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Abstract

This report introduces BACOLIKR, a new event detection software
package for the error controlled numerical solution of systems of one-
dimensional time-dependent partial differential equations (PDEs). BA-
COLIKR employs B-spline Gaussian collocation for the spatial discretiza-
tion in a spatial error control framework. A novel feature of this package
is that it allows the user to specify solution dependent conditions that
are used to determine a point in time when the specified time and space
dependent event occurs. The event detection capability in BACOLIKR
is based on its use of a modified version of the time integrator, DASKR,
which implements time-dependent event detection as well as providing
temporal error control.

BACOLIKR was developed through major modifications of the error
control PDE solver, BACOLI, and the DASKR package. This report
first provides an overview of the BACOLI and DASKR packages and then
describes the software modifications required in order to develop BACOL-
IKR. The rest of the report investigates the application of BACOLIKR to
solve a number of PDE-based event detection problems including solution
layer-boundary intersection detection and solution layer merge detection
in fluid mechanics models, critical tumor mass detection in a brain tu-
mor model, steady state detection in the Cahn-Allen equation and the
Gierer-Meinhardt model, and boundary event detection for a heat flow
model.
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1 Introduction

This report introduces a new software package, called BACOLIKR, for the error
controlled numerical solution of time-dependent partial differential equations
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(PDEs) in one space dimension; this package is novel in that it features a time
and space dependent event detection capability. This capability allows the user
to specify a solution dependent condition that can be used to determine the
time at which the specified time and space dependent event occurs. To our
knowledge, BACOLIKR, is the only available error control PDE solver that
offers time and space dependent event detection.

A simple example of an event detection question would be to ask when the
solution to a PDE, at a given point in the spatial domain, takes on a specified
value. However, as we will see in this report, more complex events that depend
on, for example, the temporal or spatial derivative of the solution, or on the
integral of the solution over the spatial domain, can be treated. Examples
discussed in this report include solution layer-boundary intersection detection
and solution layer merge detection in fluid mechanics models, critical tumor
mass detection in a brain tumor model, steady state detection in the Cahn-
Allen equation and the Gierer-Meinhardt model, and boundary event detection
for a heat flow model.

The advantage of software with an event detection capability is that the
software itself, to within the accuracy with which the numerical solution is
computed, can determine when a specified condition arises. This is in contrast
to a standard PDE solver where the user must specify explicitly when the solver
should finish, and in this case there is no straightforward way for the user to
determine the point in time when a solution dependent event of interest occurs.
As well, when one uses software with built-in event detection, once an event
has been detected, it is possible to modify the problem and then continue the
computation from the point of the event, if so desired. We demonstrate how
this can be done using BACOLIKR later in this report.

Accurate event detection requires that the numerical solution of the PDE be
computed using error control. Since the event itself will depend on the value of
the solution and/or its derivatives and/or its spatial integral, if the numerical
solution is not computed accurately, then it will be impossible to determine
the event time accurately. Error control means that for every time step taken
by the solver, high quality estimates of the temporal and the spatial errors
are computed, and the numerical solution associated with the time step is not
accepted until these error estimates satisfy the user tolerance. Advantages of
computing an error controlled numerical solution include the facts that the
user can have reasonable confidence that the numerical solution has an error
that is within the requested tolerance, that the cost of the computation will
be proportional to the requested tolerance, and that, when the solver has an
event detection capability, the point in time when the event happens will also
be determined to within the requested tolerance.

The capability for time-space event detection depends heavily on the fact
that the approximate solution computed by BACOLIKR is represented as a
continuous function of time and space. We will discuss these features of the
approximate solution later in this report.

The problem class we consider in this report is a PDE system of size NPDE



of the form,
w(w,t) = f(t, 2,0z, ), u, (7, 1), Uy (2,1), a<z<b t>ty, (1)
with separated boundary conditions,
by, (tu(a, t),u,(a, 1)) =0, bp(t,u(b,t),u,(b,1)) =0, t>to, (2)
and initial conditions,
u(z, to) = ug(x), a<z <bh. (3)

In addition, there is a vector function of size NRT, called the gstop function,
which has the form

g(taxaﬂ(xat)aﬂx(xat)agmc(xat)aﬂt(xat))' (4)

Each component of the gstop function defines an event and must be set to an
expression whose value changes sign at the point in time where the event occurs.
That is, each event is defined to occur at the root of one of the components of
the gstop function, and the task of locating the time at which an event occurs is
implemented by finding the roots of the components of the gstop function. For
example, for an event where we want to determine the point in time where the
solution, evaluated at x = 0.5, is equal to 1, then we have NRT = 1 and the
single component of (4) should be set equal to,

U(0.5,¢) — 1,

where U(z,t) is the approximate solution.

The BACOLIKR package has been developed through a major modification
of the BACOLI package [20], which employs B-spline Gaussian collocation for
the spatial discretization of the PDEs; this discretization process yields a sys-
tem of time-dependent ordinary differential equations (ODEs). These ODEs, to-
gether with the boundary conditions, represent a system of differential-algebraic
equations (DAEs) that are solved in BACOLIKR using a major modification
of the DAE solver, DASKR [5, 6], which is based on a family of Backward
Differentiation Formulas (BDFs). For each time step, DASKR computes an
estimate of the temporal error and then uses both adaptive time stepping and
BDF order selection to control this error estimate so that it is less than the user
tolerance. For each time step accepted by DASKR, BACOLIKR then computes
an estimate of the spatial error of the numerical solution. If this spatial error
estimate satisfies the user tolerance, then the solution computed on the current
time step is accepted. Otherwise, BACOLIKR will adapt the spatial mesh and
then restart the computation at the beginning of the current time step.

The source code for BACOLIKR and the examples considered in this report
are available at

http://cs.smu.ca/ "muir/BACOLI-3_Webpage.htm.



This report is organized as follows. In Section 2 we provide an overview
of BACOLI and DASKR. In Section 3, we describe the software development
process involved in developing BACOLIKR. As mentioned above, this will in-
clude describing the modifications that were made to the BACOLI and DASKR
packages, in order to develop BACOLIKR. Section 4 investigates the applica-
tion of BACOLIKR to a collection of problems that require event detection that
depends on the solution (or its derivatives or spatial integral) to a PDE or a
PDE system. We close in Section 5 with our summary, conclusions, and future
work.

2 Overview of BACOLI and DASKR

2.1 BACOLI

For the problem, (1), (2), (3), as mentioned earlier, BACOLI employs B-spline
Gaussian collocation for the spatial discretization. The numerical solution,
U(x,t), is represented in terms of a B-spline basis of C''-continuous piecewise
polynomials in x, of degree p on each subinterval of a spatial mesh, {x;}NINT
which partitions [a b]. U(z,t) has the form,

Z gp 4 ’1 ’ (5)

where gm_(t) is the (unknown) time dependent (vector) coefficient of the i-th
B-spline basis function, B, ;(z), and NC, = NINT(p — 1) + 2. The B-spline
basis is implemented in BACOLI using the de Boor B-spline package [8]. The
use of Gaussian collocation for the spatial discretization of the PDE means that
U(z,t) is required to satisfy (1) at p— 1 collocation points on each spatial mesh
subinterval, where the collocation points are the images of the Gauss points,
{pj}f;i, mapped on to each subinterval. Letting n; be the jth collocation
point, the corresponding collocation condition has the form,

Qt(nj’ ) .f(t N> (nj’t)agx(nj’t)agmc(nj’t)) =0, (6)

j=2,...,NC,—1. U(z,t) is also required to satisfy the boundary conditions
at 1 = a and nnc, = b; these have the form,

3

by (LU0 ). U0, ) =0, bp(tUGD.LGH=0  (7)
The equations, (6) and (7), represent an index-1 system of differential alge-
braic equations (DAEs) and the solution of this DAE system gives the B-spline
coefficients, Y, ;).

