI/ST 12, 1283, 51 15, 3055, 66 21, 6266, 124
[128, 2031] [440, 4679] [1111, 9673
BACOLI/LE 11, 1253, 66 14, 2981, 103 22, 6637, 164
[153, 2042] [356, 4637] (685, 9717]
BACOLRI/ST 11, 301, 45 15, 586, 60 18, 1334, 145
[365, 1675] [354, 2829] [504, 6403]
{319, 1269} | {293, 2119} {358, 4778}
BACOLRI/LE | 13, 252, 66 15, 588, 95 22, 1324, 143
[339, 1560] [376, 2975] [309, 6296]
{272, 1175} | {280, 2196} {165, 4685}
p 9
BACOLI/ST 10, 1715, 42 12, 3562, 67 15, 7200, 118
[218, 2740] [521, 5451] [1189, 10903]
BACOLI/LE 10, 1366, 56 15, 2801, 69 15, 6600, 125
[149, 2213] [200, 3994] [1075, 10032]
BACOLRI/ST 10, 399, 36 11, 613, 71 15, 1302, 94
[467, 2049] [473, 3154] [590, 6193]
{430, 1538} | {401, 2343} {495, 4691}
BACOLRI/LE | 11, 253, 56 15, 578, 68 14, 1342, 124
[348, 1537] [331, 2830] [357, 6409]
{291, 1171} {262, 2115} {232, 4818}

Table 5: Machine independent results for the One Layer Burgers equation with
e = 1073, We consider p = 4,5,7,9 and tol = 107%,1075,1078. Table en-
tries are of the form Final Nint, Accepted Time Steps, Remeshings [Calls to
CRDCMP, CRSLVE] {Calls to CCRCMP, CCRSLVE}.
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tol 107* 107° 107°
p 4
BACOLI/ST 16, 13127, 741 27, 30970, 861 47, 66987, 939
[2370, 23725] [5616, 51026] [9475, 97420]
BACOLI/LE 20, 10870, 1213 | 40, 24401, 1409 99, 47919, 3652
[2550, 21539] [3000, 38617] [7433, 81388]
BACOLRI/ST 18, 2610, 730 25, 5963, 842 48, 13750, 1018
[3589, 16219] [3816, 29299] [3073, 64313]
{2858, 11817} | {2973, 21546} {2054, 48526}
BACOLRI/LE | 22, 2504, 1133 | 40, 5885, 1325 | 115, 13151, 3621
[4068, 17797] [3554, 31379] [7253, 67086]
{2934, 13026} | {2228, 22843} {3631, 46692}
p 5
BACOLI/ST 14, 13819, 655 20, 35856, 1011 31, 72055, 1067
[2444, 24438] [6175, 54453] [9926, 106168]
BACOLI/LE 15, 18120, 997 25, 29474, 1173 49, 64649, 1214
[2384, 23825] [2854, 45325] [3954, 91821]
BACOLRI/ST 15, 2810, 627 20, 5850, 933 31, 13246, 1043
(3493, 16606] [4412, 30144] [4814, 63447]
{2865, 12197} {3478, 22313} {3770, 48114}
BACOLRI/LE 13, 2579, 951 26, 5813, 1094 47, 13338, 1234
[4198, 17578] [3396, 30018] [2492, 62925]
{3246, 12989} | {2301, 22016} {1257, 47118}
p 7
BACOLI/ST 15, 14141, 429 15, 36086, 971 20, 92859, 1188
[1396, 22721] [7176, 59778] [11506, 102134]
BACOLI/LE 15, 12780, 637 15, 72997, 1247 | 22, 62140, 1368
[1781, 21625] [6745, 59040] [9047, 93262]
BACOLRI/ST 14, 3367, 359 16, 5876, 776 20, 12809, 1318
[3770, 17577] [4218, 30214] [7628, 63290]
{3410, 13216} | {3441, 22228} {6309, 47686}
BACOLRI/LE 15, 2620, 577 15, 5821, 1260 23, 12994, 1320
[3617, 16006] [5024, 31798] [2937, 62802]
{3039, 12194} {3763, 23282} {1616, 47167}
p 9
BACOLI/ST 14, 15041, 386 15, 35909, 534 17, 72175, 1312
[1434, 23981] [5057, 54055] [12887, 110479]
BACOLI/LE 14, 12835, 548 15, 32975, 631 15, 120274, 1732
[1436, 21268] [4558, 50830] [15849, 121737]
BACOLRI/ST 13, 4927, 281 15, 6241, 463 15, 12870, 1398
[5140, 22749] [4710, 30922] (6391, 64297]
{4858, 16701} | {4246, 23289} {4992, 47719}
BACOLRI/LE 12, 3839, 437 15, 5771, 621 16, 12824, 1667
[4623, 20273] [3921, 29186] [7497, 64164]
{4185, 15121} | {3299, 21850} {5829, 47913}

Table 6: Machine independent results for the One Layer Burgers equation with
e = 107 We consider p = 4,5,7,9 and tol = 1074,1075,1078. Table en-
tries are of the form Final Nint, Accepted Time Steps, Remeshings [Calls to
CRDCMP, CRSLVE] {Calls to CCRCMP, CCRSLVE}.
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tol 10" ] 10°° | 10°°

p 4
BACOLI/ST 15, 926, 85 — 50, 4946, 328
[212, 1685] — [1277, 7908]
BACOLI/LE 18, 792, 88 | 44, 1705, 124 | 135, 3384, 407
[189, 1559] [267, 2772] [838, 7026]
BACOLRI/ST | 15,199, 88 — 51, 969, 142
[301, 1281] — [390, 4570]
{212, 905} — {247, 3316}
BACOLRI/LE | 18, 197, 76 45, 446, 115 134, 978, 366
[239, 1233] [320, 2416] [862, 5216]
{162, 883} {204, 1739} {495, 3505}
p 5
BACOLI/ST 15, 868, 55 17, 2240, 72 34, 4777, 90
[128, 1443] [255, 3366] [685, 6977)
BACOLI/LE 13, 883, 75 23, 1792, 96 51, 4121, 104
[165, 1585] [216, 2735] [263, 5432]
BACOLRI/ST | 15,201, 53 18, 444, 73 30, 964, 98
[256, 1145] [263, 2171] [282, 4328]

{202, 837} | {189, 1580} | {183, 3167}
BACOLRI/LE | 14, 197, 64 | 25, 444, 87 | 55, 972, 101

[240, 1185] [279, 2261] [315, 4426]
{175, 859} {191, 1642} {213, 3251}
p 7
BACOLI/ST 13, 940, 38 15, 2330, 68 21, 4667, 102
[92, 1477) [332, 3644] [780, 7164]
BACOLI/LE 15, 887, 52 15, 2260, 82 21, 4690, 105
[118, 1441] [222, 3380] [378, 6683]
BACOLRI/ST | 14,211, 34 14, 453, 68 18, 976, 103
[230, 1118] [278, 2223] [290, 4428]

{195, 837} | {209, 1629} | {186, 3245}
BACOLRI/LE | 15, 200, 46 | 15, 448, 72 | 18, 963, 108

[216, 1122] | [237, 2163] [302, 4415
{169, 829} {164, 1570} {193, 3235}
p 9
BACOLI/ST 11, 1124, 37 | 15, 2553, 52 15, 5293, 78
[134, 1800] [284, 3685] [780, 7800]
BACOLI/LE 12, 964, 45 | 15, 2181, 65 | 14, 4924, 115
[105, 1570] [230, 3228] [775, T558]
BACOLRI/ST | 15,201, 34 14, 461, 50 15, 983, 81
[218, 1103] [309, 2220] [334, 4498]

{183,833} | {258, 1657} | {252, 3349}
BACOLRI/LE | 9, 265, 41 | 15, 448, 60 15, 973, 93
[326, 1400] | [250, 2129] (267, 4451
{284, 1035} | {189, 1559} | {173, 3291}

Table 7: Machine independent results for the Two Layer Burgers equation with
e = 1073, We consider p = 4,5,7,9 and tol = 107%,1075,1078. Table en-
tries are of the form Final Nint, Accepted Time Steps, Remeshings [Calls to
CRDCMP, CRSLVE] {Calls to CCRCMP, CCRSLVE}.
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tol 1071 107° 107°
p 4
BACOLI/ST 15, 10962, 737 27, 22623, 791 47, 47809, 857
[1895, 17637] [3338, 36524] (6807, 70543]
BACOLI/LE 19, 7978, 969 42, 16482, 1203 | 100, 38827, 3274
[1984, 16370] [2475, 27034] [6605, 68291]
BACOLRI/ST 15, 1965, 635 26, 4486, 728 51, 9978, 860
[2560, 11803] [2481, 21657] [1818, 44399]
{1924, 8486} | {1752, 15704} {957, 32700}
BACOLRI/LE 20, 1894, 863 38, 4379, 1099 102, 9691, 2768
[2600, 12675] [2711, 23618] [5676, 48505]
{1736, 9054} {1611, 17040} {2907, 33277}
p 5
BACOLI/ST 15, 9678, 489 19, 23087, 746 33, 48713, 760
[1349, 16543] [3704, 37536] (6523, 70496]
BACOLI/LE 15, 9090, 775 24, 20179, 957 43, 46580, 1090
(1714, 17141] [2106, 31047] [3104, 65542]
BACOLRI/ST 15, 2122, 480 19, 4386, 704 30, 9749, 824
[2430, 11650] [2681, 21557] [2414, 43624]
{1949, 8470} | {1976, 15742} {1589, 32226}
BACOLRI/LE 15, 1961, 713 21, 4340, 878 45, 9608, 1008
[2807, 12305] [2338, 22079] [2114, 43738]
{2093, 8885} | {1459, 15982} {1105, 32113}
p 7
BACOLI/ST 14, 10938, 402 15, 26671, 741 17, 89230, 908
[1250, 17857] [4786, 43232] [8397, 78062]
BACOLI/LE 15, 9792, 547 15, 75411, 985 21, 83805, 1099
[1320, 16743] [4205, 41097] [5500, 70180]
BACOLRI/ST 15, 2386, 419 15, 4459, 650 19, 9580, 944
[2798, 12700] [3093, 22473] [4057, 44093]
{2378, 9374} | {2442, 16532} {3112, 32595}
BACOLRI/LE 14, 2306, 515 14, 4396, 955 22, 9551, 1042
[2845, 12820] [3366, 23154] [2164, 43881]
{2329, 9397} | {2410, 16790} {1121, 32245}
p 9
BACOLI/ST 14, 12513, 362 15, 28289, 590 14, 55178, 926
[1635, 20162] [4413, 43590] (9393, 83551]
BACOLI/LE 14, 12062, 424 14, 27605, 755 15, 64341, 1216
[1652, 19852] [4638, 43702] [10240, 87680]
BACOLRI/ST 14, 3185, 355 14, 4939, 633 15, 9545, 966
[3612, 15636] [4224, 25049] [4415, 44962
{3256, 11449} {3590, 18521} {3448, 33189}
BACOLRI/LE 15, 2683, 441 15, 4525, 777 15, 9605, 1219
[3250, 14073] [3787, 23620] [4174, 45021]
{2808, 10302} | {3009, 17334} {2954, 32955}

Table 8: Machine independent results for the Two Layer Burgers equation with
e = 107 We consider p = 4,5,7,9 and tol = 1074,1075,1078. Table en-
tries are of the form Final Nint, Accepted Time Steps, Remeshings [Calls to
CRDCMP, CRSLVE] {Calls to CCRCMP, CCRSLVE}.
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tol 107* 107° 107%
p 4
BACOLI/ST 14, 882, 80 — 51, 5062, 224
[197, 1629] — [927, 7630]
BACOLI/LE 17, 756, 93 | 44, 1544, 117 | 136, 3384, 420
[199, 1540] [254, 2550] (864, 7142]
BACOLRI/ST | 15, 200, 124 — 50, 970, 215
[375, 1432] — [525, 4921]
{250, 983} — {309, 3520}
BACOLRI/LE 18, 196, 79 42, 446, 114 131, 978, 351
[246, 1242] (321, 2412] [856, 5151]
{166, 887} | {206, 1737} {504, 3470}
p 5
BACOLI/ST 15, 870, 54 | 19, 2122, 73 35, 4621, 82
(129, 1445] [258, 3235] [625, 6621]
BACOLI/LE 15, 854, 74 24, 1790, 92 50, 4161, 115
[166, 1537] [209, 2679] [277, 5503]
BACOLRI/ST 13, 208, 46 18, 444, 78 32, 963, 88
[252, 1131] [268, 2192] [253, 4335]
{205, 830} | {189, 1591} {164, 3195}
BACOLRI/LE 14, 198, 68 24, 444, 92 54, 972, 94
[249, 1213] [295, 2282] [286, 4403]
{180, 878} | {202, 1653} {191, 3242}
p 7
BACOLI/ST 13, 945, 36 15, 2259, 63 18, 4792, 104
[85, 1433 [307, 3504] [810, 7432]
BACOLI/LE 15, 884, 54 15, 2235, 77 22, 4816, 120
(124, 1447] [215, 3331] [409, 6861]
BACOLRI/ST 14, 208, 35 15, 450, 66 18, 979, 119
[232, 1109] [271, 2183] [342, 4498]
{196, 830} | {204, 1599} {222, 3280}
BACOLRI/LE | 15, 199, 48 15, 446, 75 21, 964, 117
[219, 1128] [251, 2183] [325, 4415]
{170, 832} | {175, 1586} {207, 3216}
p 9
BACOLI/ST 11, 1141, 33 15, 2408, 54 15, 5297, 84
[113, 1779] [302, 3623] [802, 7968]
BACOLI/LE 11, 1012, 44 15, 2225, 64 15, 5030, 109
[120, 1650] [227, 3277] (660, 7452]
BACOLRI/ST 15, 199, 34 14, 462, 50 15, 982, 83
[221, 1088] [287, 2208] [373, 4522]
{186, 820} | {236, 1644} {289, 3373}
BACOLRI/LE 11, 241, 39 15, 450, 59 15, 971, 97
[272, 1268] [249, 2138] [267, 4478]
{232, 942} | {189, 1569} {169, 3312}

