Performance Analysis of ODE Solvers on
Covid-19 Models with Discontinuities

Humaid Agowun and Paul Muir

August 2, 2022

Abstract

In this report, we consider the numerical solution of two challenging Covid-
19 ordinary differential equation (ODE) models that have discontinuities. The
discontinuities are associated with modeling the introduction of measures to slow
the spread of the virus. One of the models has a time-dependent discontinuity;
this means that at a given point in time, a discontinuity is introduced into the
model. The other has a state-dependent discontinuity; in this case, the time
at which the discontinuity arises depends on the value of one of the solution
components, and thus it is not known a priori. These discontinuities make
the models quite challenging for standard ODE solvers to solve. As well, the
presence of exponentially growing solution components adds to the difficulties
faced by standard ODE solvers. We also consider variations on these problems
where the change in the model is not discontinuous but happens quickly over
a short period of time in order to better model how the public reacts to the
introduction of public health measures.

In this report, we present an investigation of performance of a collection of
ODE solvers (we consider 21 solvers) available in four popular software environ-
ments: R, Python, Scilab, and Matlab, when applied to solve these Covid-19
models.

We first focus on straightforward implementations of the models where the
user employs the solver to attempt to solve the problems using default settings,
e.g., default tolerances, and simple implementations for the discontinuities, i.e.,
the introduction of ‘if’ statements into the functions that define the right-hand
sides of the ODE systems. Such implementations of the models and usage of
the solvers are typical of what Covid-19 researchers might employ in attempting
to solve their models. We then follow with an investigation of approaches for
solving the models that make better use of the capabilities of the solvers.

We also highlight a number of issues with the way that some of the solvers
are implemented in some of the software environments. For example, the treat-
ment of output points, i.e., the points in the domain where solution values are
required, is an issue for some of the solvers in some of the software environments.

We show that the standard use of ODFE solvers available within widely used
software environments, applied to simple implementations of these Covid-19
models, will frequently deliver numerical solutions that have no significant dig-
its of accuracy. Furthermore, the solvers give no indication that the returned
solutions are inaccurate. We also show that these straightforward treatments
of the models are frequently also inefficient. We show that the more advanced
treatments of the models can result in more efficient computations while at the
same time providing more accurate approximate solutions.

1 Introduction

In this report, we describe a detailed investigation of the performance of a va-
riety of software packages applied to initial value ordinary differential equation
(IVODES) encountered in Covid-19 models (see, e.g., [1]). Our study considers
Covid-19 models with discontinuities associated with the introduction of mea-
sures to slow the spread of the virus. We also consider variations of these models
in which rather than changing in a discontinuous manner, the models changes
in a continuous but sharply changing manner.

For any mathematical model, the accuracy requirements requested for the nu-
merical solution of the model should be determined by the quality of the model
and the accuracy of the parameters that appear in the model. Numerical er-
rors associated with the computational techniques that are used to obtain the
approzimate solution must always be negligible compared to the accuracy of the
model itself. Most IVODE solvers allow the user to specify a parameter called
a tolerance. The solvers use adaptive algorithms to attempt to compute an
approximate solution with a corresponding error estimate that is approximately
equal to the tolerance. Researchers deserve to obtain accurate solutions to the
models that they are studying.

In this report, we will show that the straightforward use of standard IVODE
solvers on Covid-19 models with discontinuities can lead to numerical solutions
that have large errors, sometimes of the same order of magnitude as the solution
itself. We also show that these computations can be substantially less efficient
than necessary. We present similar results for the models that exhibit continuous
but sharply changing behavior.

In Section 1.1, we define the SEIR Covid-19 models which we will consider
throughout this report. In Section 1.2, we discuss numerical stability issues
that arise in problems (such as Covid-19 models) with exponentially growing
solutions. In Section 1.3, we provide an overview of the software that we will
consider in this report. We also explain the difference between fixed step-size
and error-control IVODE solvers. In Section 1.4, we discuss issues with the
evaluation of approximate solutions at output points that lead to inefficiencies
for some of these solvers. In Section 1.5, we consider the effects of discontinuities
on the performance of these solvers.