This collocat1on discretization yields a numerical solution that, for an arbi-
trary point in the spatial domain, has a spatial error that is O(hp“), where
h = max¥INT h; [7, 10]. (The numerical solution is said to be of order p + 1.)



In BACOLI, this DAE system is solved using a modified version of the
DASSL package [19], which computes error controlled approximations to the B-
spline coefficients using a variable time step/variable order algorithm based on a
family of BDFs of orders 1 to 5. One of the most significant modifications made
to DASSL was the introduction of a new option for the treatment of the type
of linear systems that arise during the computation of the B-spline coeflicients.
Due to the use of a B-spline basis, these linear systems have what is known as an
almost block diagonal (ABD) structure [9], and therefore the modified version
of DASSL employed in BACOLI makes use of the COLROW package [9], which
is designed to efficiently treat such systems. The tolerance employed in the
modified version of DASSL is slightly sharper than the user tolerance which
is employed in the spatial error control algorithm implemented in BACOLI.
This means that, generally, the time error associated with the computation of
the B-spline coeflicients will be slightly smaller than the spatial error of the
approximate solution.

The spatial error control algorithm implemented in BACOLI requires that a
high quality estimate of the spatial error of the numerical solution be computed.
BACOLI has two options for computing a spatial error estimate for U(x,t).

The first option, described in [2], is based on the observation that, at cer-
tain points within the spatial domain, the spatial accuracy of U(x,t) is at least
one order higher than it is at an arbitrary point in the spatial domain; these
solution values are said to be superconvergent. The points at which U(z,t) is
superconvergent include the mesh points as well as certain other points (see [2])
internal to each subinterval. It is also the case that the U_(x,t) values at the
mesh points are superconvergent. For each spatial mesh subinterval, a Hermite-
Birkhoff polynomial interpolant is constructed that interpolates the supercon-
vergent U(z,t) and U, (x,t) mesh point values at each end of the subinterval as
well as all the superconvergent U(x,t) values within the subinterval. Further-
more, in order to obtain an interpolant whose interpolation error is dominated
by the error of the interpolated U(x,t) values internal to the subinterval, this
Hermite-Birkhoff interpolant also interpolates the two closest superconvergent
U(x,t) values internal to the left and right adjacent subintervals.

This Hermite-Birkhoff interpolant, known as the SuperConvergent Inter-
polant (SCI), has the following form on the ith subinterval, [z;,z;+1]. Let
s1 = x; and sy = ;41 and let w;,j = 1,...,k, be the non-mesh points where
the superconvergent solution values are to be interpolated. (Here k = p — 3.)
Then, at time ¢, the Hermite-Birkhoff interpolant has the form [12]

2 2 k
Z Hj(z)U(s;,t) + h Zﬁj (@)U, (s5,t) + Z Gj(@)U(w;, ), (8)
where = € [z, zi41], h = Ti41 — 24,
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Since the interpolation error is dominated by the spatial error of the inter-
polated values, the spatial error of the Hermite-Birkhoff interpolant is the same
as the error of the interpolated values, i.e., O(h?*2). Over [a, b], these Hermite-
Birkhoff interpolants, taken together, represent a C '_continuous piecewise poly-
nomial solution approximation, which we call U(x,t). A scaled difference (see
below) of U(z, t) and U(x, ) is computed in order to obtain a spatial error esti-
mate for U(z,t). This error estimate is employed in BACOLI to provide what
is known as standard (ST) spatial error control.

The second option available in BACOLI for computing a spatial error esti-
mate for U(z,t) costs slightly less to implement than the SCI, does not make use
of approximate solution values from outside a given subinterval when construct-
ing the polynomial interpolant for that subinterval, and provides a conservative
(overestimate) of the spatial error. On the ith subinterval, this interpolant,
which we will refer to as U(x,t), is also a Hermite-Birkhoff interpolant of the
form (8), but in this case the w; values are chosen so that the interpolation error
of this Hermite-Birkhoff interpolant is asymptotically equivalent to the spatial
error for a collocation solution of one order lower than U(z,t). (In this case,
k = p—4.) We therefore refer to U(z,t) as the Lower Order Interpolant (LOI);
the number of interpolation points is chosen so that the interpolation error dom-
inates the error of the values being interpolated, and thus the LOI has a spatial
error that is O(h?). See [3] for further details.

A scaled difference (see below) of U(z,t) and U(x,t) can then provide a
conservative estimate of the spatial error for U(x,t). Since U(x,t) is returned
to the user but the spatial error control is based on a spatial error estimate
that is for an approximation to the solution that is of one lower spatial order
than U(z,t), we have an example of what is known as Local Extrapolation (LE)
spatial error control - see, e.g., [15].

When BACOLI is called with a given input value for p, it computes and
returns a numerical solution based on B-splines of degree p. If the ST spatial
error control mode is chosen, then the code constructs the SCI to generate a
spatial error estimate which is then used as the basis for ST spatial error control.



If the LE spatial error control mode is chosen, then BACOLI constructs the LOI
and uses it to generate a spatial error estimate which is then used to provide
LE spatial error control. Thus the availability of the two types of interpolants
corresponds to providing options for two modes of spatial error control, ST mode
or LE mode, similar to what is available when a Runge-Kutta formula pair is
used to provide error control for an initial value ODE - see, e.g., [15]. See [21]
for a detailed performance analysis of BACOLI using these two error control
modes.

For either error control mode, two types of spatial error estimates for U(x, t)
are computed by BACOLI. The first is the set of error estimates, F;(t),j =
1,..., NPDE; each of these values represents a scaled spatial error estimate,
over the entire spatial domain, for one component of the solution. These have
the form,

b Iy 2
Uj(z,t) — Uj(x,t)

Ei(t) = I L dz, 9

i(®) / (ATOLj+RTOLj|Uj(x,t)| v ©)

where ¢ is the current time, ATOL; and RTOL; are the absolute and relative
tolerances for the j-th approximate solution component, Uj(x,t), and U(z,t)
is the jth component of either U(x, ) or U(z,t). The second set of spatial error
estimates are, F;(t),i = 1,..., NINT; each of these values provides a scaled

spatial error estimate over all components of U(z,t) for the ith subinterval.
These are of the form,

-~

NPDE ) 2

~ i Uj(x,t) — Uj(x,t)

E;(t) = JA\ JA dz. 1
" Jzzl / (ATOLJ- T RTOLIG, (e ) M 10

Again, Qj (2,1) is the jth component of either U(z,t) or U(z,t).