Table 9: Machine independent results for the Two Layer Burgers equationx6
with € = 1073, We consider p = 4,5,7,9 and tol = 104,106,108, Table
entries are of the form Final Nint, Accepted Time Steps, Remeshings [Calls to
CRDCMP, CRSLVE] {Calls to CCRCMP, CCRSLVE}.
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tol 107* 107° 107°
p 4
BACOLI/ST 14, 9319, 660 26, 22537, 786 50, 48081, 833
[1650, 17261] [3466, 36452] (6482, 70085]
BACOLI/LE 21, 8257, 940 | 41, 16179, 1214 | 108, 36176, 3170
[1928, 16449] [2495, 26615] [6366, 64669]
BACOLRI/ST 17, 1964, 617 25, 4464, 729 50, 9920, 874
[2503, 11794] [2509, 21761] [1927, 44107]
{1885, 8499} {1779, 15821} {1052, 32438}
BACOLRI/LE | 20, 1897, 868 36, 4385, 1137 101, 9685, 2836
[2605, 12704] [2744, 23828] [5801, 48714]
{1736, 9070} | {1606, 17168} {2964, 33356}
p 5
BACOLI/ST 14, 9743, 510 20, 22933, 749 30, 48644, 787
[1406, 16803] [3611, 37399 [6776, 71101]
BACOLI/LE 15, 9132, 754 24, 19917, 932 48, 43528, 1016
[1719, 16957] [2097, 30618] [2792, 60358]
BACOLRI/ST 14, 2112, 479 20, 4371, 679 32, 9747, 858
[2394, 11653] [2643, 21366] [2510, 43714]
{1914, 8473} | {1963, 15603} {1651, 32250}
BACOLRI/LE 14, 1960, 707 22, 4335, 857 46, 9626, 1014
[2784, 12269] [2309, 21946] [2120, 43683]
{2076, 8867} | {1451, 15896} {1105, 32028}
p 7
BACOLI/ST 15, 12749, 439 15, 37942, 795 20, 132940, 914
[1220, 17230] [4984, 43924] [8522, 78680]
BACOLI/LE 15, 10305, 537 15, 54848, 973 21, 46917, 1037
[1435, 17606] [4234, 41459 [5384, 68288]
BACOLRI/ST 14, 2625, 407 15, 4477, 684 20, 9610, 986
[2973, 13432 [3127, 22728] [4162, 44383]
{2565, 9810} | {2442, 16681} {3175, 32771}
BACOLRI/LE 14, 2383, 533 13, 4401, 929 22, 9496, 1060
[2993, 13179] [3248, 22993] [2217, 43875]
{2459, 9607} {2318, 16674} {1156, 32258}
p 9
BACOLI/ST 15, 11478, 384 15, 28576, 583 15, 96843, 954
[1527, 18777] [4451, 43971] [9518, 83362]
BACOLI/LE 14, 11704, 422 14, 29830, 739 15, 75917, 1195
[1540, 19211] [4797, 44656] [10156, 88050]
BACOLRI/ST 15, 2942, 367 15, 4788, 634 15, 9535, 943
[3442, 14855] [3972, 24343] [4502, 44873]
{3074, 10920} | {3337, 18021} {3558, 33166}
BACOLRI/LE | 14, 2922, 446 14, 4549, 806 14, 9604, 1254
[3577, 15157] [3903, 23904] [4262, 45197]
{3130, 11035} | {3096, 17476} {3007, 33069}

Table 10: Machine independent results for the Two Layer Burgers equationx6
with € = 1074, We consider p = 4,5,7,9 and tol = 104,106,108, Table
entries are of the form Final Nint, Accepted Time Steps, Remeshings [Calls to
CRDCMP, CRSLVE] {Calls to CCRCMP, CCRSLVE}.
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tol 10" ] 10°° | 10°°

p 4
BACOLI/ST 13, 940, 102 — 52, 5014, 741
[260, 1781] — [2527, 8964]
BACOLI/LE 19, 760, 95 | 44, 1819, 118 | 136, 3384, 418
[204, 1580] [252, 2823] [860, 7125]
BACOLRI/ST 15, 201, 90 — 53, 970, 141
[309, 1301] — [379, 4596]
{218, 918} — {237, 3343}
BACOLRI/LE | 19, 197, 84 45, 446, 106 131, 978, 353
[252, 1267] [308, 2365] [848, 5165]
{167, 901} {201, 1706} {494, 3480}
p 5
BACOLI/ST 14, 901, 51 18, 2193, 75 31, 4869, 90
[125, 1480] [258, 3321] [695, T124]
BACOLI/LE 15, 844, 72 | 25, 1856, 104 | 53, 4194, 106
[157, 1504] [233, 2876] [252, 5368]
BACOLRI/ST 13, 206, 51 18, 444, 69 31, 963, 84
[253, 1160] [248, 2140] [258, 4341]

{201, 849} | {178, 1557} | {173, 3209}
BACOLRI/LE | 15, 197, 62 | 21, 445,88 | 53, 972, 105

[236, 1183] [287, 2267] [302, 4439]
{173, 861} {198, 1645} {196, 3256}
p 7
BACOLI/ST 13, 926, 38 14, 2439, 70 19, 4699, 106
[92, 1459] [360, 3780] [799, 7253]
BACOLI/LE 15, 825, 51 | 15, 2207, 79 | 21, 4913, 114
[117, 1372] [212, 3269] [420, 7007]
BACOLRI/ST | 14, 208, 35 14, 453, 68 17,971, 103
[230, 1112] | [279, 2213] [319, 4417

{194, 832} | {210, 1622} | {215, 3239}
BACOLRI/LE | 15, 199, 50 | 13, 452,86 | 22, 963, 108

[218, 1135] [285, 2280] [301, 4396]
{167, 835} {198, 1655} {192, 3216}
p 9
BACOLI/ST 11, 1123, 35 | 15, 2330, 51 15, 5332, 76
[114, 1783] [234, 3427] [774, 7818]
BACOLI/LE 12, 1000, 46 | 15, 2163, 63 14, 4981, 100
[128, 1653] [226, 3239] [687, T406]
BACOLRI/ST | 15,198, 31 14, 462, 47 15, 979, 85
[220, 1078] | [296, 2212] [366, 4511]

{188, 817} | {248, 1654} | {280, 3359}
BACOLRI/LE | 12,235, 41 | 15, 447,59 | 14, 971, 108
(264, 1266] | [245, 2128] [293, 4493]
{222,936} | {185, 1561} | {184, 3305}

Table 11: Machine independent results for the Two Layer Burgers equationx12
with € = 1073, We consider p = 4,5,7,9 and tol = 104,106,108, Table
entries are of the form Final Nint, Accepted Time Steps, Remeshings [Calls to
CRDCMP, CRSLVE] {Calls to CCRCMP, CCRSLVE}.
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tol 107* 107° 107°
p 4
BACOLI/ST 15, 9306, 663 24, 25868, 756 45, 47558, 848
[1682, 17278] [3306, 36352] (6737, 69823]
BACOLI/LE 20, 8195, 980 | 42, 16236, 1215 | 100, 38716, 3250
[2011, 16689] [2486, 26804] [6533, 67984]
BACOLRI/ST 17, 1966, 638 25, 4481, 695 46, 9919, 1163
[2537, 11859 [2445, 21559 [2473, 45480]
{1898, 8524} {1749, 15673} {1309, 33234}
BACOLRI/LE | 20, 1897, 893 40, 4393, 1105 102, 9682, 2827
[2679, 12799] [2697, 23680] [5806, 48640]
{1785, 9115} | {1591, 17076} {2978, 33303}
p 5
BACOLI/ST 15, 9663, 473 20, 22965, 780 33, 49047, 807
[1270, 16323] [3684, 37418] (6838, 71577]
BACOLI/LE 13, 9714, 804 23, 19986, 946 46, 45034, 1043
[1838, 17430] [2139, 30812] [2991, 63229]
BACOLRI/ST 15, 2113, 476 18, 4388, 753 33, 9727, 773
[2429, 11577] [2809, 21800] [2276, 43478]
{1952, 8418} {2055, 15879} {1502, 32204}
BACOLRI/LE 15, 1965, 761 24, 4329, 894 46, 9620, 986
[2884, 12577] [2378, 22074] [2079, 43855]
{2122, 9060} | {1483, 15956} {1092, 32262}
p 7
BACOLI/ST 15, 10282, 440 14, 26729, 736 21, 96947, 911
[1180, 16983] [4740, 43158] [8469, 78484]
BACOLI/LE 13, 10469, 554 14, 24283, 973 21, 46944, 1041
[1364, 17279] [4278, 40996] [5468, 68724]
BACOLRI/ST 15, 2341, 415 15, 4489, 720 17, 9609, 976
[2770, 12515] [3222, 22942] [4147, 44306]
{2354, 9272} | {2501, 16799} {3170, 32715}
BACOLRI/LE 15, 2379, 513 14, 4396, 974 21, 9472, 1042
[2976, 13054] [3350, 23262] [2166, 43791]
{2462, 9517} {2375, 16860} {1123, 32234}
p 9
BACOLI/ST 14, 12371, 351 15, 31020, 590 14, 54847, 951
[1569, 19749] [4511, 43894] [9519, 83518]
BACOLI/LE 14, 11555, 433 15, 27058, 744 15, 85222, 1235
[1563, 19208] [4629, 43575] [10449, 88444
BACOLRI/ST 14, 3144, 352 14, 4923, 606 15, 9579, 950
[3600, 15519] [4091, 24814] [4267, 45063]
{3247, 11372} | {3484, 18383} {3316, 33275}
BACOLRI/LE | 14, 2849, 421 15, 4567, 786 14, 9617, 1172
[3421, 14704] [3897, 23887] [3974, 44895]
{2999, 10765} | {3110, 17471} {2801, 32917}

Table 12: Machine independent results for the Two Layer Burgers equationx12
with € = 1074, We consider p = 4,5,7,9 and tol = 104,106,108, Table
entries are of the form Final Nint, Accepted Time Steps, Remeshings [Calls to
CRDCMP, CRSLVE] {Calls to CCRCMP, CCRSLVE}.
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tol 107* 107° 1078
p 4
BACOLI/ST 19, 5691, 173 | 43, 11876, 332 92, 24745, 413
[477, 8590] [889, 17253 [1546, 33523]
BACOLI/LE 50, 3669, 432 | 137, 11248, 723 | 227, 24371, 1200
[931, 7385] [1585, 18444] [2603, 36137]
BACOLRI/ST 18, 910, 162 44, 1687, 300 95, 3058, 422
[1679, 6870] [3139, 13625] [4386, 22729]
{1510, 5626} {2829, 11328} {3952, 18815}
BACOLRI/LE 28, 926, 260 78, 1761, 381 237, 3613, 881
[2213, 8346] [3542, 15054] (6385, 30254]
{1947, 6892} | {3155, 12524} {5497, 24871}
p 5
BACOLI/ST 15, 6708, 167 | 31, 12519, 327 50, 27114, 437
[499, 9803] [983, 18224] [1952, 37200]
BACOLI/LE 19, 4276, 240 | 40, 12352, 394 93, 24097, 427
[573, 7096] [1040, 17830] [1110, 31144
BACOLRI/ST 14, 957, 147 30, 1670, 283 49, 3028, 383
[1664, 6853 [3116, 13434] [4254, 22282]
{1512, 5595} | {2820, 11184} {3865, 18482}
BACOLRI/LE 15, 861, 180 40, 1683, 343 82, 3119, 476
[1824, 7378] [3324, 14219] [4668, 23672]
{1639, 6151} | {2975, 11844} {4184, 19590}
p 7
BACOLI/ST 16, 7505, 116 20, 14881, 328 27, 29530, 418
[495, 10723] [1683, 22580] [2800, 41872]
BACOLI/LE 15, 5789, 183 24, 12708, 412 33, 26190, 438
[552, 9020] [1222, 19198] [1564, 35322]
BACOLRI/ST | 13, 1085, 121 21, 1757, 331 26, 3091, 414
[1667, 7185] [3302, 14354] [4430, 23044
{1539, 5833} {2961, 11919} {4009, 19118}
BACOLRI/LE 15, 995, 188 24, 1715, 341 35, 3040, 426
[1877, 7942] [3330, 14280] [4380, 22820
{1683, 6560} | {2982, 11868} {3947, 18921}
p 9
BACOLI/ST 15, 9863, 136 18, 28626, 314 16, 31905, 431
[791, 14212 [2194, 26569] [3543, 45734]
BACOLI/LE 15, 8196, 152 16, 16248, 404 21, 29803, 514
[805, 12053] [2515, 25306] [3344, 43622]
BACOLRI/ST 15, 1297, 98 15, 1914, 307 18, 3176, 444
[1807, 7948] [3285, 14660] [4728, 23583]
{1703, 6399} | {2971, 12044} {4277, 19511}
BACOLRI/LE | 15, 1209, 149 18, 1880, 460 22, 3130, 491
[1888, 8337] [3762, 16139] [4645, 23894]
{1733, 6752} | {3295, 13287} {4146, 19766}