In Section 2.1, we apply the solvers in a straightforward fashion to a Covid-19
problem with a time-dependent discontinuity and show how, in some cases, this
results in numerical solutions that are computed inefficiently and with errors of
the same magnitude as the solutions being computed. In Section 2.2, we will
use a discontinuity handling approach to accurately solve the time-dependent
discontinuity problem. In Section 2.3, we will apply some of the solvers to this
model with a range of tolerances to investigate the effects of tolerance on the
accuracy and efficiency of the solvers.

In Section 3.1, we apply the solvers to a Covid-19 problem with a state-
dependent discontinuity and show how, when using a straightforward imple-
mentation of the problem, none of the solvers are able to obtain reasonably
accurate solutions. In Section 3.2, we will explain how even the use of very

sharp tolerances is not sufficient to improve the accuracy of the computed solu-
tions and show that a more effective way to solve this problem is through the
use of a capability provided in some solvers known as event detection, which we
will describe in Section 3.3. We then show the results of using this approach
to obtain accurate solutions to the state-dependent discontinuity problem in
Section 3.4 and perform a tolerance study on this problem in Section 3.5.

In Section 4, we employ the original Fortran implementation of the Radau
solver provided in several of the software environments, in order to further inves-
tigate the poor performance of this solver on the state-dependent discontinuity
model. In Section 5, we extend the above investigations to the models that
exhibit sharply changing behavior. We conclude in Section 6 with a summary
and a discussion of potential future work.

1.1 Two Covid-19 models with discontinuities.

In this subsection, we describe the models that we are going to consider in this
report. They involve a typical SEIR model to which we add discontinuities.
An IVODE problem is defined by the ODEs and initial conditions:

y'(t) = f(t,y(1), ylto) = vo- (1)

Given f(t,y(t)) and y(to), the goal is to find an approximation to y(t) over a
domain [to,ty].
In this report, we consider the Covid-19 model [2]:

as 8

o = hN - s = LIS, (2)
%:%ISfaE—uE, (3)
%:aE—yI—MI, (4)
% = I — uR. (5)

In this SEIR model, S is the number of susceptible individuals, E is the
number of exposed individuals, I is the number of infected individuals and R
is the number of recovered individuals. N is the population size. The other
parameters in this model are as follows: a~! is the average incubation period,
B is the transmission rate, v is the recovery rate and p is the birth/death rate.
In this report, we assume that all these parameters are known. Our goal is to
investigate the performance of IVODE solvers on forms of this problem that
have discontinuities. We will see that, depending on how we solve the ODEs,
we can get approximate solutions that are not efficiently computed and that may
have significant errors. This latter issue can have serious consequences as the
computed solution will fail to show the actual impact of the virus corresponding

to the epidemiology theories behind the mathematical models. These incorrect
numerical solutions may lead epidemiologists into reaching incorrect conclusions
and thus lead them into questioning the mathematical models themselves when,
in fact, it is the solvers that are at fault.

The discontinuities we are going to consider involve the virus transmission
parameter, 8. Before measures such as social distancing, masking, etc., are
implemented, 8 has a much higher value than after the measures are introduced.
For the purpose of this study, we will use a large 8 value - equal to 0.9 -
before the measures are introduced, and a small 3 value - equal to 0.005 - after
they are implemented, corresponding to a highly contagious Covid-19 variant
and extreme shut down measures, respectively. These abrupt changes in the
parameter § introduce discontinuities into the model, as we will show in Section
1.5. We will consider two types of discontinuities. One depends only on ¢; the
other depends on the value of one of the solution components. We will refer to
the former as a time-dependent discontinuity and the latter as a state-dependent
discontinuity.