These spatial error estimates are computed after each accepted time step
taken by DASKR. A step is accepted when E;(t) < 1 for j =1,..., NPDE.
Otherwise the step is rejected and the E; (t) values are used as the basis for a
mesh refinement algorithm that attempts to construct a new mesh such that
(i) the numerical solution computed on that mesh will have a spatial error
estimate that satisfies the tolerance and (ii) the spatial error estimates over
the subintervals of that mesh will be approximately equidistributed. Both the
location and number of mesh points can be changed during a remeshing in order
to adapt to the size (with respect to the user tolerance) and distribution of the
spatial error estimates over the spatial domain. See [24] for further details.

2.2 DASKR

The DASKR solver was obtained through an extension of the solver DASPK
[5], which itself was developed from the original member of this software family,
DASSL. As mentioned earlier in this report, DASKR is based on a family of
BDFs and uses both adaptive time stepping and BDF order selection to control



an estimate of the temporal error. DASKR represents the approximate solution
it computes in terms of a continuous piecewise polynomial interpolant. The
temporal error control is applied only to the solution approximation at the
end of each time step; the order of the interpolant is chosen to be consistent
with the order of the BDF used to obtain the solution approximation at the
end of the step. In addition to a choice of direct methods (dense or banded)
for the treatment of the linear systems that arise during the computation of
a numerical solution, DASKR also provides the user with the option of using
a Krylov method, the Generalized Minimum Residual (GMRES) method, in
either complete or incomplete form, with scaling and preconditioning [5], for
use when the linear systems are large. As well, DASKR improves upon DASSL
by providing an option for the calculation of consistent initial conditions for the
DAE system to be solved, when the user is not able to provide these.

Furthermore, as mentioned earlier, DASKR has a time-dependent event de-
tection capability that can be employed while the solver is computing a numerical
solution to a DAE system. At the end of each accepted time step, DASKR calls
a routine which evaluates the user’s gstop function in order to monitor for sign
changes in any of the components of the gstop function. When a sign change
is detected, DASKR uses the interpolant to the solution together with a search
algorithm [16] to locate the root of the corresponding component of the gstop
function, and then returns to the calling program.

(While, as mentioned above, DASKR, has the capability for treating large
DAE systems using the preconditioned GMRES algorithm, we have not yet in-
corporated this feature of DASKR into the BACOLIKR package; this would
require a major modification to BACOLIKR and we therefore identify this as
a potential project for future work in the final section of this report. Also,
the algorithm provided within DASKR for computing consistent initial condi-
tions is not employed because BACOLIKR computes its own consistent initial
conditions for the DAE system before calling DASKR.)

3 Development of BACOLIKR

As mentioned earlier, event detection is implemented through a user defined
gstop function, each component of which is used to characterize an event; this is
done by writing each component of the gstop function so that it has a root at the
point in time where the event occurs. It is therefore common for event detection
software to be described in terms of a root finding capability where the goal of
determining the time at which an event occurs is described in terms of finding
roots of the gstop function. Thus, in this section, we make reference to root
finding rather than event detection when describing the software modifications.

3.1 Major modifications

This subsection describes the major modifications that were made to BACOLI
and DASKR in order to develop BACOLIKR. The overall structure and user



interface for BACOLIKR is similar to that of BACOLI and we therefore refer
the reader to [20] for additional details.

e As mentioned earlier in this report, BACOLI makes use of a modified
version of DASSL. See Section 3 of [22] for a detailed description of the
changes that were made to DASSL.

In order to use DASKR within BACOLIKR it was therefore necessary to
make similar changes to DASKR. One major change involved modifying
DASKR to provide an option for it to use the ABD linear system solver,
LAMPAK [17], to solve the ABD linear systems that arise. (BACOLIKR
uses LAMPAK, rather than the COLROW package used by BACOLI,
in order to remove any proprietary dependencies. The use of LAMPAK
rather than COLROW does not cause any significant impact in perfor-
mance.)

e A subroutine called BACRT was added. This subroutine calls the user’s
gstop subroutine, which we will refer to as RT; for a given time, ¢, and
current solution approximation, U(z,t) (or U, (z,t), U, (z,t), or U, (x,t)
approximation if necessary), RT evaluates the components of the user’s
gstop function (4).

The BACRT routine provides an interface between the rest of BACOLIKR,
and the user’s RT routine in order to simplify the argument list for the
RT routine and hide a number of implementation details.

e A number of small changes were made in order to manage the root finding
capability. The major changes of this type implemented communication
between DASKR, BACOLIKR, and the BACRT routines.

e A capability was added to allow the user to force BACOLIKR to restart
DASKR for the next time step using a cold start. (BACOLIKR itself has
the capability to force a cold start but for some event detection problems
it is important that the user be able to do this as well. A typical example
is when the PDE or boundary conditions must be changed after an event
has been detected. In such cases, it is more efficient to perform a cold
start (in which case DASKR begins with a low order BDF and a small
step size) than it is to have DASKR attempt to continue with the current
order BDF and a large step size.)

3.2 User interface modifications

This subsection describes changes to the user interface, as well as the motivations
for each change. The BACOLIKR package is based on a Fortran95 wrapper that
wraps a Fortran 77 solver within which the primary computations take place.

3.2.1 Fortran 95

e Added to the BACOLIKR initialization routine, BACOLI95_INIT, the
optional integer argument, NRT, which specifies the number of roots of the



gstop function that will be searched for over the course of the computation.
This is equal to the number of components of the gstop function. If NRT
is greater than 0 then the main solver subroutine, BACOLI95, expects to
be passed the name for the user’s root finding subroutine; see below. (As
mentioned above, this routine is known internally as RT, but the actual
name can of course be different.)

Added to the main solver routine, BACOLI95, an optional argument that
allows the user to specify the actual name of the root finding subroutine.
It has the signature:

subroutine RT(T, X, NINT, UB, UTB, NEQ, RVAL, NRT),

where T, the current point in time, X, the current spatial mesh, NINT, the
current number of mesh subintervals, UB, the array of B-spline coefficients
at the current time, and UTB, the array of time derivatives of the B-spline
coefficients at the current time, are input arguments, and RVAL, the array
for which RVAL(i), i = 1, ..., NRT, gives the value of the ith component
of the gstop function, is the lone output argument.

Added a new field to the structured solution type, BACOLI95_SOL; the
new field is an integer array, JROOT, where the value of JROOT(i), i =
1,..., NRT, can indicate when there has been a change in sign in the ith
component of the gstop function. On any return:

— BACOLI9_SOL%JROOT(i) = 0 indicates that the ith component
of the gstop function has not changed sign during the current time
step,

— BACOLI95_SOL%JROOT(i) = 1 indicates that the ith gstop root has
been found and the sign of the ith component of the gstop function
during the current time step has gone from negative to positive,

— BACOLI9_SOL%JROOT(i) = -1 indicates that the ith gstop root
has been found and the sign of the ith component of the gstop func-
tion during the current time step has gone from positive to negative.

When a root is found, BACOLIKR sets BACOLI95_SOL%IDID = 5. Then
the BACOLI95_SOL%JROOT array can be examined to detect which root
have been found by checking for a non-zero component.

When the user sets BACOLI95_SOL%MFLAG(1) = 2, BACOLIKR is
forced to call DASKR using a cold start for the next time step. This is
useful, as mentioned earlier, for problems where the discovery of a root
may require a change in the problem. Attempting to restart, in such a
case, with a warm start could lead to a failure by DASKR, or alternatively,
multiple failed time steps as DASKR reduces the order of the BDF method
and the size of the time step, in order to step past the discontinuity in an
error controlled manner, leading to a very inefficient computation. The
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cold start forces it to begin with the first order BDF and a small time
step, making the computation more likely to succeed despite the change
to the problem.