Table 13: Machine independent results for the Catalytic Surface Reaction Model.
We consider p = 4,5,7,9 and tol = 107*,1076,1078. Table entries are of
the form Final Nint, Accepted Time Steps, Remeshings [Calls to CRDCMP,
CRSLVE] {Calls to CCRCMP, CCRSLVE}.
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tol [ 107" [ 100° | 10°°

p 4
BACOLRI/ST | 30,9, 6 71,14, 6 | 179, 26, 8
[29, 57] [32, 71] [43, 122]

{15, 28} | {20,39} | {26, 71}
BACOLRI/LE | 59,8, 4 | 178, 14, 6 | 640, 25, 6

[21, 47] [27, 79] [37, 107]
{12, 26} | {15,47} | {24, 63}

p 5
BACOLRI/ST | 22,9,7 | 40, 14,7 | 93,24, 4
[32, 62] [36, 77] [38, 88]

{16,330} | {21, 41} | {28, 50}
BACOLRI/LE | 27,8,4 | 80, 14,2 | 173, 24, 6

[22,45] | [22, 52] [44, 97]
{12, 23} | {16, 30} {30, 53}

p 7
BACOLRI/ST | 13,10, 6 | 22,14,5 | 37, 24,5
[28, 62] [30, 67] [40, 93]

{16, 34} | {19,37} | {29, 53}
BACOLRI/LE | 18,9,6 | 33,14, 6 | 53,24, 6

[27, 57] [32, 71] [41, 98]
{15, 30} | {20, 39} {30, 57}

p 9
BACOLRI/ST | 12,8,3 | 16, 14,4 | 22,25, 6
[19,40] | [28,62] | [42, 104]

{11, 21} | {18, 34} | {29, 60}
BACOLRI/LE | 12,8,3 | 18,15, 6 | 29, 24, 6
[19,40] | [32,75] | [39, 103]
{11, 21} | {20, 42} | {27, 61}

Table 14: Machine independent results for the Schrodinger Equation. We con-
sider p = 4,5,7,9 and tol = 1074,107%,107%. Table entries are of the form
Final Nint, Accepted Time Steps, Remeshings [Calls to CRDCMP, CRSLVE]
{Calls to CCRCMP, CCRSLVE}.
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Figure 1: BACOLI/ST Number of Subintervals vs. Error Tolerance: One Layer
Burgers Equation, e = 1072 withp =4...11
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Figure 2: BACOLI/LE Number of Subintervals vs. Error Tolerance: One Layer
Burgers Equation, e = 1072 withp =4...11
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Figure 3: BACOLRI/ST Number of Subintervals vs. Error Tolerance: One
Layer Burgers Equation, e = 1072 withp =4...11
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Figure 4: BACOLRI/LE Number of Subintervals vs. Error Tolerance: One
Layer Burgers Equation, e = 1072 withp =4...11
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Figure 5: BACOLI/ST Number of Subintervals vs. Error Tolerance: One Layer
Burgers Equation, e = 1074 with p =4...11
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Figure 6: BACOLI/LE Number of Subintervals vs. Error Tolerance: One Layer
Burgers Equation, e = 1074 with p =4...11
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Figure 7: BACOLRI/ST Number of Subintervals vs. Error Tolerance: One
Layer Burgers Equation, e = 107* with p =4...11
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Figure 8: BACOLRI/LE Number of Subintervals vs. Error Tolerance: One
Layer Burgers Equation, e = 107* withp =4...11
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Figure 9: BACOLI/ST Number of Subintervals vs. Error Tolerance: Two Layer
Burgers Equation, e = 1072 withp =4...11
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Figure 10: BACOLI/LE Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equation, e = 1072 withp =4...11
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Figure 11: BACOLRI/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equation, e = 1072 withp =4...11
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Figure 12: BACOLRI/LE Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equation, e = 1072 withp =4...11
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Figure 13: BACOLI/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equation, e = 107% with p =4...11

—o— p=4

—e— p=5

—o— p=6

—o— p=7
102 { —*— p=8
—e— p=9
p=10

—o— p=11

Final Number of Subintervals

10-2 103 10¢ 10 10-¢® 10~7 10" 10° 10710
Error Tolerance

Figure 14: BACOLI/LE Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equation, e = 107% with p =4...11
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Figure 15: BACOLRI/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equation, e = 107% with p =4...11
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Figure 16: BACOLRI/LE Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equation, e = 107% with p =4...11
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Figure 17: BACOLI/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx6, e = 1073 with p =4...11
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Figure 18: BACOLI/LE Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx6, ¢ = 1073 with p = 4...11
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Figure 19: BACOLRI/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx6, e = 1073 with p =4...11
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Figure 20: BACOLRI/LE Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx6, ¢ = 1073 with p = 4...11
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Figure 21: BACOLI/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx6, e = 107* with p =4...11
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Figure 22: BACOLI/LE Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx6, e = 107* with p =4...11
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Figure 23: BACOLRI/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx6, e = 107* with p =4...11

—o— p=4

—e— p=5

—o— p=6

—o— p=7

—o— p=8

—e— p=9
p=10

1024 —e— p=11

Final Number of Subintervals

10-2 103 10¢ 10 10-¢® 10~7 10" 10° 10710
Error Tolerance

Figure 24: BACOLRI/LE Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx6, e = 107* with p =4...11
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Figure 25: BACOLI/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx12, ¢ = 1073 with p=4...11
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Figure 26: BACOLI/LE Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx12, ¢ = 1073 with p=4...11
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Figure 27: BACOLRI/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx12, ¢ = 1072 with p=4...11
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Figure 28: BACOLRI/LE Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx12, e = 1073 with p=4...11
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Figure 29: BACOLI/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx12, e = 10™* with p =4...11
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Figure 30: BACOLI/LE Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx12, e = 10™* with p =4...11
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Figure 31: BACOLRI/ST Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx12, e = 10™* with p =4...11
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Figure 32: BACOLRI/LE Number of Subintervals vs. Error Tolerance: Two
Layer Burgers Equationx12, e = 10™* with p =4...11
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Figure 33: BACOLI/ST Number of Subintervals vs. Error Tolerance: Catalytic
Surface Reaction Model with p=4...11
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Figure 34: BACOLI/LE Number of Subintervals vs. Error Tolerance: Catalytic
Surface Reaction Model with p=4...11
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Figure 35: BACOLRI/ST Number of Subintervals vs. Error Tolerance: Cat-
alytic Surface Reaction Model with p=4...11
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Figure 36: BACOLRI/LE Number of Subintervals vs. Error Tolerance: Cat-
alytic Surface Reaction Model with p=4...11
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Figure 39: BACOLI/ST Number of Accepted Time Steps vs. Error Tolerance:
One Layer Burgers Equation, e = 1073 with p =4...11
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Figure 40: BACOLI/LE Number of Accepted Time Steps vs. Error Tolerance:
One Layer Burgers Equation, e = 1073 with p =4...11
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Figure 41: BACOLRI/ST Number of Accepted Time Steps vs. Error Tolerance:
One Layer Burgers Equation, e = 1073 with p =4...11
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Figure 42: BACOLRI/LE Number of Accepted Time Steps vs. Error Tolerance:
One Layer Burgers Equation, e = 1073 with p =4...11
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Figure 43: BACOLI/ST Number of Accepted Time Steps vs. Error Tolerance:
One Layer Burgers Equation, e = 107* with p =4...11
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Figure 44: BACOLI/LE Number of Accepted Time Steps vs. Error Tolerance:
One Layer Burgers Equation, e = 107* with p =4...11
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Figure 45: BACOLRI/ST Number of Accepted Time Steps vs. Error Tolerance:
One Layer Burgers Equation, e = 107* with p =4...11
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Figure 46: BACOLRI/LE Number of Accepted Time Steps vs. Error Tolerance:
One Layer Burgers Equation, e = 107* with p =4...11
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Figure 47: BACOLI/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equation, e = 1072 with p=4...11
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Figure 48: BACOLI/LE Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equation, e = 1072 with p=4...11
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Figure 49: BACOLRI/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equation, e = 1072 with p=4...11
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Figure 50: BACOLRI/LE Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equation, e = 1072 with p=4...11
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Figure 51: BACOLI/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equation, e = 1074 with p =4...11
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Figure 52: BACOLI/LE Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equation, e = 1074 with p =4...11
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Figure 53: BACOLRI/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equation, e = 1074 with p =4...11
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Figure 54: BACOLRI/LE Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equation, e = 1074 with p =4...11
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Figure 55: BACOLI/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx6, e = 1073 with p =4...11
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Figure 56: BACOLI/LE Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx6, e = 1073 with p =4...11
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Figure 57: BACOLRI/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx6, e = 1073 with p =4...11
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Figure 58: BACOLRI/LE Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx6, e = 1073 with p =4...11
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Figure 59: BACOLI/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx6, e = 1074 with p = 4...11
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Figure 60: BACOLI/LE Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx6, e = 1074 with p = 4...11
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Figure 61: BACOLRI/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx6, e = 1074 with p = 4...11
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Figure 62: BACOLRI/LE Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx6, e = 1074 with p = 4...11
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Figure 63: BACOLI/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx12, e = 1073 with p = 4...11
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Figure 64: BACOLI/LE Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx12, e = 1073 with p = 4...11

67



103

fresttts

O

Number of Accepted Time Steps

102 4

10-2 103 10¢ 10 10-¢® 10~7 10" 10° 10710
Error Tolerance

Figure 65: BACOLRI/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx12, e = 1073 with p = 4...11
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Figure 66: BACOLRI/LE Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx12, e = 1073 with p = 4...11
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Figure 67: BACOLI/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx12, e = 1074 with p = 4...11
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Figure 68: BACOLI/LE Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx12, e = 1074 with p = 4...11
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Figure 69: BACOLRI/ST Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx12, e = 1074 with p = 4...11
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Figure 70: BACOLRI/LE Number of Accepted Time Steps vs. Error Tolerance:
Two Layer Burgers Equationx12, e = 1074 with p = 4...11
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Figure 71: BACOLI/ST Number of Accepted Time Steps vs. Error Tolerance:
Catalytic Surface Reaction Model with p =4...11
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Figure 72: BACOLI/LE Number of Accepted Time Steps vs. Error Tolerance:
Catalytic Surface Reaction Model with p =4...11
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Figure 73: BACOLRI/ST Number of Accepted Time Steps vs. Error Tolerance:
Catalytic Surface Reaction Model with p =4...11
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Figure 74: BACOLRI/LE Number of Accepted Time Steps vs. Error Tolerance:
Catalytic Surface Reaction Model with p =4...11
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Figure 75: BACOLRI/ST Number of Accepted Time Steps vs. Error Tolerance:
Schrédinger System with p =4...11
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Figure 76: BACOLRI/LE Number of Accepted Time Steps vs. Error Tolerance:
Schrédinger System with p =4...11
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Figure 77: BACOLI/ST Number of Remeshings vs. Error Tolerance: One Layer
Burgers Equation, e = 1072 withp =4...11
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Figure 78: BACOLI/LE Number of Remeshings vs. Error Tolerance: One Layer
Burgers Equation, e = 1072 withp =4...11
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Figure 79: BACOLRI/ST Number of Remeshings vs. Error Tolerance: One
Layer Burgers Equation, e = 1072 withp =4...11
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Figure 80: BACOLRI/LE Number of Remeshings vs. Error Tolerance: One
Layer Burgers Equation, e = 1073 withp =4...11
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Figure 81: BACOLI/ST Number of Remeshings vs. Error Tolerance: One Layer
Burgers Equation, e = 1074 with p =4...11
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Figure 82: BACOLI/LE Number of Remeshings vs. Error Tolerance: One Layer
Burgers Equation, e = 1074 with p =4...11
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Figure 83: BACOLRI/ST Number of Remeshings vs. Error Tolerance: One
Layer Burgers Equation, e = 107* with p =4...11

—o— p=4
—e— p=5
—o— p=6
—o— p=7
—o— p=8
—e— p=9

p=10
—o— p=11

103

Number of Remeshings

10-2 103 10¢ 10 10-¢® 10~7 10" 10° 10710
Error Tolerance

Figure 84: BACOLRI/LE Number of Remeshings vs. Error Tolerance: One
Layer Burgers Equation, e = 107* withp =4...11

7



fresttts

O

102 4

Number of Remeshings

102 1073 10™* 107 10°® 1077
Error Tolerance

107

1079 107

Figure 85: BACOLI/ST Number of Remeshings vs. Error Tolerance: Two Layer

Burgers Equation, e = 1072 withp =4...11
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Figure 86: BACOLI/LE Number of Remeshings vs.