For the time-dependent discontinuity, we will assume that at some point in
time, measures are implemented that will lead to a reduction in the parameter
B. We would like to solve the problem through this discontinuity, but as we will
show, the discontinuity presents a significant issue for the ODE solvers.

For the state-dependent discontinuity, we consider the following situation.
If the population of exposed people reaches a certain maximum threshold, mea-
sures are introduced, which corresponds to decreasing the value of 8, which in
turn leads to a decrease in the number of exposed and infected cases. This
abrupt decrease in the g value introduces a discontinuity into the model. When
the population of exposed people later drops below a certain minimum thresh-
old, the measures are relaxed, which corresponds to increasing § back to its
original value, which introduces another discontinuity. This increase in the 8
value in turn leads to a exponential growth in the number of exposed and in-
fected cases. We will try to model this problem through multiple instances
of shut-downs followed by periods where measures are relaxed. We consider a
case where vaccines are not being used. This corresponds to setting S back to
its original value when the measures are removed. We note that each time we
change the parameter 3, a discontinuity is introduced and thus this problem is
far more discontinuous than the previous one, which had only one discontinuity.
For this problem, we show that all the solvers, when used in a straightforward
manner, will fail.

The other parameters are assumed to be constant with N = 37,741,000 (the
approximate Canadian population size), a = 1/8, v = 0.06, and p = 0.01/365.
The initial values are E(0) = 103, I(0) = 1, R(0) = 0 and S(0) = N - E(0) - 1(0)
- R(0). This gives us a complete system of IVODEs that is in a form that can
be treated by typical ODE software packages.

1.2 Exponential growth and instability for ODEs

Some of the solution components of the SEIR model exhibit exponential growth
over certain time periods. In this section, we discuss exponentially growing
solutions and their impact on the accurate computation of a numerical solution.
Firstly, we give a quick overview of stability for ODEs. Then we will show
that the SEIR model is unstable over certain time intervals and how changing
the model in a way that corresponds to introducing measures such as social
distancing can improve the stability of the model because, once this is done,
none of the solution components are exponentially increasing. This is important
as this means that before measures are implemented, accurate solutions are
difficult to obtain but the introduction of the measures results in changes to the
model so that the solution components become exponentially decreasing instead
of exponentially increasing. This corresponds to an improvement in the stability
of the model that can allow the solvers to compute more accurate solutions.

The stability of an ODE is often defined in terms of the impact of small
changes to the initial values on the solution to the problem. An ODE is unstable
if a small change in the initial values results in a large change in the solution;
otherwise, the ODE is said to be stable.

It is straightforward to see that problems with a solution component that
exhibits exponential growth are unstable. As mentioned above, this is the case
with some of the solution components of a Covid-19 model. The population of
infected people, I, grows exponentially as long as no measures are introduced
to reduce the spread of the virus.

In Figure 1, we show exponentially growing solutions corresponding to mod-
els with slightly different initial values for I(0). We can see that we get different
solutions, that become even more different as time increases.

— 70
300000 - 80
100
110
120

250000

200000 4

£ 150000 -

100000 A

50000 -

T T T T T T T T T
0 5 10 15 20 25 30 35 40
time

Figure 1: When a solution exhibits exponential growth, relatively small changes
in the initial value can eventually lead to much different solution values. Here
we consider initial values of I(t) equal to 70, 80, .., 120.

However, when we introduce measures which corresponds to employing a
smaller 8 value, the solution components that were growing exponentially will
exhibit slower exponential growth or can even show exponential decay. Slower
exponential growth or exponential decay means that the solution will not be as
sensitive to small errors in the computation.

Epidemic modeling problems exhibit solutions with this type of behavior.
At first, the problem is unstable but as measures are implemented, which lead
to exponential decay rather than growth for some of the solution components,
the problem becomes stable. We show this in Figure 2 for the model with the
time-dependent discontinuity. At first, the I(¢) solution components diverge
when there is exponential growth, but the introduction of measures such as
social distancing leads to exponential decay which makes them converge. Thus
the measures not only save lives but also improve the capability of solvers to
compute accurate solutions.