3.2.2 Fortran 77

The interface to the Fortran 77 solver that is contained within BACOLIKR dif-
fers from the interface to the Fortran 77 solver that is contained within BACOLI
in two major ways:

e In BACOLIKR, the integer work array IPAR and the floating point work
array RPAR have different sizes than they do in BACOLI; the change in
size depends on the value of NRT.

e In BACOLIKR, the arguments, NRT, JROOT and RT must always be
passed to the Fortran 77 solver since optional arguments are not available
in Fortran 77. In the case where no root finding is to be done, NRT is set
to 0 and dummy arguments for JROOT and RT are given.

4 Application of BACOLIKR to event detection
problems

In this section, we demonstrate the capabilities of the BACOLIKR, package by
showing how to apply it to a number of event detection problems that are based
on the solution of a PDE or a system of PDEs. Each subsection will consider one
problem and will demonstrate how to call BACOLIKR, and write an appropriate
root finding routine and corresponding main program in order to implement the
specific type of event detection required for each problem.

In order to apply BACOLIKR, to an event detection problem, the user must
customize a module called ROOTFINDING. The primary component of this
module is the subroutine (mentioned earlier) called RT (internally), within
which the details associated with the characterization of a single event or mul-
tiple events must be given. As mentioned earlier, the specification of a event
may require, within RT, an auxiliary computation involving, for example, the
numerical solution, its derivatives in time or space, or its integral in space.
The evaluation of the numerical solution and/or its time or space derivative
is performed through a call to the VALUES routine. Within the RT routine,
assignments are made to the gstop vector, RVAL, in order to define the con-
ditions that characterize each event as a root of one component of the gstop
function. Within each subsection associated with an event detection problem,
we will explain how the RT routine can be written to define the specific event
or events.

In addition to the RT routine, the ROOTFINDING module includes the
SETSOL routine. The latter dynamically allocates a work array that is used
within the RT routine, and, for those applications in which a spatial integral
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must be computed, it also computes the Gauss points that will be used to obtain
a numerical approximation to the integral.

The other primary software component associated with the use of BACOL-
IKR for event detection is the main program that will make calls to the solver
routine, BACOLI95, as appropriate for whatever event or events are to be de-
tected. In the case of multiple events, BACOLI95 must be called multiple times.
For each problem we consider, we will describe in general terms how the main
program is organized.

The other software components of BACOLIKR that are used in the main
programs are the BACOLI95_INIT routine, which initializes the computation,
the BACOLI95_VALS routine, which is used to evaluate the numerical solution
and its first and second spatial derivatives, the BACOLI95_SOL data structure
which contains a number of fields where information associated with the approx-
imate solution is stored, and the BACOLI95_SOL_TEARDOWN routine which
must be called at the end of the computation to release the dynamic memory
that is allocated during the computation.

In addition to customizing the ROOTFINDING module and the main pro-
gram, the user must also provide problem definition routines that define the
PDE(s), the boundary conditions, and the initial condition(s). We refer the
reader to

http://cs.smu.ca/ "muir/BACOLI-3_Webpage.htm.

to see complete source code for the main program, the ROOTFINDING module,
and the problem definition routines for each problem we consider.

4.1 Solution value detection for the One Layer Burgers’
Equation

Burgers’ equation is a standard model in fluid mechanics. Here we consider
an instance of this problem which we call the One Layer Burgers’ Equation
(OLBE); it has the form,

Up = EUgy — Uly, (11)

with boundary conditions at # = 0 and z = 1 (¢ > 0) and an initial condition
at to =0 (0 <z < 1) taken from the exact solution,

11 x—Lt-1
f)==——tanh [ —2 1% 12
uz,t) = 5 — 5 tan ( " ) (12)

where € is a problem-dependent parameter. We will choose € = 10~2 for this
example. We solve this problem from tg = 0 to t,,+ = 1 and choose a tolerance
of 1078, For ty = 0, the solution has a sharp layer located at = ~ 0.25. As t
goes from 0 to 1, the layer moves to the right and is located at + ~ 0.75 for
tout = 1. See Figure 4 of [23] for a plot of the solution to this problem.

In order to demonstrate the event detection capability of BACOLIKR in a
simple form, we will define a very basic event for this problem. The task will
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be to determine the time at which the approximate solution, U(x,t), satisfies
the condition that U(0.4,t) = 0.5. Thus there will be one root and the gstop
function will be [U(0.4,¢) — 0.5].

Within the RT routine, we make one call to the VALUES routine which
computes the value of the approximate solution at the current time, for a given
choice of z. A key point here is that we pass the vector of B-spline coefficients
into the VALUES routine so that the solution itself is computed. (There is the
option of passing to the VALUES routine the vector of time derivatives of the
B-spline coefficients in order to evaluate the time derivative of the numerical
solution; this will be considered in a later example. When the vector of time
derivatives of the B-spline coefficients is passed to the VALUES routine, it is also
possible to obtain, at desired locations within the spatial domain, approximate
values for w,(z,t) and usz.(x, t), should these be needed to characterize a given
event.)

We call VALUES with « = 0.4. The difference between the returned solution
approximation and the target value, 0.5, is then assigned to the RVAL output
argument of RT, in order to define the event for this example.

The corresponding main program first initializes the computation with a
call to the BACOLI95_INIT routine. This is followed by a call to the SETSOL
routine and then a call to the BACOLI95 solver routine. The BACOLI95 routine
monitors the output from the RT routine looking for a time step on which there
is a change in the sign of the gstop function. Once this happens and the specific
point in time where the root occurs has been found, BACOLI95 returns to
the main program with an indication that the root has been found. For this
example it turns out that the root of the gstop function, [U(0.4,t) — 0.5], occurs
when ¢ =~ 0.3. The main program writes out the solution at the time of the
event and then calls the solver again in order to complete the computation
through to t,,: = 1. Since the problem has not changed, a warm start can be
employed. The solver returns with an indication that t,,; has been reached,
and the solution at t,,; is printed out. See Figure 1 for a plot of the solution at
the time of the event.

4.2 Solution value detection involving multiple events for
the Catalytic Surface Reaction Model

The Catalytic Surface Reaction Model (CSRM) [25] has a PDE system of the
form,

ug); = Asusy — Douy — Rusugy® + (u4)zz/Pes, (13)
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Figure 1: Numerical solution to OLBE when U(0.4,t) &~ 0.5; this occurs when
t~0.3.

where v = 1 — ug — uy4, and n,r, Pey, Pea, D1, Do, R, Ay, and Ay are problem
dependent parameters. The initial conditions at t =0 (0 < z < 1) are,

up(z,0) =2—7r, wa(z,0)=r, wus(z,0)=u4(z,0)=0,
and the boundary conditions at x = 0 and z =1 (¢ > 0) are,
(u1)2(0,8) = —=Pe1(2 —r —u1(0,1)),  (u2)x(0,1) = —Pei(r —uz(0,1)),

(u3)2(0,8) = (ua)(0,2) = 0,
(u1)a(L,8) = (u2)2(1,1) = (u3)e(1,) = (ua)x(1,£) = 0.