107

Layer Burgers Equation, e = 1073 withp =4...11
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Figure 87: BACOLRI/ST Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equation, e = 1072 withp =4...11
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Figure 88: BACOLRI/LE Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equation, e = 1072 withp =4...11
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Figure 89: BACOLI/ST Number of Remeshings vs. Error Tolerance: Two Layer
Burgers Equation, e = 1074 with p =4...11
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Figure 90: BACOLI/LE Number of Remeshings vs. FError Tolerance: Two
Layer Burgers Equation, e = 107% with p =4...11
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Figure 91: BACOLRI/ST Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equation, e = 107% with p =4...11
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Figure 92: BACOLRI/LE Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equation, e = 107% with p =4...11
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Figure 93: BACOLI/ST Number of Remeshings vs. Error Tolerance: Two Layer

Burgers Equationx6, e = 1073 with p = 4...11
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Figure 94: BACOLI/LE Number of Remeshings vs.
Layer Burgers Equationx6, ¢ = 1073 with p = 4...11
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Figure 95: BACOLRI/ST Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx6, ¢ = 1073 with p = 4...11
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Figure 96: BACOLRI/LE Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx6, ¢ = 1073 with p = 4...11
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Figure 97: BACOLI/ST Number of Remeshings vs. Error Tolerance: Two Layer

Burgers Equationx6, e = 1074 with p = 4...11
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Figure 98: BACOLI/LE Number of Remeshings vs.
Layer Burgers Equationx6, e = 107* with p =4...11
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Figure 99: BACOLRI/ST Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx6, e = 107* with p =4...11
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Figure 100: BACOLRI/LE Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx6, e = 107* with p =4...11
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Figure 101: BACOLI/ST Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx12, ¢ = 1072 with p=4...11
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Figure 102: BACOLI/LE Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx12, e = 1073 with p=4...11
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Figure 103: BACOLRI/ST Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx12, ¢ = 1072 with p=4...11
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Figure 104: BACOLRI/LE Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx12, e = 1073 with p=4...11
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Figure 105: BACOLI/ST Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx12, e = 10™* with p =4...11
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Figure 106: BACOLI/LE Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx12, e = 10™* with p =4...11
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Figure 107: BACOLRI/ST Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx12, e = 10™* with p =4...11
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Figure 108: BACOLRI/LE Number of Remeshings vs. Error Tolerance: Two
Layer Burgers Equationx12, e = 10™* with p =4...11
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Figure 109: BACOLI/ST Number of Remeshings vs. Error Tolerance: Catalytic
Surface Reaction Model with p=4...11
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Figure 110: BACOLI/LE Number of Remeshings vs. Error Tolerance: Catalytic
Surface Reaction Model with p=4...11
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Figure 111: BACOLRI/ST Number of Remeshings vs. Error Tolerance: Cat-
alytic Surface Reaction Model with p=4...11
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Figure 112: BACOLRI/LE Number of Remeshings vs. Error Tolerance: Cat-
alytic Surface Reaction Model with p=4...11
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Figure 113: Number of Matrix Factorizations and Backsolves vs.
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Figure 114: Number of Matrix Factorizations and Backsolves vs.
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Figure 115: Number of Matrix Factorizations and Backsolves vs.

1073

10 107 10-5 10~ 10-¢ 10~° 10-1°
Error Tolerance

One Layer Burgers Equation, € = 1073 with p =7
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Figure 116: Number of Matrix Factorizations and Backsolves vs.
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One Layer Burgers Equation, € = 1073 with p = 9
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Figure 117: Number of Matrix Factorizations and Backsolves vs.
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Figure 118: Number of Matrix Factorizations and Backsolves vs.
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One Layer Burgers Equation, e = 107% with p = 5

94

107

10710

Tolerance:

Tolerance:



=

[=]
]
!

104 4

Matrix Decompositions & Backsolves

103

BACOLI/LE-Decompositions
BACOLI/LE-Backsolves
BACOLI/ST-Decompositions
BACOLI/ST-Backsolves

BACOLRI/LE-Decompositions —~®~~
BACOLRI/LE-Backsolves
BACOLRI/ST-Decompositions P
BACOLRI/ST-Backsolves ==

Figure 119: Number of Matrix Factorizations and Backsolves vs.
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Figure 120: Number of Matrix Factorizations and Backsolves vs.
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Figure 121: Number of Matrix Factorizations and Backsolves vs.
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104 4

103

Matrix Decompositions & Backsolves

107

—e— BACOLI/LE-Decompositions
-®- BACOLI/LE-Backsolves

—e— BACOLI/ST-Decompositions
--®- BACOLI/ST-Backsolves

—o— BACOLRI/LE-Decompositions
--®- BACOLRI/LE-Backsolves o
—e— BACOLRI/ST-Decompositions = _ .-~
--®- BACOLRI/ST-Backsolve: -

Figure 122: Number of Matrix Factorizations and Backsolves vs.
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Figure 123: Number of Matrix Factorizations and Backsolves vs.

Two Layer Burgers Equation, € = 1072 with p = 7
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Figure 124: Number of Matrix Factorizations and Backsolves vs.

Two Layer Burgers Equation, € = 1073 with p = 9
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Figure 125: Number of Matrix Factorizations and Backsolves vs.
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Figure 126: Number of Matrix Factorizations and Backsolves vs.
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Figure 128: Number of Matrix Factorizations and Backsolves vs.
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Figure 129: Number of Matrix Factorizations and Backsolves vs.
Two Layer Burgers Equationx6, ¢ = 1073 with p = 4
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Figure 130: Number of Matrix Factorizations and Backsolves vs.
Two Layer Burgers Equationx6, e = 1072 with p = 5
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Figure 131: Number of Matrix Factorizations and Backsolves vs.

107

Two Layer Burgers Equationx6, e = 1073 with p = 7
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Figure 132: Number of Matrix Factorizations and Backsolves vs.

107

Two Layer Burgers Equationx6, e = 1072 with p = 9
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Figure 133: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equationx6, e = 104 with p = 4
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Figure 134: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equationx6, ¢ = 10™* with p = 5
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Figure 135: Number of Matrix Factorizations and Backsolves vs.
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Two Layer Burgers Equationx6, ¢ = 107 with p =7
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Figure 136: Number of Matrix Factorizations and Backsolves vs.
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Two Layer Burgers Equationx6, ¢ = 10™* with p = 9
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Figure 137: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equationx12, ¢ = 1073 with p = 4
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Figure 138: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Two Layer Burgers Equationx12, € = 1073 with p = 5
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Figure 139: Number of Matrix Factorizations and Backsolves vs.
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Figure 140: Number of Matrix Factorizations and Backsolves vs.
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Figure 141: Number of Matrix Factorizations
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Figure 142: Number of Matrix Factorizations
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Two Layer Burgers Equationx12, e = 10~* with p =5
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Figure 143: Number of Matrix Factorizations and Backsolves vs.
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Figure 144: Number of Matrix Factorizations and Backsolves vs.
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Figure 145: Number of Matrix Factorizations and Backsolves vs.
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Figure 146: Number of Matrix Factorizations and Backsolves vs.
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Figure 147: Number of Matrix Factorizations and Backsolves vs.
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Figure 148: Number of Matrix Factorizations and Backsolves vs.
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Figure 149: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Schrodinger System with p =4
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Figure 150: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Schrodinger System with p =5
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Figure 151: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Schrodinger System with p =7

—e— BACOLRI/LE-Decompositions 4
--®- BACOLRI/LE-Backsolves Jtad
—e— BACOLRI/ST-Decompositions R

--®- BACOLRI/ST-Backsolves

102 4

Matrix Decompositions & Backsolves

10 10~ 10~ 10 107 10-% 10-° 10-1
Error Tolerance

Figure 152: Number of Matrix Factorizations and Backsolves vs. Tolerance:
Schrodinger System with p =9
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Figure 153: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: One Layer Burgers Equation, e = 1072 with p = 4
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Figure 154: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: One Layer Burgers Equation, e = 1072 with p =5
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Figure 155: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: One Layer Burgers Equation, e = 1073 with p =7
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Figure 156: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: One Layer Burgers Equation, e = 1072 with p =9
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Figure 157: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: One Layer Burgers Equation, e = 10™* with p = 4
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Figure 158: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: One Layer Burgers Equation, e = 1074 with p = 5
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Figure 159: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: One Layer Burgers Equation, e = 10™* with p = 7
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Figure 160: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: One Layer Burgers Equation, e = 104 with p = 9
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Figure 161: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equation, € = 1073 with p = 4
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Figure 162: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equation, e = 1072 with p =5
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Figure 163: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equation, ¢ = 1073 with p =7
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Figure 164: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equation, € = 1072 with p=9
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Figure 165: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equation, e = 10™* with p = 4
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Figure 166: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equation, e = 107* with p = 5

118



—o— BACOLRI/LE-Decompositions .

2 -~ BACOLRI/LE-Backsolves P
= —e— BACOLRI/ST-Decompositions -
[ --@- BACOLRI/ST-Backsolves POt
3 -~
© Poiae
o -
& L
g .-
<} -
k=] -
7] P
g 101 e
£ Lt
S ®
[
a
X
=]
©
=
x
[}
°
£
[=3
(&)

103

103 104 103 10-¢ 1077 108 10-° 10w
Error Tolerance

Figure 167: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equation, e = 10™* with p =7
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Figure 168: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equation, e = 107* with p = 9
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Figure 169: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx6, € = 1073 with p = 4
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Figure 170: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx6, ¢ = 1073 with p=5
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Figure 171: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx6, e = 1073 with p =7
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Figure 172: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx6, ¢ = 1073 with p = 9
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Figure 173: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx6, ¢ = 1074 with p = 4

—o— BACOLRI/LE-Decompositions

-®- BACOLRI/LE-Backsolves -
—e— BACOLRI/ST-Decompositions =
--@- BACOLRI/ST-Backsolves "

104 4 o

Complex Matrix Decompositions & Backsolves

103

103 104 103 10-¢ 1077 108 10-° 10w
Error Tolerance

Figure 174: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx6, e = 10~* with p =5
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Figure 175: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
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Figure 177: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx12, e = 1073 with p = 4
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Figure 178: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx12, e = 1073 with p=5
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Figure 179: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx12, e = 1073 with p =7
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Figure 180: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx12, e = 1073 with p = 9
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Figure 181: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx12, e = 10™* with p = 4
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Figure 182: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx12, e = 10~* with p =5
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Figure 183: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx12, e = 10™* with p =7
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Figure 184: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Two Layer Burgers Equationx12, e = 10~* with p =9
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Figure 185: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Catalytic Surface Reaction Model with p = 4
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Figure 186: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Catalytic Surface Reaction Model with p =5
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Figure 187: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Catalytic Surface Reaction Model with p =7
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Figure 188: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Catalytic Surface Reaction Model with p =9
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Figure 189: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Schrodinger System with p =4
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Figure 190: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Schrodinger System with p =5
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Figure 191: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Schrodinger System with p =7
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Figure 192: Number of Complex Matrix Factorizations and Backsolves vs. Tol-
erance: Schrodinger System with p =9
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tol =10~%/p = 4 ) 6 7 8 9 10 11

BACOLI/ST 0.02 | 0.03 | 0.04 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08
BACOLI/LE 0.03 | 0.03 | 0.04 | 0.04 | 0.05 | 0.06 | 0.07 | 0.09
BACOLRI/ST 0.03 | 0.04 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09
BACOLRI/LE | 0.04 | 0.04 | 0.04 | 0.05 | 0.05 | 0.06 | 0.07 | 0.09

tol =107%/p = 4 ) 6 7 8 9 10 11

BACOLI/ST 0.09 | 0.10 | 0.10 | 0.11 | 0.12 | 0.14 | 0.17 | 0.18
BACOLI/LE 0.11 ] 0.09 | 0.10 | 0.10 | 0.12 | 0.13 | 0.15 | 0.18
BACOLRI/ST 0.07 | 0.07 | 0.07 | 0.08 | 0.09 | 0.10 | 0.13 | 0.15
BACOLRI/LE 0.10 | 0.08 | 0.09 | 0.09 | 0.10 | 0.12 | 0.12 | 0.15

tol =108 /p = 4 ) 6 7 8 9 10 11

BACOLI/ST 0.38 1 0.30 | 0.27 | 0.28 | 0.29 | 0.34 | 0.32 | 0.36
BACOLI/LE 0.84 | 0.34 | 0.32 | 0.32 | 0.30 | 0.32 | 0.31 | 0.36
BACOLRI/ST 0.240.20 | 0.18 | 0.19 | 0.20 | 0.22 | 0.23 | 0.24
BACOLRI/LE | 0.62 | 0.28 | 0.23 | 0.21 | 0.22 | 0.22 | 0.23 | 0.26
tol =10719/p = 4 ) 6 7 8 9 10 11