700000

600000

500000 1

400000

I(t)

300000 4

200000 1

100000

04

(I] ZID 4‘0 6‘0 86 lCI!U 12‘0
time
Figure 2: Unstable solutions in the region [0, 40] becomes stable in the region

[40, 90] as measures are implemented. Here we consider initial values of I(¢)
equal to 70, 80, .., 120.

1.3 Brief overview of numerical ODE solvers

We start by explaining how typical solvers attempt to solve an IVODE. Given
initial values (at the initial time, ¢g), the solver will use an initial step size, h,
to compute a solution at time, t;(= to + h). The solver will attempt to take
a sequence of steps until it reaches the end time. High-quality solvers will also
employ an interpolation algorithm, usually locally within each step, to get a
continuous numerical solution. We note that a solver is said to have order p if
the difference between the true solution and the computed solution is O(h?).

In this section, we describe adaptive step-size error control for the numerical
solution of an IVODE. We then discuss the numerical solvers we are going to
use throughout our investigation. We will then provide an additional discussion
on the implementation of interpolation to get a continuous numerical solution
and how some programming environments have not set up their ODE solvers to
use interpolation in an optimal fashion.

1.3.1 Fixed Step Size and Error Control Solvers

In this subsection, we explain the role of the tolerance and the difference between
fixed step size and adaptive step-size error control solvers.

The tolerance is a measure of how accurate we want the solution computed
by the solvers to be. A key point here is that solvers that can take a tolerance as
input must have some way of computing an estimate of the error of the solution
that they compute. Then that error estimate can be compared with the user-
provided tolerance. Generally, an absolute tolerance means that we want the
error estimate to be approximately equal to the tolerance, whereas a relative
tolerance means that we want the ratio of the error estimate and the computed

solution to be approximately equal to the tolerance. Some solvers will use a
blended combination of the user-provided absolute and relative tolerances.

A solver is said to have a fixed step size if the solver begins with an initial
step-size and this step-size is used throughout the whole integration. In this
case, the solver will step from one point to the next and will not check if the
numerical solution it obtains at the end of each step is sufficiently accurate. This
fixed step-size is a determining factor in the accuracy of the solution but fixed
step-size solvers do not have a way of assessing the accuracy of the solutions
that they compute.

An error-controlled solver starts with an initial step size but as it takes a
step, it will also compute an error estimate and will repeat the computation with
a smaller step-size if the error estimate is larger than the tolerance. It will repeat
this process until the error estimate satisfies the given tolerance. Only then will
it move to the next step. Thus it reduces the step-size as needed throughout
the computation. We note that the error depends on the step-size and that a
smaller step-size generally leads to a smaller error. However, a small step-size
means that the computation is slower because more steps will be needed. If the
error estimate is much smaller than the tolerance on an accepted step, the solver
will increase the step-size for the next step. This allows it to make sure that
the given tolerance is satisfied over the whole problem interval with as large a
step as possible being taken to optimize the efficiency of the computation.

Some researchers may be tempted to write their own solvers, based on a
non-error control method like a simple fixed step-size Euler or Runge-Kutta
method [3]. We will show, using some fixed step-size solvers, how these solvers
simply cannot solve a Covid-19 model with reasonable accuracy. Without error
control, these solvers cannot handle the discontinuity and stability issues that
are present in these models and they will give erroneous solutions, often without
even a warning that the computed solutions should not be trusted.

In this report, we will be referring to numerical solutions that have “reason-
able accuracy”. By this we mean that when these solutions are plotted, they are
visually indistinguishable from a high accuracy solution. This means that the
numerical solutions agree with a high accuracy solution to at least two decimal
places, which is quite a modest accuracy requirement. We will see however, that
for the models we consider in this report, even this modest accuracy requirement
cannot be met by many of the solvers when straightforward implementations
are employed.