See Figures 12-15 of [23] for plots of the solution components for Pe; = Peg =
100, D1 = 1.5, D9 = 1.2, R = 1000, = 0.96,n = 1, and A; = Ay = 30. Here
we choose the problem dependent parameters as above except, in order to make
the problem more challenging, we choose Pe; = Pey = 10000.

We choose a tolerance of 107°. This example is included to show how to
treat a problem with multiple events and multiple solution components.

We define two simple events. We wish to find the time at which Us(0.2,t) =
0.24 and the time at which Uy(0.2,t) = 0.24. Thus there are two roots and the
gstop vector function is [Usz(0.2,t) = 0.24, Us(0.2,t) = 0.24]T.

Inside RT, we make one call to the VALUES with « = 0.2. The VALUES
routine returns a vector of the four solution component values for this value of
x and at the current time. The difference between the third component of the
returned solution approximation and the target value, 0.24, is then assigned to

14



0.7

0.6

0.5 o

04

0.3 4

0.2 o

Figure 2: Third component of the numerical solution to CSRM when
Us(0.2,t) =~ 0.24; this occurs when ¢ = 1.2008.

the first component of RVAL while the difference between the fourth component
of the returned solution approximation and the target value, 0.24, is assigned to
the second component of RVAL. DASKR checks, on every step, to see if either
component of RVAL changes sign, thereby monitoring both of the events over
the duration of the computation.

After initializing the computation with calls to the BACOLI95_INIT and
SETSOL, the main program calls BACOLI95. The solver returns with an in-
dication that one of the roots has been found. For this example it turns out
that the root of the gstop function component, Us(0.2,t) — 0.24, is found for
t ~ 1.2008. The main program writes out the solution and then calls BACOLI95
again in order to continue the computation. See Figure 2 for a plot of the solu-
tion at the time of this first event. Since the problem has not changed a warm
start can be employed. BACOLI95 returns a second time with an indication
that a root has been found. In this case the root of the gstop function compo-
nent, Uy(0.2,t) — 0.24, is found for ¢ &~ 1.8816. The solution at this time is then
printed out and the computation is terminated. See Figure 3 for a plot of the
solution at the time of the second event.

4.3 Layer merge detection for the Two Layer Burgers’
Equation

The Two Layer Burgers’ Equation (TLBE) is based on the PDE, (11), but
with boundary conditions at = 0 and z = 1 (¢ > 0) and an initial condition
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Figure 3: Fourth component of the numerical solution to CSRM when
U4(0.2,t) =~ 0.24; this occurs when ¢ = 1.8816.

at to =0 (0 <z < 1) taken from the exact solution,

0.l +0.5e 8 4+ ¢ €
67‘4 + e*B _|_efc

3

u(zx,t) =

where,

A= 0—35(33 —0.544.95t), B= 0—625(33 —0.540.75t), C= %(x —0.375),
where € is a problem-dependent parameter. For this example, we choose € =
10~3. When tg = 0, the solution has two sharp layers, one at = 0.25 and one
at z = 0.5. As t increases, these layers move to the right and eventually merge,
forming a single layer. See Figure 1 of [23] for a plot of the solution to this
problem.

Our goal in this example is to determine the time at which the two layers
merge. The left layer corresponds to a sharp transition in the solution value
from 1 to 0.5. We will therefore define the location of this layer to be at the
point, x1,, where the solution has the value 0.75, half way through the transition
in the solution values to the left and right of the layer. Similarly, the right layer
corresponds to a transition in the solution value from 0.5 to 0.1. We therefore
define the location of this layer to be at the point, xr, where the solution has
the value 0.3, halfway through the transition in those solution values to the left
and right of that layer. We will define the layers to have merged when z; and
xR are within a distance of 5e. (See below for further discussion on this point.)
Thus there will be one root and the gstop function will be [|x; — zg| = 5e].
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Figure 4: Numerical solution, U(x,t), to TLBE when the two layers merge;
this occurs when ¢ = 0.622056.

We will solve this problem using a tolerance of 1076.

Within the RT routine, we begin by evaluating the approximate solution at
the endpoints of the spatial domain. These values are then used as input to
a bisection algorithm that is used to determine the point, xr, in the spatial
domain where U(xp,t) ~ 0.75. Similarly, we use a second bisection algorithm
to determine the point, x g, in the spatial domain where U(zg,t) = 0.3. When
the left layer and right layer have merged, the points xy and xzr will be on the
same single layer that remains, with x; always slightly to the left of xr. As
mentioned above, for the choice of € we have made, when the layers merge, =,
and zr will be within a distance of about 5e. After this time they are located
within the same layer and the distance between the two points stays on the
order of e. We have found that this distance is approximately 5e¢. (We have
determined experimentally that the two points, 7 and xg, remain a distance
of about 0.0049 after the layers merge.) Thus the difference between xj, and zp
and 5e is then assigned to the RVAL output argument of RT, in order to define
the event for this example.

The corresponding main program first initializes the computation with a call
to the BACOLI95_INIT routine and then makes a call to the SETSOL routine.
This is followed by a call to the BACOLI95 solver. The solver then returns
with an indication that the root has been found. For this example it turns out
that the two layers are determined to have merged for ¢t ~ 0.622056. The main
program writes out the solution at the time of the event and then ends. See
Figure 4 for a plot of the solution at the time of the event.
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4.4 Critical tumor mass detection for a Brain Tumor Model

This problem (BTM) models the growth of a brain tumor within a region
of the brain that includes three consecutive regions involving grey-white-grey
matter. We consider a modification of the model discussed in [4] in which the
discontinuous diffusion coefficient that arises due to the different brain matter
regions (grey or white) is replaced with a continuous diffusion coefficient that has
sharp layer regions corresponding to the transitions between the brain matter
regions. (The reason we do this is that the general form for the approximate
solution employed in BACOLIKR assumes C'-continuity in . However, the
discontinuous diffusion coefficient in the original form of BTM forces the first
spatial derivative of the exact solution to be discontinuous [4].)
The PDE for this problem is

ug(z,t) = (D(x)ug(x,t))r = De()ug(z,t) + D(x)uze(x, ), (14)

where,

D(z) = ((ﬁ) T (W) - 1) A=D+7 (1)

approximates a step function whose value to the left and right of the region
[w1,ws] (a subregion of the spatial domain, [a, b]) is v, and whose value within
the region [w1, ws] is 1. The parameter [ controls the sharpness of the transition
layers between [w1, we] and the rest of the spatial domain. We choose wy; = —0.5,
we = 0.5,y = 0.2, and | = 30. In Figure 5, we give a plot of D(x) for the above
choice of parameters on [—5,5]. The boundary conditions are

uz(a,t) =0, uqz(b,t) =0,

where a = —5, b = 5, and the initial condition is
—(z;sﬂ
e n
u(z,0) =

nvm

where £ = —2 and 1 = 0.2. This gives an initial solution that has a spike of
height approximately 2.8 centered at z = —2. We choose a tolerance of 1076.
The tumor concentration, ¢(z,t), is obtained from the solution, u(z,t), of
the above PDE with the indicated boundary and initial conditions through the
equation,
c(z,t) = elu(x,t).

The tumor grows both in size and width across the spatial domain as time
progresses, with different growth rates in the grey and white matter regions, as
determined by the different values of the diffusion coeflicient across the spatial
domain.