BACOLI/ST 2.16 | 1.10 | 0.84 | 0.79 | 0.76 | 0.77 | 0.79 | 0.88
BACOLI/LE 5.21 | 1.30 | 1.07 | 0.89 | 0.76 | 0.82 | 0.89 | 0.83
BACOLRI/ST 0.96 | 0.63 | 0.53 | 0.48 | 0.47 | 0.48 | 0.53 | 0.53
BACOLRI/LE | 4.17 | 1.29 | 0.77 | 0.61 | 0.54 | 0.51 | 0.52 | 0.50

Table 15: Machine dependent timings (in seconds), One Layer Burgers equation,
e=10"3,p=4,...,11, tol = 1074,1076,1078, 10710,
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tol =10~%/p = 4 ) 6 7 8 9 10 11

BACOLI/ST 028 | 035 {039 049 | 0.58 | 0.74 | 0.90 | 1.13
BACOLI/LE 0.32 | 0.36 | 0.40 | 0.49 | 0.57 | 0.71 | 0.86 | 1.06
BACOLRI/ST 023 | 0.28 [ 0.33 044 | 0.54 | 0.71]0.90 | 1.19
BACOLRI/LE 0.31 | 0.33 | 0.36 | 0.45 | 0.54 | 0.67 | 0.83 | 1.07

tol =107%/p = 4 5 6 7 8 9 10 11
BACOLI/ST 0.91 1.04 | 1.11 | 1.36 | 1.41 | 1.66 | 1.92 | 2.28
BACOLI/LE 1.07 | 1.04 | 1.20 | 1.37 | 1.41 | 1.52 | 1.72 | 2.11

BACOLRI/ST 0.53 | 0.62 [ 0.64| 0.76 | 0.89 | 1.13 | 1.41 | 1.70
BACOLRI/LE 0.88 | 0.71 | 0.77 | 0.89 | 0.90 | 1.06 | 1.24 | 1.51

tol =108 /p = 4 ) 6 7 8 9 10 11
BACOLI/ST 3.31 | 3.14 | 2.76 | 3.04 | 3.28 | 3.85 | 4.01 | 4.36
BACOLI/LE 5.57 | 3.85 | 3.10 | 3.07 | 3.63 | 4.17 | 3.76 | 3.89

BACOLRI/ST 1.87 | 1.78 | 1.69 | 1.95 | 2.05 | 2.31 | 2.37 | 2.79
BACOLRI/LE 4.96 | 2.45 | 2.14 | 2.07 | 2.22 | 2.50 | 2.44 | 2.55

tol =10719/p = 4 ) 6 7 8 9 10 11

BACOLI/ST 16.71 | 10.19 | 8.26 | 7.49 | 7.57 | 8.14 | 8.82 | 9.75
BACOLI/LE — 16.07 | 9.98 | 8.77 | 8.88 | 9.23 | 9.73 | 10.75
BACOLRI/ST 7.54 | 5.64 | 4.76 | 4.72 | 4.72 | 5.20 | 5.52 | 6.26
BACOLRI/LE — 9.90 | 6.86 | 5.81 | 5.38 | 5.44 | 5.64 | 6.30

Table 16: Machine dependent timings (in seconds), One Layer Burgers equation,
e=10"% p=4,...,11, tol = 1074,1076,1078,107 10,
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tol =10~%/p = 4 ) 6 7 8 9 10 11

BACOLI/ST 0.02 | 0.03 | 0.03 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07
BACOLI/LE 0.03 | 0.03 | 0.03 | 0.04 | 0.04 | 0.05 | 0.05 | 0.08
BACOLRI/ST 0.03 | 0.03 | 0.04 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08
BACOLRI/LE | 0.03 | 0.03 | 0.04 | 0.04 | 0.05 | 0.05 | 0.07 | 0.08

tol =107 %/p = 4 ) 6 7 8 9 10 11
BACOLI/ST — 1 0.08 | 0.08 |0.09]0.11 | 0.12 | 0.14 | 0.16
BACOLI/LE 0.11 | 0.08 | 0.09 | 0.09 | 0.11 | 0.12 | 0.13 | 0.14
BACOLRI/ST — 1 0.06 | 0.07 | 0.07 | 0.08 | 0.09 | 0.10 | 0.12
BACOLRI/LE | 0.11 | 0.08 | 0.07 | 0.07 | 0.08 | 0.09 | 0.10 | 0.11
tol =108 /p = 4 ) 6 7 8 9 10 11

BACOLI/ST 0.45 ] 0.27 | 0.23 | 0.25 | 0.27 | 0.29 | 0.31 | 0.35
BACOLI/LE 0.89 | 0.34 | 0.27 | 0.26 | 0.27 | 0.29 | 0.30 | 0.35
BACOLRI/ST 0.22]0.17 | 0.15 | 0.16 | 0.17 | 0.18 | 0.21 | 0.23
BACOLRI/LE | 0.67 | 0.27 | 0.20 | 0.18 | 0.18 | 0.18 | 0.21 | 0.23
tol =1010/p = 4 ) 6 7 8 9 10 11

BACOLI/ST 2.13 | 1.0310.76 | 0.73 | 0.71 | 0.69 | 0.74 | 0.74
BACOLI/LE 6.35 | 1.83 | 0.97 | 0.83 | 0.77 | 0.81 | 0.82 | 0.80
BACOLRI/ST 0.92 | 0.58 | 0.46 | 0.43 | 0.40 | 0.42 | 0.42 | 0.45
BACOLRI/LE | 4.40 | 1.23 | 0.71 | 0.55 | 0.48 | 0.46 | 0.46 | 0.46

Table 17: Machine dependent timings (in seconds), Two Layer Burgers equation,
e=10"3,p=4,...,11, tol = 1074,1076,1078, 10710,
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tol =10~%/p = 4 ) 6 7 8 9 10 11

BACOLI/ST 027 | 029 | 0.35 | 044 | 0.55 | 0.68 | 0.80 | 0.92
BACOLI/LE 0.30 | 0.32 | 0.38 | 0.44 | 0.57 | 0.70 | 0.87 | 0.95
BACOLRI/ST 022 | 0.24 | 0.30 | 0.39 | 0.51 | 0.66 | 0.79 | 1.00
BACOLRI/LE 027 | 028 | 0.32 | 040 | 0.51 | 0.63 | 0.85 | 0.93

tol =107 /p = 4 5 6 7 8 9 10 11
BACOLI/ST 0.89 | 0.91 1.01 | 1.22 | 1.42 | 1.68 | 1.98 | 2.33
BACOLI/LE 099 | 092 | 1.05 | 1.23 | 1.44 | 1.67 | 2.00 | 2.30

BACOLRI/ST 0.51 | 056 | 0.61 |0.73]0.90 | 1.12 | 1.38 | 1.70
BACOLRI/LE 0.87 | 0.67 | 0.70 | 0.81 093|113 | 1.32| 1.63

tol = 1078 /p = 4 ) 6 7 8 9 10 11
BACOLI/ST 3.12 | 278 | 2.69 | 294 | 3.21 | 3.58 | 3.89 | 4.41
BACOLI/LE 7.08 | 3.46 | 3.08 | 3.01 | 3.44 | 3.81 | 4.05 | 4.53

BACOLRI/ST 177 | 1.57 | 1.57 | 1.67 | 1.82 | 2.05 | 2.39 | 2.81
BACOLRI/LE 474 | 232 | 1.94 | 1.88 | 2.04 | 2.17 | 2.39 | 2.77

tol = 10710/p = 4 ) 6 7 8 9 10 11

BACOLI/ST 17.58 | 10.48 | 819 | 7.78 | 7.64 | 7.89 | 8.66 | 9.62
BACOLI/LE — 13.76 | 10.32 | 8.71 | 8.42 | 8.77 | 9.20 | 10.30
BACOLRI/ST 7.38 | 5.27 | 4.51 | 4.28 | 4.30 | 4.60 | 4.94 | 548
BACOLRI/LE — 10.02 | 6.53 | 5.43 | 5.05 | 5.14 | 5.19 | 5.71

Table 18: Machine dependent timings (in seconds), Two Layer Burgers equation,
e=10"% p=4,...,11, tol = 1074,1076,1078,107 10,
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tol = 10~%/p = 4 ) 6 7 8 9 10 11

BACOLI/ST 0.11 | 0.13 [ 0.14 | 0.18 | 0.23 | 0.29 | 0.39 | 0.44
BACOLI/LE 0.12 | 0.14 | 0.16 | 0.22 | 0.22 | 0.28 | 0.34 | 0.47
BACOLRI/ST 034 | 034 [ 0.45]0.59 | 0.72 | 1.05 | 1.33 | 1.67
BACOLRI/LE 0.32 | 0.36 | 0.45 | 0.59 | 0.74 | 0.93 | 1.30 | 1.58

tol =107%/p = 4 ) 6 7 8 9 10 11

BACOLI/ST — 0.41 | 0.52 | 0.58 | 0.72 | 0.86 | 1.02 | 1.19
BACOLI/LE 0.55 | 0.42 | 0.46 | 0.53 | 0.63 | 0.78 | 0.92 | 1.06
BACOLRI/ST — 0.59 | 0.71 | 0.87 | 1.11 | 1.40 | 1.83 | 2.44
BACOLRI/LE 095 | 0.79 | 0.76 | 0.84 | 1.07 | 1.33 | 1.74 | 2.09
tol =1078/p = 4 ) 6 7 8 9 10 11

BACOLI/ST 2.31 1.62 | 1.564 | 1.84 | 2.11 | 2.39 | 2.63 | 2.95
BACOLI/LE 5.26 | 1.97 | 1.63 | 1.69 | 1.89 | 2.21 | 2.52 | 2.89

BACOLRI/ST 234 | 147 | 147 | 1.70 | 1.98 | 2.44 | 3.12 | 3.91
BACOLRI/LE 7.28 | 2.57 | 2.07 | 2.00 | 2.12 | 2.18 | 2.64 | 3.22
tol =10719/p = 4 ) 6 7 8 9 10 11

BACOLI/ST 12,59 | 6.42 | 5.19 | 5.55 | 5.76 | 6.04 | 6.57 | 6.93
BACOLI/LE 49.65 | 12.16 | 6.15 | 5.38 | 5.16 | 6.09 | 6.65 | 7.65
BACOLRI/ST 9.39 | 5.39 | 4.55| 4.50 | 4.63 | 4.67 | 5.12 | 6.27
BACOLRI/LE | 64.15 | 15.62 | 8.50 | 6.56 | 5.95 | 5.79 | 5.87 | 5.93

Table 19: Machine dependent timings (in seconds), Two Layer Burgers
equationx6, € = 1073, p=4,...,11, tol =107*,1076,1078,1071°.
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tol =10~%/p = 4 ) 6 7 8 9 10 11
BACOLI/ST 1.26 1.55 1.92 | 259 | 3.73 | 461 | 5.34 6.86
BACOLI/LE 1.47 1.67 2.07 | 2.81 | 3.90 | 459 | 6.19 6.65
BACOLRI/ST 2.01 2.71 4.02 | 6.31 | 9.91 | 14.29 | 19.96 | 28.05
BACOLRI/LE 2.49 3.15 4.52 | 6.52 | 9.64 | 14.30 | 21.05 | 25.90
tol =107 %/p = 4 ) 6 7 8 9 10 11
BACOLI/ST 4.55 5.20 6.37 | 8.75 | 10.85 | 13.20 | 16.25 | 20.40
BACOLI/LE 5.30 4.89 6.08 | 8.06 | 10.15 | 13.12 | 16.87 | 20.21
BACOLRI/ST 4.27 5.41 6.78 | 9.62 | 14.03 | 20.21 | 29.24 | 41.97
BACOLRI/LE 6.88 6.17 7.65 | 9.89 | 13.83 | 19.40 | 26.40 | 35.91
tol =107 8/p = 4 ) 6 7 8 9 10 11
BACOLI/ST 17.70 | 17.38 | 18.27 | 22.13 | 26.14 | 30.80 | 35.51 | 41.76
BACOLI/LE 35.76 | 19.18 | 18.89 | 19.73 | 27.04 | 32.07 | 36.56 | 44.52
BACOLRI/ST 12.72 | 13.31 | 14.35 | 19.45 | 23.65 | 30.11 | 39.99 | 55.44
BACOLRI/LE 4771 | 20.01 | 17.61 | 18.62 | 21.43 | 28.65 | 37.52 | 49.79
tol =10719/p = 4 ) 6 7 8 9 10 11
BACOLI/ST 107.31 | 69.57 | 57.48 | 57.39 | 63.74 | 68.06 | 80.16 | 92.34
BACOLI/LE 407.62 | 89.69 | 66.72 | 59.15 | 64.25 | 75.68 | 87.43 | 103.68
BACOLRI/ST 63.49 | 44.52 | 40.16 | 40.57 | 44.95 | 55.19 | 68.47 | 86.81
BACOLRI/LE | 397.64 | 116.26 | 68.83 | 56.74 | 56.29 | 58.10 | 63.43 | 77.18

Table 20: Machine dependent timings (in seconds), Two Layer Burgers
equationx6, e = 1074, p=4,...,11, tol =107*,1076,1078,1071°.
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tol = 10~%/p = 4 ) 6 7 8 9 10 11