1.3.2 The ODE Solvers

The ODE solvers are grouped into the following classes: fixed-step Runge-Kutta
methods, Runge-Kutta pairs [3], and multi-step methods [3].

A Runge-Kutta method is a one-step method that uses function evaluations,
i.e, evaluations of f(¢,y(t)), within the step. An example is the classical four-
stage, fourth-order Runge-Kutta method [3]. Another example is the well-known
forward Euler method. A simple solver based on this type of method steps across
the time domain with a fixed step-size and has no error control.

A Runge-Kutta pair [3] uses two Runge-Kutta methods of order p and p+1
for some integer, p. One of the methods is used to compute a solution and the
other method is used to compute an error estimate. A solver that is based on
a Runge-Kutta pair resizes the step based on the error estimate, as discussed
previously. An example of such a solver is the DOPRI5 solver [3] that uses
a fifth-order method for the solution and a fourth-order method for the error
estimate.

A multi-step method is a solver that will use a linear combination of solution
and function values from the current and previous steps in order to obtain a
solution approximation at the end of the current step. An example of such a
solver is LSODA [3]. Such solvers compute an error estimate for the numerical
solution that they return and use the error-estimate to control the step-size
as discussed above. Such solvers typically implement a family of multi-step
methods and thus also have the capability to adapt the order of the method
they used based on the error estimate.

R packages Scientists who solve ODE models in R commonly use the
deSolve package [4], and the ode() function within it. This function provides
many numerical ODE solvers but we have focused our investigation only on
the following popular choices: ‘lsoda’, ‘daspk’, ‘euler’; ‘rkd’; ‘ode4d’, ‘Radau’,
‘bdf’ and ‘adams’. The default method is ‘Isoda’ and the default tolerances
are 1079 for both the absolute and relative tolerances. We also note that we
did not consider the other integrators in the deSolve package like rkM ethod(),
which provides other Runge-Kutta methods, and the other methods which are
available through the ode() function itself.

The error control solvers are:

e ‘Isoda’ which calls the Fortran LSODA routine from ODEPACK [5]. It
can automatically detect stiffness and choose between a stiff Backward
Differentiation Formula (BDF) [3] and a non-stiff Adams solver [3].

e ‘daspk’ which calls the Fortran DAE solver of the same name [6].

e ‘ode45’ which calls an implementation of the Dormand-Prince (4)5 (DO-
PRI5) Runge-Kutta pair [3], written in C.

e ‘Radau’ which calls the Fortran solver RADAU5 [7] which implements a
Runge-Kutta method of 5** order known as the RADAU IIA method.

e ‘bdf’ which calls the stiff solver inside the Fortran LSODA package which
is based on a family of BDF methods.

e ‘adams’ which calls the non-stiff solver inside the Fortran LSODA package
which is based on a family of Adams methods.

The fixed step-size solvers are:

e ‘euler’ which calls a simple solver based on the classical Euler method and
is implemented in C.

o ‘rk4’ which calls a simple solver that uses the classical Runge-Kutta method
of order 4 and is implemented in C.

We will use these latter two methods to demonstrate what happens when
non-error-controlled solvers are applied to the Covid-19 models.

We next consider the R interface for handling output. The ode() function
is given an array of output points. However, in default mode, there is an issue
with the way in which the output points are treated. The array of output
points affects the step sequence and efficiency of the solver in a manner which
we describe in Section 1.4.