For this problem we wish to find the time at which the mass of the tumor
reaches the critical value of 10. The mass of the tumor at a given point in
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Figure 5: Diffusion coefficient, D(z) (15), with wy = —0.5, wy = 0.5, v = 0.2,
and | = 30.

time is obtained by integrating the tumor concentration, ¢(x,t), over the spatial
domain [a, b]. Thus, each time the RT routine is called, we need to compute an
approximation to the integral of the approximate solution, U(z, t), over [a, b]. To
do this, we will use a Gaussian quadrature rule on each subinterval of sufficiently
high degree that the integral of U(x,t) over the subinterval will be computed
to high accuracy. (It may be possible to obtain a more efficient computation
by using an adaptive quadrature routine to approximate the integral of Uz, t)
over [a,b] to an accuracy that is consistent with the tolerance employed in the
computation of U(x,t) but we do not consider this here since the specific way
in which the integral is computed is not central to the current discussion.)

The canonical Gauss points and weights are pre-computed within the SET-
SOL routine which is called once by the main program, as mentioned earlier.

Inside the RT subroutine, we first compute the specific Gauss points and
weights for use on each subinterval of the current spatial mesh. The calcula-
tions access the canonical Gauss points and weights computed by the SETSOL
routine. We then call the VALUES routine with the Gauss points as input to
(simultaneously) evaluate the approximate solution at all Gauss points on all
subintervals. We then multiply these values by the appropriate Gauss weights
and sum over all subintervals to get an approximation to the integral of U(x, t),
over [a,b]. We then multiply this integral approximation by e! to obtain the
mass of the tumor over [a, b] at the current time ¢. The gstop function in this
case is the difference between the mass of the tumor at the current time and
the target value of 2.

The corresponding main program, after calling BACOLI95_INIT and SET-
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Figure 6: Approximate concentration, C(x,t), for BTM when the mass of the
tumor reaches the critical value of 10; this occurs when ¢ ~ 2.30258.

SOL, calls BACOLI95 to determine the point in time where the tumor mass, as
approximated above, reaches the critical value. We find that this happens when
t ~ 2.30258. The main program prints out the solution and then terminates.
See Figure 6 for a plot of the approximate concentration, C(z,t) = e'U(x,t),
where U (x, t) is the approximate solution to (14), with the boundary and initial
conditions indicated above, at the time of the event.

4.5 Steady state detection via layer-boundary tracking for
the One Layer Burgers Equation

This problem again considers the One Layer Burgers Equation, and for this
example, the event detection task is to discover when the solution reaches steady
state.

For a typical problem, the detection of steady state requires a more elaborate
computation (see the next two examples) but for the One Layer Burgers Equa-
tion, the behavior of the solution makes obtaining the answer to this question
straightforward.

Recall that the One Layer Burgers Equation has a solution that, initially,
has a sharp layer region at = ~ 0.25, and, as t goes from 0 to 1, the layer moves
to the right and is located at  ~ 0.75 for t = 1. At any point in time, to the left
of the layer, the solution value is 1 while to the right of the layer, the solution
is value is 0.

At some point in time after ¢ = 1, the layer moves past the right boundary,
and from that point in time onward, the solution is equal to 1 across the entire
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spatial domain [0, 1], i.e., the solution has reached a steady state. Thus the
determination of the time at which the solution reaches steady state is, for this
problem, equal to the time at which the moving layer passes beyond the right
boundary. This will be the time at which the solution at the right boundary
equals 1, since prior to this time, the solution at the right boundary will always
be less than 1.

Thus, for this problem, the determination of the time when the solution
reaches steady state reduces to determining when the approximate solution,
U(z,t), satisfies the condition U(1,t) = 1.

This means that this problem reduces to a minor variation of the first exam-
ple we have considered. Instead of searching for the time when U(z,t) satisfies
the condition that U(0.4,t) = 0.5, we search for the time when U(1,t) = 1. We
choose a tolerance of 107,

The RT subroutine and the main program are quite similar to those for the
first example.

For this example, BACOLIKR, determines that steady state has been reached,
ie., U(1,t) =1, for t ~ 1.69363. (We do not provide a figure showing the solu-
tion at this point in time since it is identically equal to 1 across [0,1].)

4.6 Steady state detection for the Cahn-Allen Equation

The Cahn-Allen Equation (CaAl) [1] models phase separation in multi-component
alloy systems. It has the form

(. t) = uge(x,t) —ulz, t)® +u(x,t),

where € is a problem dependent parameter which we choose to be 10~ for this
investigation. The boundary conditions are,

uz(0,1) =0,  ug(l,1) =0,

and initial solution is,

u(z,0)) = 0.01 cos(107z).

This initial solution is a low amplitude oscillating function with a period of
0.2. As time proceeds, this initial solution grows in amplitude and develops (at
steady state) into a step function that has a series of regions where the solution
value is constant, alternating in value between 1 and -1, with sharp transition
layers from one region to the next. (See [23], Figure 7, to see the evolution of
the solution to this problem over the time period, ¢ € [0, 8].)

Our goal is to determine the time at which the numerical solution to the
Cahn-Allen equation reaches steady state (to within the tolerance with which
the numerical solution is computed). We choose a tolerance of 1078.

We will define steady state to have been reached when the absolute value
of the time derivative of the solution over the spatial domain has (effectively)
reached a value of 0. This will be when the time derivative of the solution is as
small as the tolerance with which the numerical solution has been computed.
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Figure 7: Numerical solution, U(z, t), to CaAl when the solution reaches steady
state; this occurs when t ~ 17.684440.

In order to assess the size of the time derivative of the solution, at a given
point in time, over the entire spatial domain, we will compute an approximation
to the integral of |Ui(x,t)| over [0,1]. The gstop function will therefore be
[fol |Ui(z,t)|dz — tol], where tol is the user tolerance.

Within the RT routine, we first compute the Gauss points and weights on
each subinterval of the spatial mesh (based on the canonical Gauss points and
weights computed during the call to SETSOL by the main program). We then
call the VALUES routine with the Gauss points as input to evaluate the time
derivative of the approximate solution at the Gauss points on all subintervals.
In order to obtain values of the time derivative of the approximate solution, we
pass the vector of time derivatives of the B-spline coefficients into the VALUES
routine. We then multiply the absolute values of these time derivatives by the
appropriate Gauss weights and sum over all subintervals to get an approximation
to the integral of |Uy(x, t)| over [0, 1], for the current time. The gstop function in
this case is the difference between this integral approximation and the tolerance
with which the numerical solution is computed.