BACOLI/ST 0.41 0.39 | 0.50 | 0.61 | 0.77 | 1.07 | 1.47 | 1.79
BACOLI/LE 0.43 0.46 | 0.58 | 0.74 | 0.82 | 1.17 | 1.49 | 2.02
BACOLRI/ST 1.37 1.62 | 230 | 3.20 | 4.28 | 6.28 | 7.92 | 10.47
BACOLRI/LE 1.47 1.66 | 2.27 | 3.13 | 424 | 5.68 | 8.00 | 9.79
tol =107%/p = 4 ) 6 7 8 9 10 11

BACOLI/ST — 1.32 | 177 | 229 | 2.67 | 3.06 | 4.33 | 5.55
BACOLI/LE 1.88 148 | 1.56 | 1.82 | 2.26 | 2.92 | 3.33 | 4.10
BACOLRI/ST — 2.66 | 3.44 | 442 | 6.08 | 850 | 11.34 | 15.69
BACOLRI/LE 4.62 3.75 | 3.73 | 429 | 578 | 7.61 | 9.94 | 13.05
tol =108 /p = 4 ) 6 7 8 9 10 11

BACOLI/ST 17.66 | 5.79 | 5.69 | 7.21 | 8.75 | 10.14 | 11.09 | 13.67
BACOLI/LE 21.13 | 6.57 | 5.42 | 5.89 | 7.37 | 894 | 10.99 | 13.65
BACOLRI/ST 9.33 726 | 7.31 | 876 | 10.65 | 14.15 | 19.50 | 24.73
BACOLRI/LE 38.94 | 14.65 | 11.06 | 10.65 | 11.69 | 12.61 | 16.67 | 21.33
tol =10719/p = 4 ) 6 7 8 9 10 11

BACOLI/ST 50.94 | 25.57 | 20.52 | 22.91 | 24.10 | 27.34 | 30.52 | 33.96
BACOLI/LE 208.28 | 52.12 | 24.95 | 21.54 | 20.12 | 26.13 | 35.30 | 35.99
BACOLRI/ST 46.38 | 29.85 | 25.98 | 25.71 | 26.77 | 29.66 | 32.14 | 40.00
BACOLRI/LE | 288.35 | 78.36 | 46.28 | 38.49 | 34.83 | 36.44 | 38.13 | 40.05

Table 21: Machine dependent timings (in seconds), Two Layer Burgers

equationx12, e = 1073, p =4,...,11, tol = 1074,1076,1078, 10710,
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tol =10~%/p = 4 ) 6 7 8 9 10 11
BACOLI/ST 3.80 4.79 6.55 8.91 12.97 | 18.30 | 22.37 | 27.48
BACOLI/LE 4.87 5.91 7.57 9.75 14.32 | 18.28 | 24.82 | 27.18
BACOLRI/ST 9.79 14.44 | 23.29 | 38.00 | 59.66 | 91.59 | 127.96 | 177.82
BACOLRI/LE 12.17 17.35 | 25.84 | 39.07 | 60.61 | 89.03 | 139.27 | 178.23
tol =107 %/p = 4 ) 6 7 8 9 10 11
BACOLI/ST 13.42 17.76 | 23.44 | 33.44 | 44.06 | 55.97 | 73.88 | 92.37
BACOLI/LE 16.18 15.70 | 21.47 | 31.94 | 42.96 | 57.49 | 72.90 | 92.60
BACOLRI/ST 18.54 27.38 | 36.61 | 54.74 | 84.52 | 127.04 | 181.78 | 260.99
BACOLRI/LE 35.13 31.11 | 40.81 | 58.25 | 80.70 | 115.06 | 165.88 | 243.05
tol =107 8/p = 4 ) 6 7 8 9 10 11
BACOLI/ST 55.00 61.81 | 69.12 | 88.96 | 110.07 | 135.71 | 162.07 | 199.16
BACOLI/LE 151.97 | 64.20 | 66.00 | 75.16 | 108.15 | 149.44 | 173.97 | 217.83
BACOLRI/ST 75.20 63.64 | 75.98 | 107.21 | 142.44 | 175.69 | 241.93 | 363.33
BACOLRI/LE 253.68 | 105.34 | 95.75 | 98.99 | 124.39 | 169.30 | 236.01 | 321.72
tol =10719/p = 4 ) 6 7 8 9 10 11
BACOLI/ST 419.25 | 256.06 | 238.42 | 242.63 | 275.18 | 315.42 | 384.20 | 464.07
BACOLI/LE — 359.34 | 269.52 | 244.37 | 279.38 | 358.78 | 434.57 | 542.50
BACOLRI/ST 326.85 | 239.56 | 221.16 | 232.70 | 273.21 | 340.68 | 437.58 | 555.79
BACOLRI/LE 1790.23 | 554.68 | 377.45 | 326.85 | 333.52 | 354.91 | 398.94 | 483.24

Table 22: Machine dependent timings (in seconds), Two Layer Burgers
equationx12, e = 1074, p =4,...,11, tol = 1074,107%,1078, 10710,
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tol =10~%/p = 4 ) 6 7 8 9 10 11

BACOLI/ST 0.01 | 0.01 | 0.02 | 0.02 | 0.03 | 0.03 | 0.05 | 0.06
BACOLI/LE 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.04 | 0.04 | 0.05
BACOLRI/ST 0.08 | 0.08 | 0.09 | 0.10 | 0.11 | 0.14 | 0.15 | 0.18
BACOLRI/LE | 0.10 | 0.10 | 0.10 | 0.11 | 0.12 | 0.13 | 0.15 | 0.18

tol =107%/p = 4 ) 6 7 8 9 10 11
BACOLI/ST 0.06 005 — |]007(0.09]0.110.14 | —
BACOLI/LE 0.09 | 0.09 | 0.08 | 0.08 | 0.09 | 0.10 | 0.12 | 0.16
BACOLRI/ST 0.13 ] 0.13 | 0.15 | 0.17 | 0.20 | 0.22 | 0.28 | 0.31
BACOLRI/LE | 0.21 | 0.18 | 0.17 | 0.20 | 0.21 | 0.24 | 0.27 | 0.32

tol =108 /p = 4 ) 6 7 8 9 10 11
BACOLI/ST 0.230.19 | 0.21 | 0.22 | 0.26 | 0.31 | 0.32 | 0.41
BACOLI/LE 0.54 | 0.27 | 0.25 | 0.26 | 0.25 | 0.32 | 0.35 | —
BACOLRI/ST 0.33 | 0.27 | 0.30 | 0.32 | 0.36 | 0.41 | 0.47 | 0.55
BACOLRI/LE | 0.86 | 0.50 | 0.41 | 0.44 | 0.42 | 0.43 | 0.48 | 0.56
tol =10719/p = 4 ) 6 7 8 9 10 11
BACOLI/ST 1.06 | 0.82 | 0.69 | 0.68 | 0.77 | — | 0.79 | 0.93
BACOLI/LE 3.56 | 1.20 | 0.82 ] 0.69 | 0.74 | 0.76 | 0.78 | —
BACOLRI/ST 1.14 { 0.84 | 0.79 | 0.80 | 0.88 | 0.92 | 0.95 | 1.10
BACOLRI/LE | 4.76 | 1.81 | 1.31 | 1.14 | 1.12 | 1.16 | 1.11 | 1.09

Table 23: Machine dependent timings (in seconds), Catalytic Surface Reaction
Model, p=4,...,11, tol = 1074,1075,1078, 10710,

tol = 10~%/p = 4 ) 6 7 8 9 10 11
BACOLRI/ST 0.13 {0.14 | 0.14 | 0.14 | 0.14 | 0.15 | 0.16 | 0.16
BACOLRI/LE 0.13]0.13|0.14 | 0.14 | 0.14 | 0.15 | 0.16 | 0.16
tol =107%/p = 4 ) 6 7 8 9 10 11
BACOLRI/ST 0.16 | 0.15 | 0.15 | 0.16 | 0.17 | 0.17 | 0.18 | 0.19
BACOLRI/LE 0.18 1 0.15 | 0.15 | 0.16 | 0.17 | 0.17 | 0.18 | 0.19
tol =1078/p = 4 ) 6 7 8 9 10 11
BACOLRI/ST 0.22 1 0.19 | 0.19 | 0.20 | 0.20 | 0.21 | 0.22 | 0.24
BACOLRI/LE 0.45 | 0.28 | 0.22 | 0.22 | 0.23 | 0.22 | 0.22 | 0.23
tol =10710/p = 4 ) 6 7 8 9 10 11
BACOLRI/ST 0.56 | 0.40 | 0.35 | 0.32 | 0.34 | 0.35 | 0.32 | 0.34
BACOLRI/LE 1.89 | 0.85 | 0.56 | 0.46 | 0.38 | 0.37 | 0.35 | 0.35

Table 24: Machine dependent timings (in seconds), Schrodinger Equation, p =
4,...,11, tol =107*,1076,1078,1071°.
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error =10"%/p = 4 5 6 7 8 9 10 11

BACOLI/ST 0.02 | 0.02 | 0.02 | 0.03 | 0.04 | 0.04 | 0.05 | 0.06
BACOLI/LE 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.04 | 0.04 | 0.05
BACOLRI/ST 0.03 | 0.03 | 0.03 | 0.03 | 0.04 | 0.05 | 0.05 | 0.06
BACOLRI/LE 0.03 | 0.02 | 0.03 | 0.03 | 0.03 | 0.04 | 0.05 | 0.05
error =107%/p = 4 5 6 7 8 9 10 11

BACOLI/ST 0.09 | 0.08 | 0.08 | 0.08 | 0.09 | 0.11 | 0.11 | 0.13
BACOLI/LE 0.08 | 0.06 | 0.07 | 0.07 | 0.08 | 0.09 | 0.10 | 0.12
BACOLRI/ST 0.07 | 0.07 | 0.07 | 0.07 | 0.08 | 0.09 | 0.10 | 0.12
BACOLRI/LE 0.10 | 0.07 | 0.07 | 0.07 | 0.07 | 0.08 | 0.09 | 0.10
error = 107%/p = 4 5 6 7 8 9 10 11

BACOLI/ST 0.37 | 0.28 | 0.24 | 0.24 | 0.25 | 0.26 | 0.27 | 0.29
BACOLI/LE 0.46 | 0.21 | 0.21 | 0.20 | 0.21 | 0.25 | 0.25 | 0.27
BACOLRI/ST 0.19 | 0.17 | 0.15 | 0.16 | 0.16 | 0.18 | 0.19 | 0.21
BACOLRI/LE 0.42 | 0.20 | 0.17 | 0.16 | 0.16 | 0.16 | 0.17 | 0.19
error=10""Y/p=1 4 5 6 7 8 9 10 11

BACOLI/ST 1.50 | 0.93 | 0.76 | 0.66 | 0.65 | 0.66 | 0.64 | 0.64
BACOLI/LE 247 1 0.72 | 0.68 | 0.57 | 0.58 | 0.64 | 0.60 | 0.59
BACOLRI/ST 0.52 | 0.43 | 0.34 | 0.33 | 0.32 | 0.34 | 0.35 | 0.38
BACOLRI/LE 1.67 | 0.59 | 0.43 | 0.36 | 0.33 | 0.32 | 0.32 | 0.35

Table 25: Fitted CPU time (in seconds) for obtained errors, One Layer Burgers
equation, € = 1073, p=4,...,11, error = 107%,1075,1078,10710,
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error =10"4/p = 4 5 6 7 8 9 10 11

BACOLI/ST 0.44 | 0.45 | 0.44 | 0.51 | 0.56 | 0.65 | 0.73 | 0.91
BACOLI/LE 0.35 | 0.38 | 0.41 | 0.45 | 0.50 | 0.60 | 0.73 | 0.82
BACOLRI/ST 0.31 | 0.34 | 0.37 | 0.46 | 0.53 | 0.68 | 0.76 | 1.00
BACOLRI/LE 0.36 | 0.34 | 0.37 | 0.42 | 0.48 | 0.58 | 0.71 | 0.85
error =107%/p = 4 5 6 7 8 9 10 11

BACOLI/ST 1.30 1.16 | 1.08 | 1.20 | 1.25 | 1.42 | 1.57 | 1.85
BACOLI/LE 1.54 | 1.24 | 1.12 | 1.25 | 1.27 | 1.41 | 1.58 | 1.68
BACOLRI/ST 0.78 | 0.78 | 0.76 | 0.91 | 0.99 | 1.21 | 1.30 | 1.63
BACOLRI/LE 1.42 | 0.95 | 0.87 | 0.94 | 0.97 | 1.10 | 1.24 | 1.40
error =1078/p = 4 5 6 7 8 9 10 11

BACOLI/ST 3.84 | 3.00 | 2.65 | 2.78 | 283 |3.12 | 3.37 | 3.78
BACOLI/LE 6.75 | 4.03 | 3.03 | 3.42 | 3.25 | 3.31 | 3.41 | 3.44
BACOLRI/ST 1.96 1.76 | 1.564 | 1.78 | 1.82 | 2.14 | 2.25 | 2.65
BACOLRI/LE 5.65 | 2.68 | 2.08 | 2.10 | 1.96 | 2.09 | 2.18 | 2.30
error =10719/p = 4 5 6 7 8 9 10 11