Python packages In Python, researchers can use the scipy.integrate pack-
age (8], and will normally use the solve_ivp() function due to its newer inter-
face. It lets the user apply the following methods: ‘RK23’, ‘RK45’, ‘DOP853’,
‘Radan’, ‘BDF’ and '"LSODA'. The default solver in solve_ivp() is ‘RK45’ and
the default tolerance is 1073 for the relative tolerance and 10~ for the absolute
tolerance. All of these solvers employ some form of error control. The solvers
are:

e ‘RK23’ which uses an explicit Runge-Kutta pair of order 3(2), the Bogacki-
Shampine pair of formulas [9], and is implemented in Python.

e ‘RK45’ which uses the DOPRI5 pair of formulas mentioned earlier, and is
implemented in Python.

e ‘DOPS853’ which uses an explicit Runge-Kutta triple of order 8(5, 3) [10],
and is implemented in Python.

e ‘Radau’ which uses the implicit Radau ITA method of order 5. It is a
Python implementation of the RADAUS5 Fortran solver.

e ‘BDF’ which uses BDF methods with the order varying automatically from
1 to 5, and is implemented in Python.

e ‘LSODA’ which calls the Fortran LSODA routine from ODEPACK.

We note that all solvers in solve_ivp() have error control and that only
'LSODA” uses the Fortran package itself; the others are Python implementa-
tions.

We next discuss Python’s solve_ivp() interface. Given only the initial time
and the final time, a solver from this method will adaptively step across the
domain, returning the output at the end of each successful step. Alternatively,
a solver can take a t_eval array of specified output points. The solver is allowed
to take as big a step as needed and required solution approximations, as specified
by t_ewval, are obtained using interpolation. Thus it does not suffer from the
inefficiencies described in Section 1.4. The interface also has a dense_output
flag. This returns an interpolant for the solution over the entire time range.

10

Scilab packages In Scilab, researchers solve differential equations using
a method from the ode() function [11]; the following methods are available:
‘Isoda’; ‘adams’, ‘stiff’, ‘rk’, ‘rkf’. The default integrator is ‘Isoda’. Default
values for the tolerances are 107> for the relative tolerance and 10~7 for the
absolute tolerance for all solvers except ‘rkf’ for which the relative tolerance is
103 and the absolute tolerance is 10~%. All of these solvers are error control
solvers. The solvers are as follows:

e ‘Isoda’ which calls the Fortran LSODA routine from ODEPACK.

o ‘stiff” which calls the stiff solver inside the Fortran LSODA package which
is based on a family of BDF methods.

e ‘adams’ which calls the non-stiff solver inside the Fortran LSODA package
which is based on a family of Adams methods.

e ‘rk’ which is based on an adaptive Runge-Kutta method of order 4. It
uses Richardson extrapolation [12] for the error estimation. This method
calls the Fortran program ‘rkqc.f’ [13].

e ‘rkf’ which calls the Fortran program written by Shampine and Watts
that is based on Fehlberg’s Runge-Kutta pair of order 4 and 5 (RKF45)
pair [14]. The Fortran program is called ‘rkf45.f" [13].

The ode() function in Scilab takes as input a vector of output points and the
computation uses interpolation or stops the integration at the output points,
as described in Section 1.4, based on the method used. For example, Scilab’s
‘rkf” is an interface to an old software package, ‘rkf45.f” which does not have
interpolation capabilities and thus in order to obtain solution approximations
at the output points, the solver must step to each output point.

Matlab packages In Matlab, researchers can solve differential equations
with the ode suite [15] of functions. We will consider two of these functions:
ode45() and odel5s(). Default values for the tolerances are 1072 for the relative
tolerance and 10~ for the absolute tolerance. The solvers are:

e ode45() which calls a Matlab implementation of DOPRI5.

e odelbs() which implements a variable-step, variable-order (VSVO) solver
based on the numerical differentiation formulas (NDFs) [15] of orders 1
to 5. Optionally, it can use BDF methods but the authors indicate that
these are usually less efficient.

Functions in the ode suite take an array of output points as input but the
solvers use adaptive step-size control and interpolation to obtain solution ap-
proximations at the output points. With such an interface, the solvers do not
suffer from the issues discussed in Section 1.4.