The corresponding main program, after calling BACOLI95_INIT and SET-
SOL, calls BACOLI95 to determine the time at which the approximate solution
reaches steady state (as defined above). We find that the solution reaches steady
state when t ~ 17.684440. The main program prints out the solution and then
terminates. The solution at this time is shown in Figure 7.
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4.7 Steady state detection for the Gierer-Meinhardt Model

The Gierer-Meinhardt Model (GMM) [14] is an activator-inhibitor system as-
sociated with the modeling pattern formation in biological systems. A key
phenomenon in such systems is that for certain parameter choices it is possible
to observe spontaneous pattern formation from an initially (almost) homoge-
neous initial state. The form of the Gierer-Meinhardt Model we will consider
has a PDE system of the form,

ar(z,t) = Eage(x,t) — a(z, t) + a(z, t)*/h(z, t),

Thi(x,t) = Dhyy(x,t) — phz, t) + a(x, t)2,

where €, 7, D, and p are problem dependent parameters. For this investigation,
we choose € =0.1, 7=1, D = 0.1, and g = 1. The boundary conditions are

CLI(CL, t) = h’x(aa t) = Oa am(ba t) = hx(ba t) = Oa

where the spatial domain is [a,b]. For this example, we choose a = —2,b = 2.
The initial solutions are,

a(x,0) = h(xz,0) = 0.1564 + 0.01 sin(107z), h(x,0) = 0.1564 + 0.01 sin(107x),

which corresponds to setting each solution component to a constant plus a small
amount of high frequency noise.

The two solution components start out as almost constant functions but,
over time, the first component develops stable spikes, reaching a maximum of
approximately 1.8, with troughs in between of magnitude approximately 0.1.
The second solution component develops a smoother solution profile, oscillating
between values of approximately 1.4 and approximately 0.7 over the spatial
domain.

Out goal in this example is to determine the time at which the spike solution,
i.e., the first solution component of this model, reaches a steady state. That
is, we will look for a time at which the time derivative of the first solution
component is as small as the tolerance with which the numerical solution has
been computed. We choose a tolerance of 1076,

As was the case for the previous example, we will define the time derivative
of the first solution component to be sufficiently small when the integral of the
absolute value of the time derivative of the first solution component over [a, b] is
less than the user tolerance. Thus the gstop function will be | f: |ai(z, t)|dz—tol].

The organization of the RT routine in this case is similar to that of the previ-
ous example. We compute the Gauss points and weights on each subinterval of
the spatial mesh and then call the VALUES routine to obtain values of the time
derivative of the approximate solution at the Gauss points. We then compute
the weighted sum of the absolute values of the time derivatives to obtain an
approximation to the integral of |a¢(x,t)| over [a,b]. The gstop function is the
difference between this integral approximation and the tolerance.
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Figure 8: Numerical solution components, a(x,t) (solid curve) and h(t) (dashed
curve), to GMM when the solution reaches steady state; this occurs when
t ~ 746.846.

The main program, after calls BACOLI95_INIT and SETSOL, then calls
BACOLI95 to determine the point in time where the first component of the
approximate solution reaches steady state. We find that the solution reaches
steady state when ¢ ~ 746.846. The main program then prints out the solution
and terminates. See Figure 8 for a plot of the two solution components at steady
state.

4.8 Event detection in the Heat Equation with changes in
the boundary conditions at unknown times

(This problem was communicated (private communication) to us from Sandeep
Chatterjee while he was a student at the University of Toronto, Department of
Computer and Electrical Engineering.)

For this problem, the PDE is the simple heat equation,

u(x,t) = Kuge(z,t),

where k is a problem dependent parameter. The left boundary condition is
initially uy(a,t) = o and stays in this form until some unknown point in time
at which wu(a,t) reaches a critical value, uc.;;. At that point in time, the left
boundary condition suddenly changes to wuz(a,t) = —yu(a,t). Similarly, the
right boundary condition is initially w,(b,¢) = « until some unknown point in
time (generally different from the time of the event at the left boundary) at
which u(b,t) = ucrit, and then the right boundary condition suddenly changes
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to ug(b,t) = —vyu(b,t). Depending on the values of the problem dependent
parameters, «, v, and u..;¢, there can be sudden, potentially discontinuous,
change in each of the boundary conditions.

The change in each boundary condition will be discontinuous unless the
boundary continuity condition,

O = —YUcrit,

is satisfied. (To see this, note that at the point in time when w(a,t) = uepit,
we switch from the original left boundary condition, u,(a,t) = «, to the new
one, uy(a,t) = —yu(a,t) = —yucrie. Therefore, unless @ = —yurir, there is a
discontinuous change in the left boundary condition. A similar argument holds
for the right boundary condition.)

We must also choose the initial solution so that it is consistent with the
boundary conditions. That is, there cannot be a jump discontinuity in the
solution for ¢ = 0 and for = equal to either a or b. We will therefore choose
an initial solution that (essentially) satisfies this condition. We will also choose
the initial solution to be asymmetric so that the events at the left and right
boundaries arise at different times.

For this example, we choose the initial solution to be

u(z,0) = 10e~100@=0.75) 4 g

This initial solution has a peak equal to 10 + o x 0.75 at x = 0.75 and then it
rapidly tails off to ax to the left and right of x = 0.75. This makes the spatial
derivative of the initial solution (essentially) consistent with the boundary con-
ditions at ¢ immediately after ¢ = 0. (At ¢ = 0, the first spatial derivative of
the solution at the boundaries is (essentially) «; at ¢t immediately after ¢ = 0,
the boundary conditions require that the first spatial derivative of the solution
must equal o)
We choose the tolerance to be 1076.

4.8.1 Continuous boundary conditions

We will refer to this instance of this problem as HBC.

In this subsection, we consider a version of this problem in which the pa-
rameters, «, 7, and u.r;; are chosen to satisfy the above boundary continuity
condition. This forces the first spatial derivative of the exact solution at each
boundary to be continuous in time.

We will choose u..;+ to have the value of 1.1. This means that the boundary
continuity condition will force & = —7 x 1.1. One trivial choice for o and
that satisfies this condition is & = v = 0 but this implies that the boundary
conditions are constant (ug(a,t) = ug(b,t) = 0) throughout the computation.
A more interesting choice is to require that o and « are both non-zero and
choose these parameters such that & = —v x 1.1. Then, the left boundary
condition transitions continuously from wuz(a,t) = a to ug(a,t) = —vyu(a,t)
and the right boundary condition transitions continuously from u,(b,t) = « to
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ug (b, t) = —yu(b,t). For this example, we choose « = 1 and then « becomes
1/1.1.

Since the boundary conditions correspond to the algebraic conditions in the
DAE system that is solved by DASKR, the above choice of parameters also
means that the algebraic equations change in a continuous way at the time of
each event, which in turn means that the B-spline coefficients that appear in
the algebraic equations change in a continuous way. However, an examination
of the time derivatives of the algebraic equations shows that they do not change
continuously at the time of an event. (To see this, note that the time derivative
of the algebraic constraint corresponding to the left boundary condition prior
to the event is simply ugi(a,t) but after the event, it is ug(a,t) + yue(a,t). A
similar situation holds for the right boundary condition.) Consequently, the time
derivative of at least one of B-spline coefficients that appears in each algebraic
constraint must change discontinuously at the time of the event, in order to
satisfy the new boundary condition that is imposed immediately after the event.
Due to this discontinuity in the time derivative of the B-spline coefficient(s), a
cold start should be performed after each event. See below for further discussion
on this point.