BACOLI/ST 11.34 | 7.79 | 6.51 | 6.48 | 6.37 | 6.82 | 7.21 | 7.71
BACOLI/LE 29.66 | 13.15 | 8.20 | 9.38 | 8.32 | 7.78 | 7.39 | 7.05
BACOLRI/ST 492 | 3.99 | 3.15 | 3.49 | 3.36 | 3.80 | 3.88 | 4.31
BACOLRI/LE 2252 | 7.53 | 4.97 | 4.68 | 3.99 | 3.95 | 3.83 | 3.77

Table 26: Fitted CPU time (in seconds) for obtained errors, One Layer Burgers
equation, € = 107%, p=4,...,11, error = 107%,1076,1078,10710,
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error =10~%/p = 4 5 6 7 8 9 10 11

BACOLI/ST 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.04 | 0.04
BACOLI/LE 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.04
BACOLRI/ST 0.03 | 0.02 | 0.03 | 0.03 | 0.03 | 0.04 | 0.04 | 0.05
BACOLRI/LE 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.04 | 0.05
error =107%/p = 4 5 6 7 8 9 10 11

BACOLI/ST 0.10 | 0.07 | 0.07 | 0.07 | 0.08 | 0.09 | 0.10 | 0.11
BACOLI/LE 0.08 | 0.05 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 | 0.10
BACOLRI/ST 0.08 | 0.06 | 0.06 | 0.06 | 0.06 | 0.07 | 0.08 | 0.09
BACOLRI/LE 0.08 | 0.06 | 0.05 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09
error = 1078 /p = 4 5 6 7 8 9 10 11

BACOLI/ST 043|024 | 0.21 | 0.22 | 0.22 | 0.23 | 0.25 | 0.26
BACOLI/LE 0.50 | 0.20 | 0.17 | 0.17 | 0.18 | 0.21 | 0.23 | 0.24
BACOLRI/ST 0.23 | 0.15|0.13 | 0.13 | 0.13 | 0.15 | 0.16 | 0.18
BACOLRI/LE 0.37 | 0.18 | 0.14 | 0.13 | 0.13 | 0.14 | 0.15 | 0.16
error=10"19/p=1 4 5 6 7 8 9 10 11

BACOLI/ST 1.82 | 0.84 | 0.69 | 0.69 | 0.64 | 0.64 | 0.62 | 0.64
BACOLI/LE 3.12 | 0.72 | 0.57 | 0.51 | 0.52 | 0.57 | 0.62 | 0.58
BACOLRI/ST 0.64 | 0.37 | 0.30 | 0.29 | 0.28 | 0.30 | 0.30 | 0.34
BACOLRI/LE 1.61 | 0.54 | 0.36 | 0.30 | 0.28 | 0.27 | 0.28 | 0.30

Table 27: Fitted CPU time (in seconds) for obtained errors, Two Layer Burgers
equation, € = 1073, p=4,...,11, error = 107%,1075,1078,10710,
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error =10"4/p = 4 5 6 7 8 9 10 11

BACOLI/ST 0.37 | 0.37 | 0.41 | 0.47 | 0.56 | 0.66 | 0.76 | 0.88
BACOLI/LE 0.29 | 0.34 | 0.38 | 0.45 | 0.54 | 0.63 | 0.76 | 0.90
BACOLRI/ST 0.26 | 0.28 | 0.33 | 0.40 | 0.49 | 0.61 | 0.75 | 0.92
BACOLRI/LE 0.31 | 0.30 | 0.34 | 0.40 | 0.50 | 0.62 | 0.75 | 0.94
error =107%/p = 4 5 6 7 8 9 10 11

BACOLI/ST 1.21 1.05 | 1.04 | 1.13 | 1.28 | 1.45 | 1.63 | 1.85
BACOLI/LE 1.46 1.09 | 1.05 | 1.17 | 1.29 | 1.47 | 1.69 | 1.93
BACOLRI/ST 0.68 | 0.67 | 0.72 | 0.79 | 0.91 | 1.10 | 1.29 | 1.55
BACOLRI/LE 1.29 | 0.84 | 0.78 | 0.86 | 0.96 | 1.12 | 1.30 | 1.56
error =1078/p = 4 5 6 7 8 9 10 11

BACOLI/ST 3.92 | 298 | 2.63 | 2.73 | 291 | 3.21 | 3.49 | 3.90
BACOLI/LE 7.29 | 3.56 | 2.89 | 3.08 | 3.05 | 3.40 | 3.77 | 4.12
BACOLRI/ST 1.79 1.60 | 1.55 | 1.57 | 1.70 | 1.98 | 2.24 | 2.61
BACOLRI/LE 5.45 | 238 | 1.80 | 1.83 | 1.86 | 2.03 | 2.25 | 2.61
error =10719/p = 4 5 6 7 8 9 10 11

BACOLI/ST 12.75 | 8.42 | 6.66 | 6.57 | 6.63 | 7.09 | 7.51 | 8.20
BACOLI/LE 36.34 | 11.58 | 7.95 | 8.08 | 7.21 | 7.89 | 8.42 | 8.80
BACOLRI/ST 4.67 | 3.81 | 3.34 | 3.13 | 3.18 | 3.57 | 3.87 | 4.41
BACOLRI/LE 23.03 | 6.69 | 4.16 | 3.91 | 3.61 | 3.67 | 3.89 | 4.36

Table 28: Fitted CPU time (in seconds) for obtained errors, Two Layer Burgers
equation, € = 107%, p=4,...,11, error = 107%,1075,1078,10710,
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error =107%/p = 4 5 6 7 8 9 10 11

BACOLI/ST 0.40 | 0.30 | 0.37 | 0.40 | 0.52 | 0.71 | 0.84 | 1.08
BACOLI/LE 0.20 | 0.24 | 0.29 | 0.36 | 0.49 | 0.58 | 0.75 | 0.95
BACOLRI/ST 1.38 1.20 1.52 | 2.14 | 293 | 4.18 | 5.77 | 7.50
BACOLRI/LE 0.82 | 0.98 | 1.31 | 1.66 | 2.47 | 3.58 | 5.08 | 6.85
error =107%/p = 4 5 6 7 8 9 10 11

BACOLI/ST 1.76 1.15 1.28 144 | 1.77 | 2.21 2.50 | 3.04
BACOLI/LE 1.38 | 0.89 | 0.96 1.11 1.39 1.75 | 2.23 | 2.65
BACOLRI/ST 3.57 | 2.68 | 3.01 | 3.86 | 4.93 | 6.59 | 8.87 | 11.61
BACOLRI/LE 3.87 | 286 | 3.09 | 3.44 | 445 | 5.85 | 7.67 | 10.11
error =107%/p = 4 5 6 7 8 9 10 11

BACOLI/ST 7.64 | 437 | 442 | 526 | 6.00 | 6.83 | 7.47 | 8.57
BACOLI/LE 9.50 | 3.23 | 3.22 | 3.37 | 3.93 | 527 | 6.68 | 7.40
BACOLRI/ST 9.21 | 597 | 594 | 6.98 | 8.29 | 10.39 | 13.65 | 17.97
BACOLRI/LE 1831 | 833 | 7.28 | 7.12 | 8.03 | 9.57 | 11.59 | 14.93
error = 10719/p = 4 5 6 7 8 9 10 11

BACOLI/ST 33.20 | 16.56 | 15.28 | 19.13 | 20.36 | 21.14 | 22.25 | 24.10
BACOLI/LE 65.53 | 11.76 | 10.80 | 10.27 | 11.09 | 15.88 | 19.97 | 20.67
BACOLRI/ST 23.77 | 13.33 | 11.73 | 12.62 | 13.93 | 16.38 | 20.99 | 27.82
BACOLRI/LE 86.64 | 24.29 | 17.14 | 14.75 | 14.50 | 15.64 | 17.50 | 22.04

Table 29: Fitted CPU time (in seconds) for obtained errors, Two Layer Burgers
equation x12, e = 1073, p=4,...,11, error = 107%,1076,108,1071°.
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error =107%/p = 4 5 6 7 8 9 10 11

BACOLI/ST 5.79 6.29 7.80 9.90 13.43 | 17.88 | 22.33 | 26.49
BACOLI/LE 4.71 5.65 6.97 9.47 12.58 16.94 | 21.99 | 27.70
BACOLRI/ST 9.99 14.17 | 20.95 | 31.82 | 48.31 | 72.37 | 106.75 | 153.56
BACOLRI/LE 12.26 15.10 | 21.23 | 31.07 | 47.61 70.96 | 104.58 | 147.54
error =107%/p = 4 5 6 7 8 9 10 11

BACOLI/ST 20.16 18.93 | 21.58 | 26.00 | 33.48 | 43.42 | 52.80 | 61.48
BACOLI/LE 25.27 18.52 | 18.98 | 24.86 | 32.77 | 43.25 | 53.27 | 65.96
BACOLRI/ST 23.06 | 28.63 | 36.66 | 51.46 | 74.41 | 108.07 | 155.89 | 220.72
BACOLRI/LE 54.57 3843 | 41.14 | 53.46 | 73.12 | 101.41 | 146.08 | 203.97
error =107%/p = 4 5 6 7 8 9 10 11

BACOLI/ST 70.15 57.01 59.67 | 68.32 | 83.46 | 105.42 | 124.86 | 142.71
BACOLI/LE 135.46 | 60.73 | 51.68 | 65.23 | 85.39 | 110.43 | 129.02 | 157.04
BACOLRI/ST 53.24 57.85 | 64.16 | 83.23 | 114.61 | 161.37 | 227.63 | 317.26
BACOLRI/LE 24290 | 97.84 | 79.74 | 91.99 | 112.31 | 144.92 | 204.03 | 281.99
error = 10719/p = 4 5 6 7 8 9 10 11

BACOLI/ST 244.07 | 171.63 | 165.00 | 179.50 | 208.05 | 255.96 | 295.26 | 331.25
BACOLI/LE 726.29 | 199.11 | 140.68 | 171.19 | 222.48 | 282.00 | 312.53 | 373.90
BACOLRI/ST 122.93 | 116.89 | 112.26 | 134.61 | 176.53 | 240.96 | 332.39 | 456.03
BACOLRI/LE 1081.15 | 249.08 | 154.54 | 158.28 | 172.51 | 207.12 | 284.98 | 389.85

Table 30: Fitted CPU time (in seconds) for obtained errors, Two Layer Burgers
equation x12, e = 1074, p=4,...,11, error = 107%,1076,1078,1071°.
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error =107%/p = 4 5 6 7 8 9 10 11
BACOLI/ST 0.06491 | 0.04877 | 0.05487 | 0.06183 | 0.07139 | 0.08022 | 0.09410 | 0.11119
BACOLI/LE 0.09407 | 0.07001 | 0.06639 | 0.07083 | 0.07743 | 0.08629 | 0.09886 | 0.11056
BACOLRI/ST 0.05309 | 0.05308 | 0.06012 | 0.07039 | 0.08229 | 0.09343 | 0.10477 | 0.12085
BACOLRI/LE 0.04706 | 0.04941 | 0.06237 | 0.07537 | 0.08351 | 0.09518 | 0.10907 | 0.12459
error =107%/p = 4 5 6 7 8 9 10 11
BACOLI/ST 0.53660 | 0.32317 | 0.28044 | 0.25413 | 0.26098 | 0.26262 | 0.28506 | 0.32694
BACOLI/LE 2.17087 | 0.68538 | 0.41854 | 0.32192 | 0.30028 | 0.29721 | 0.30750 | 0.30991
BACOLRI/ST 0.10694 | 0.09636 | 0.10059 | 0.11116 | 0.12714 | 0.14266 | 0.16071 | 0.18186
BACOLRI/LE 0.15202 | 0.11969 | 0.11859 | 0.12940 | 0.13785 | 0.15253 | 0.16725 | 0.18797
error =107%/p = 4 5 6 7 8 9 10 11
BACOLI/ST - - - - — — — —
BACOLL/LE — — - - - - - —
BACOLRI/ST 0.21540 | 0.17492 | 0.16831 | 0.17554 | 0.19645 | 0.21782 | 0.24654 | 0.27369
BACOLRI/LE 0.49104 | 0.28994 | 0.22546 | 0.22217 | 0.22754 | 0.24446 | 0.25645 | 0.28360
error = 10719/p = 4 5 6 7 8 9 10 11
BACOLI/ST - - - - — — — —
BACOLL/LE — — - - - - - —
BACOLRI/ST 0.43389 | 0.31754 | 0.28161 | 0.27721 | 0.30354 | 0.33259 | 0.37820 | 0.41188
BACOLRI/LE — 0.70237 | 0.42863 | 0.38144 | 0.37559 | 0.39178 | 0.39324 | 0.42787

Table 31: Fitted CPU time (in seconds) for obtained errors, Schrédinger System,
p=4,...,11, error = 104,106,108, 10710,
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Figure 193: Work vs. Accuracy: One Layer Burgers equation, e = 1073, p =4
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Figure 194: Work vs. Accuracy: One Layer Burgers equation, e = 1073,p =5
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Figure 195: Work vs. Accuracy: One Layer Burgers equation, e = 1073,p =6