The organization of the RT routine in this case is straightforward. We
call the VALUES routine to get solution values at the endpoints of the spatial
domain and then the gstop vector function is [U(0,t) — teriz, U(1,1) — tepi]) T

In the main program, we first need to call BACOLI95_INIT with NRT =
2 since there are two events to be tracked. We also call SETSOL as usual.
Then BACOLI95 is called at t = 0 with the boundary routines BNDXA1 and
BNDXBI, corresponding to the uy(a,t) = a and u;(b,t) = a conditions. The
main program is setup to handle either boundary event happening first. At
the end of this first return from BACOLI95, we access the JROOT array to
determine which of the events has been detected. Based on an inspection of
JROOT, the main program writes out a message indicating which of the two
boundaries satisfied the event condition. The time, solution, and first spatial
derivative values across the spatial domain are written out and then the compu-
tation proceeds. BACOLI95 is called again, with a cold start. The next call to
BACOLI95 uses the BNDXAZ2 routine instead of the BNDXA1 routine if the left
boundary event is detected, or the BNDXB2 routine instead of the BNDXB1
routine if the right boundary event is detected. The BNDXA2 routine imposes
the uy(a,t) = —yu(a,t) boundary condition while the BNDXB2 routine imposes
the uy (b, t) = —yu(b, t) boundary condition. Next BACOLI95 returns when the
second event is found. Again, JROOT is examined to determine which event
has been found and the time, solution, and first spatial derivative values across
the spatial domain are written out. BACOLI95 is called again, with a cold start,
and with inputs BNDXA2 and BNDXB2 so that both of the new boundary con-
ditions, uy(a,t) = —yu(a,t) and uz(b,t) = —yu(b,t), are imposed. BACOLI95
returns at t,,; and outputs the final solution and first spatial derivative values.

For this example, with the parameter values chosen as indicated above, we
find that the first event occurs at the right boundary when ¢ ~ 5.45821 x 10~3.
The solution at this point in time is shown in Figure 9. We find that the second
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Figure 9: Numerical solution, U(z,t), to HBC, when the solution at the right
boundary reaches the critical value, u..;+ = 1.1; this occurs when t ~ 5.45821 x
1073,

event occurs at the left boundary when ¢ ~ 1.30837. The solution at this point
is time is shown in Figure 10. The integration terminates at t,,; = 5. The
solution at this point is time is shown in Figure 11.

For the computation described above, where we first determine the location
of the event and then employ a cold start to restart DASKR, after each event, we
find that the time integration requires a total 316 accepted time steps. When we
repeat the above computation, except that we perform a warm start after each
event, we find that the computation requires DASKR to take 498 accepted time
steps. As expected, due to the discontinuity in the time derivative of at least
one B-spline coefficient immediately after each event, DASKR has substantial
difficulty in stepping past the discontinuity. It is well-known that the presence of
discontinuities can lead to substantial difficulties for the time integration. See,
e.g., [13], [11], where the multi-step and Runge-Kutta methods, respectively,
are studied for ODEs where discontinuities arise. See, e.g., [18] and references
within, for work on the determination and handling of discontinuities for the
DAE case.

4.8.2 Discontinuous boundary conditions

In this subsection we choose the parameters so that there are discontinuous
changes in the boundary conditions after each event. We will refer to this
instance of the problem as HBCD. We choose o« = 0, uerie = 1, and v = 0.5.
This means that there will be jump discontinuities, of magnitude 0.5, imposed
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Figure 10: Numerical solution, U(z,t), to HBC, when the solution at the left
boundary reaches the critical value, u.;; = 1.1; this occurs when t ~ 1.30837.
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Figure 11: Numerical solution, U(z,t), to HBC, when ¢t = 5.
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Figure 12: Numerical solution, U(z, t), to HBCD, when the solution at the right
boundary reaches the critical value, u..;+ = 1; this occurs when ¢ ~ 3.64470 x
1072,

on the first spatial derivative of the solution at the boundaries.

As discussed earlier, the boundary conditions correspond to the algebraic
equations in the DAE system that is given to DASKR. In this instance of the
problem, since there is a jump discontinuity in one of the boundary conditions
after each event, there is a jump discontinuity in the corresponding algebraic
equation, which in turn forces a jump discontinuity in at least one of the B-
spline coefficients at the time of each event. Since the discontinuous change
occurs in an algebraic equation, it is handled by the Newton iteration inside
the DAE solver, i.e., the B-spline coefficient can be changed to satisfy the post-
event algebraic equation, but the difficulty arises with the time integration of
the ODEs that appear in the DAE system. Some of these ODEs depend on the
discontinuous B-spline coefficient(s), and these discontinuous ODEs will lead to
difficulties for the time integration. We therefore expect that the presence of
a discontinuity in at least one of the B-spline coefficients will lead to substan-
tial inefficiencies in the time integration as DASKR attempts to step past the
discontinuity, unless a cold start is performed after each event.

For this case we find that the first event occurs at the right boundary for
t &~ 3.64470 x 10~2. The solution at this point in time is shown in Figure 12.
BACOLI95 is then restarted with a cold start and the discontinuous right bound-
ary condition is imposed. We find that the second event occurs at the left
boundary for ¢ &~ 1.16926. The solution at this point in time is shown in Fig-
ure 13. We then restart BACOLI95 again with a cold start and impose the
discontinuous left boundary condition. The code then integrates to to.: = 5.
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Figure 13: Numerical solution, U(x, t), to HBCD, when the solution at the left
boundary reaches the critical value, u..; = 1; this occurs when ¢ ~ 1.16926.

The solution at this point is time is shown in Figure 14.

For the computation described above, DASKR requires 291 accepted time
steps to complete the integration. When we repeat the above computation,
except that we perform a warm start after each event, we find that the com-
putation requires DASKR to take 568 accepted time steps. As expected, due
to discontinuity after each event, DASKR has substantial difficulty in stepping
past the two event times unless cold starts are imposed.

Comparing the number of time steps taken by DASKR for the cases of con-
tinuous and discontinuous boundary conditions, we note that the performance
of DASKR is comparable in both cases. This is due to the fact that the time
integrator must deal with discontinuities immediately after each event in either
case. In particular, even for the case where the boundary conditions change
continuously at the time of the event, the time derivatives of the boundary con-
ditions do not and this leads to discontinuities in the time derivatives of the
B-spline coefficients at the time of the event.

5 Summary, Conclusions, and Future Work

This report introduces, BACOLIKR, a new error control PDE solver that fea-
tures time and space dependent event detection. To our knowledge, this is the
only error control PDE solver with this capability. The report describes the
substantial modifications to the earlier error control PDE solver, BACOLI and
the time-integrator DASKR, that were required in order to obtain BACOLIKR.
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Figure 14: Numerical solution, U(z,t), to HBCD, when t = 5.

The report provides a number of examples to demonstrate how a variety of event
detection problems can be handled by the new solver.

We find that, with a relatively straightforward customization of the rootfind-
ing routine that characterizes a given event or events, it is possible to use BA-
COLIKR to fairly easily solve a variety of PDE based event detection problems.

We observe that when the problem is altered after an event and there is
an expectation that the computation should continue past the event, it is im-
portant that BACOLIKR be restarted with a cold start due to the well-known
difficulties that arise for error control time integration algorithms in the pres-
ence of discontinuities in either the solution or the derivative of the solution to
the DAE system arising from the discretization of the PDE(s) and boundary
conditions.

Regarding future work, as mentioned earlier, since DASKR also has a feature
that allows it to efficiently treat large DAE systems using Krylov methods, it
would be worthwhile to modify BACOLIKR to take advantage of this capability
in order to improve the efficiency of the solver for problems in which the number
of PDEs together with the number of subintervals in the spatial mesh lead to
large DAE systems.
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