0 J
10 data fit to logy = mlogx + b a0 87
—— BACOLI/ST vy
== BACOLI/LE N o
—— BACOLRI/ST L2
BACOLRI/LE
)
[
£ 107" 4
|_
2
o
(8]
1072 4
10-2 10-4 10-¢ 10-¢ 1010

L2-norm error

Figure 196: Work vs. Accuracy: One Layer Burgers equation, e = 1073,p =17
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Figure 197: Work vs. Accuracy: One Layer Burgers equation, e = 1073,p = 8

data fit to logy = mlogx + b LIRS
—— BACOLI/ST N
BACOLI/LE
—— BACOLRI/ST ' o
BACOLRI/LE e
cd
)
[
£
5 1071
o
Q
4
10-2 104 10-6 10-8 10-10

L2-norm error

Figure 198: Work vs. Accuracy: One Layer Burgers equation, e = 1073,p =9

150



10° 4
data fit to logy = mlogx + b .
L] ’ }

—— BACOLI/ST
== BACOLI/LE
—— BACOLRI/ST ”
== BACOLRI/LE Oy

CPU Time (s)

10-1 4

10-2 1074 10- 10- 10-10

L2-norm error

Figure 199: Work vs. Accuracy: One Layer Burgers equation, e = 1073, p = 10
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Figure 200: Work vs. Accuracy: One Layer Burgers equation, € = 1073, p = 11
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Figure 201: Work vs. Accuracy: One Layer Burgers equation, e = 1074, p =4
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Figure 202: Work vs. Accuracy: One Layer Burgers equation, e = 1074, p =5
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Figure 203: Work vs. Accuracy: One Layer Burgers equation, e = 1074, p =6
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Figure 204: Work vs. Accuracy: One Layer Burgers equation, ¢ = 1074, p
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Figure 205: Work vs. Accuracy: One Layer Burgers equation, e = 1074,p = 8
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Figure 206: Work vs. Accuracy: One Layer Burgers equation, e = 107%,p =9
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Figure 207: Work vs. Accuracy: One Layer Burgers equation, ¢ = 1074, p = 10
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Figure 208: Work vs. Accuracy: One Layer Burgers equation, ¢ = 1074, p = 11
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Figure 209: Work vs. Accuracy: Two Layer Burgers equation, e = 1073, p = 4

data fit to logy = mlogx + b
— BACOLI/ST oo ¢
004 T BAGOLHier
BACOLRI/LE s

10—1 4

CPU Time (s)

10-2 4

10~ 10-¢ 10-8 10-10
L2-norm error

Figure 210: Work vs. Accuracy: Two Layer Burgers equation, e = 1073, p =5
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Figure 211: Work vs. Accuracy: Two Layer Burgers equation, ¢ = 1073, p =6
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Figure 212: Work vs. Accuracy: Two Layer Burgers equation, e = 1073, p =7

157



10°

CPU Time (s)

1072 A

Figure 213: Work vs. Accuracy:
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Figure 214: Work vs. Accuracy: Two Layer Burgers equation, e = 1073, p =9
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Figure 215: Work vs. Accuracy: Two Layer Burgers equation, e = 1073, p = 10
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Figure 216: Work vs. Accuracy: Two Layer Burgers equation, e = 1073, p = 11
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Figure 217: Work vs. Accuracy: Two Layer Burgers equation, ¢ = 1074, p =4
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Figure 218: Work vs. Accuracy: Two Layer Burgers equation, e = 1074, p =5
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Figure 219: Work vs. Accuracy: Two Layer Burgers equation, e = 1074, p = 6

Figure 220: Work vs. Accuracy: Two Layer Burgers equation, e = 1074, p
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Figure 221: Work vs. Accuracy: Two Layer Burgers equation, e = 1074, p =8
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Figure 222: Work vs. Accuracy: Two Layer Burgers equation, e = 1074, p =9

162



10" 1 data fit to logy = mlogx + b

—— BACOLI/ST a
== BACOLI/LE )

—— BACOLRI/ST
== BACOLRI/LE

10°

CPU Time (s)

10-8 108 10-10

L2-norm error

10-2 10-4

Figure 223: Work vs. Accuracy: Two Layer Burgers equation, e = 1074, p = 10
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Figure 224: Work vs. Accuracy: Two Layer Burgers equation, ¢ = 1074, p = 11
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Figure 225: Work vs. Accuracy: Two Layer Burgers equation x12, ¢ =

103, p=4
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Figure 226: Work vs. Accuracy: Two Layer Burgers equation x12, ¢ =

1073,p=5
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Figure 231: Work vs.
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Figure 232: Work vs.
1073, p=11
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Accuracy: Two Layer Burgers equation x12; €
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Figure 233: Work vs. Accuracy: Two Layer Burgers equation x12, ¢ =

10_4, p=4
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Figure 234: Work vs. Accuracy: Two Layer Burgers equation x12, ¢ =
1074 p=5
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Figure 235: Work vs. Accuracy: Two Layer Burgers equation x12, €
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Figure 236: Work vs. Accuracy: Two Layer Burgers equation x12, €
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Figure 238: Work vs.
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Figure 240: Work vs.
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Figure 241: Work vs. Accuracy: Schrodinger System, p = 4
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Figure 242: Work vs. Accuracy: Schrodinger System, p = 5
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Figure 243: Work vs. Accuracy: Schrédinger System, p = 6
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Figure 244: Work vs. Accuracy: Schréodinger System, p =7
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Figure 245: Work vs. Accuracy: Schréodinger System, p = 8

1 0 ]
0 data fit to logy = mlogx + b e,

—— BACOLI/ST 2
— = BACOLI/LE t.
—— BACOLRI/ST o3
— = BACOLRI/LE . A

)

[

E

[ —

5 10 1

o

Q

10™* 10™° 10¢ 1077 10°® 10~°
L2-norm error

100 102 107

Figure 246: Work vs. Accuracy: Schréodinger System, p = 9
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Figure 247: Work vs. Accuracy: Schrodinger System, p = 10
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Figure 248: Work vs. Accuracy: Schrodinger System, p = 11
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Figure 249: Rel. Work-Accuracy: One Layer Burgers equation, e = 1073, p = 4
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Figure 250: Rel. Work-Accuracy: One Layer Burgers equation, e = 1073, p =5
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Figure 251: Rel. Work-Accuracy: One Layer Burgers equation, e = 1073, p =6
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Figure 252: Rel. Work-Accuracy: One Layer Burgers equation, e = 1073, p =7
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Figure 253: Rel. Work-Accuracy: One Layer Burgers equation, e = 1073, p = 8
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Figure 254: Rel. Work-Accuracy: One Layer Burgers equation, e = 1073, p =9
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Figure 255: Rel. Work-Accuracy: One Layer Burgers equation, e = 1073, p = 10
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Figure 256: Rel. Work-Accuracy: One Layer Burgers equation, e = 1073, p = 11
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Figure 257: Rel. Work-Accuracy: One Layer Burgers equation, e = 1074, p = 4
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Figure 258: Rel. Work-Accuracy: One Layer Burgers equation, e = 1074, p =5
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Figure 259: Rel. Work-Accuracy:
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Figure 260: Rel. Work-Accuracy: One Layer Burgers equation, e = 1074, p =7
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Figure 261: Rel. Work-Accuracy: One Layer Burgers equation, e = 1074, p =8
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Figure 262: Rel. Work-Accuracy: One Layer Burgers equation, e = 1074, p =9
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Figure 264: Rel. Work-Accuracy: One Layer Burgers equation, ¢ = 1074, p = 11
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Figure 265: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1073, p = 4
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Figure 266: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1073, p =5
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Figure 267: Rel. Work-Accuracy:
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Figure 268: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1073, p =7
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Figure 269: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1073, p = 8
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Figure 270: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1073, p =9

186



144 —— BACOLILE
- —— BACOLRI/ST
— — BACOLRI/LE

=
N
N

=
=}
L

0.6

0.4 1

Time relative to BACOLI/ST (fitted)
=3
©

e
N
N

e
=)

10-3 107 10 10°¢ 1077 10°® 10-° 107 1071
L2-norm error

Figure 271: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1073, p =
10
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Figure 272: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1073, p =
11
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Figure 273: Rel. Work-Accuracy
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Figure 274: Rel. Work-Accuracy:
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Two Layer Burgers equation, e = 1074, p =5
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Figure 275: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1074, p = 6
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Figure 276: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1074, p =7
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Figure 277: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1074, p = 8
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Figure 278: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1074, p =9
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Figure 280: Rel. Work-Accuracy: Two Layer Burgers equation, e = 1074, p
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Figure 281: Rel. Work-Accuracy: Two Layer Burgers equation x12, ¢ =
1073, p=4
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Figure 282: Rel. Work-Accuracy: Two Layer Burgers equation x12, € =
1073,p=5
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Figure 283: Rel. Work-Accuracy: Two Layer Burgers equation x12, € =
1073,p=6
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Figure 284: Rel. Work-Accuracy: Two Layer Burgers equation x12, € =
1073,p="7
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Figure 285: Rel. Work-Accuracy: Two Layer Burgers equation x12, € =
1073,p=8
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Figure 286: Rel. Work-Accuracy: Two Layer Burgers equation x12, € =
1073,p=9

194



== BACOLI/LE
—- BACOLRI/ST
===+ BACOLRI/LE

Time relative to BACOLI/ST (fitted)

103 107 10™° 10°® 1077 10-% 10~ 10-° 107U
L2-norm error

Figure 287: Rel. Work-Accuracy: Two Layer Burgers equation x12, ¢ =
1073,p =10
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Figure 288: Rel. Work-Accuracy: Two Layer Burgers equation x12, € =
1073, p=11
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Work-Accuracy: Two Layer Burgers equation x12, e
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Figure 297: BACOLI/ST Work vs. Accuracy: One Layer Burgers equation
e=10"3%p=4...11
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Figure 298: BACOLI/LE Work vs. Accuracy: One Layer Burgers equation
e=10"3%p=4...11
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Figure 299: BACOLRI/ST Work vs. Accuracy: One Layer Burgers equation
e=10"3%p=4...11
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Figure 300: BACOLRI/LE Work vs. Accuracy: One Layer Burgers equation
e=10"3%p=4...11
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Figure 301: BACOLI/ST Work vs. Accuracy: One Layer Burgers equation
e=10"%p=4...11
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Figure 302: BACOLI/LE Work vs. Accuracy: One Layer Burgers equation
e=10"%p=4...11
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Figure 303: BACOLRI/ST Work vs. Accuracy: One Layer Burgers equation
e=10"%p=4...11
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Figure 304: BACOLRI/LE Work vs. Accuracy: One Layer Burgers equation
e=10"%p=4...11
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Figure 305: BACOLI/ST Work vs. Accuracy: Two Layer Burgers equation
e=10"3%p=4...11
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Figure 306: BACOLI/LE Work vs. Accuracy: Two Layer Burgers equation
e=10"3%p=4...11
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Figure 307: BACOLRI/ST Work vs. Accuracy: Two Layer Burgers equation
e=10"3%p=4...11
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Figure 308: BACOLRI/LE Work vs. Accuracy: Two Layer Burgers equation
e=10"3%p=4...11
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Figure 309: BACOLI/ST Work vs. Accuracy: Two Layer Burgers equation
e=10"%p=4...11
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Figure 310: BACOLI/LE Work vs. Accuracy: Two Layer Burgers equation
e=10"%p=4...11
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Figure 311: BACOLRI/ST Work vs. Accuracy: Two Layer Burgers equation
e=10"%p=4...11
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Figure 312: BACOLRI/LE Work vs. Accuracy: Two Layer Burgers equation
e=10"%p=4...11
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Figure 313: BACOLI/ST Work vs. Accuracy: Two Layer Burgers equation x12
e=10"3%p=4...11
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Figure 314: BACOLI/LE Work vs. Accuracy: Two Layer Burgers equation
x12e=10"3p=4...11

217



CPU Time (s)

data fit to logy = mlogx + b

HFEREOONOUA
=Oo

TTTTTTTT

10!

10°

1072 10~ 106 108 10710

L2-norm error

Figure 315: BACOLRI/ST Work vs. Accuracy: Two Layer Burgers equation
x12e=10"3p=4...11
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Figure 316: BACOLRI/LE Work vs. Accuracy: Two Layer Burgers equation

x12e=10"3p=4...11

1076 1077

L2-norm error

219

1078

109

10—10

10711




CPU Time (s)

=
o
-

102

10°

data fit to logy = mlogx + b

HFEREOONOUA
=Oo

TTTTTTTT

1072 10~ 1076 10-8 10-1°

L2-norm error

Figure 317: BACOLI/ST Work vs. Accuracy: Two Layer Burgers equation x12
e=10"%p=4...11
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Figure 318: BACOLI/LE Work vs. Accuracy: Two Layer Burgers equation
x12e=10"%p=4...11
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Figure 319: BACOLRI/ST Work vs. Accuracy: Two Layer Burgers equation
x12e=10"%p=4...11
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Figure 320: BACOLRI/LE Work vs. Accuracy: Two Layer Burgers equation
x12e=10"%p=4...11
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Figure 321: BACOLRI/ST Work vs. Accuracy: Schrodinger System; p =
4...11
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Figure 322: BACOLRI/LE Work vs. Accuracy: Schrodinger System; p =
4...11
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