11

How the packages relate We tried to find connections across the pro-
gramming environment where the solvers appear to be using the same source
code. Here is what we found:

In R, Python, and Scilab, the ‘Isoda’ method is a wrapper around the Fortran
LSODA code from ODEPACK.

The R ‘bdf’ method is equivalent to the Scilab ‘stiff’ method in that they
both use the LSODA code from ODEPACK; however, the Python ‘BDF’ method
is a different implementation in Python itself.

The R ‘adams’ method and the Scilab ‘adams’ method are the same since
they both use the LSODA code from ODEPACK.

The R and Python Runge Kutta 5(4) pairs are both implementations of
DOPRI5 but they have different source code as the version in Python is imple-
mented in Python while the R version is implemented in C. The ode45() function
in Matlab is a Matlab implementation of DOPRI5. The Scilab ‘rkf’ method does
not use the same pair; it uses the Shampine and Watts implementation of the
Fehlberg’s Runge-Kutta pair, not the Dormand-Prince pair.

The Scilab ‘rk’ method, which is of order 4, and the R ‘rk4’ method are
not the same solvers. The Scilab ‘rk’ method is adaptive (error-controlled with
Richardson extrapolation for the error estimate) whereas the R ‘rk4’ method is
a fixed step-size implementation of the classical 4-stage, 4" order Runge-Kutta
method.

The R and Python ‘Radau’ methods have different source code as Python
implements a Python version of RADAUS5 while R calls the Fortran version of
RADAUS through a C interface.

1.4 Observations on obtaining solution approximations at
output points

In this section, we discuss an issue that we encountered with some of the ODE
solvers in R and Scilab when it comes to obtaining output. In an ideal scenario,
the user’s desired output points should not interfere with the efficiency of the
solvers. However, in these two platforms, a method for handling output points
is used which makes treating a large number of output points very inefficient.
As mentioned earlier, using a default initial step-size, a solver will take a trial
step. This computation gives both a solution approximation at the end of the
step and a corresponding error estimate. The solver will then accept or reject
the step based on whether the error estimate satisfies the tolerance and will,
respectively, adjust the step-size to take the next step or retake the current step
with a smaller step-size. This process is repeated until the solver reaches the end
of the interval. However, often the users of an ODE solver will require output
at specific points and these points may be internal to the steps. The current
state-of-the-art approach to get solution approximations at these output points
is to construct a high accuracy interpolant on each step and to return the value
of the interpolant at the required point. Ideally the interpolant is of order p if
the numerical ODE solution is of order p. This way the accuracy of the solution
approximation at a point that is interior to a step should be comparable to the

12

accuracy of the solution approximation at the end of the step. However some
solvers use a lower order interpolant in order to reduce the computational cost.

Note that the standard ODE solvers only control the error at the end of the
step. That is, an error estimate is generated for the solution approximation at
the end of the step and the step is accepted if this error estimate satisfies the
tolerance. It is hoped that the solution approximations obtained through the use
of the interpolant will be of comparable accuracy to the solution approximation
at the end of the step. It is typically the case that no error control is actually
applied to the continuous solution approximation.

In R and Scilab, the above approach for handling output points is not used
in all the solvers. Instead, some solvers in R and Scilab use the output points to
dictate the step-size. An issue arises when many output points appear between
the steps that would normally be taken by the solver. These solvers will use
the difference between the current output point and the next output point to
determine the step-size. We note that some R solvers, such as the ‘ode4d’
method, do have interpolants but that their default implementation still treats
the output points in a way that can negatively affect the efficiency of the solver.

In such approaches, the output points will limit the step-size that can be
taken and will lead to additional function evaluations being performed be-
cause the solver needs to compute a solution approximation using the numerical
method at each output point. This will lead to a considerable drop in efficiency
as we will show later in this report; see for example Tables 9 and 10. These
tables show that a problem that can be solved with 150 function evaluations
will be solved with 500 function evaluations when there are many output points.

This method of handling output points in which the solver steps to each
output point and uses the numerical method itself to compute a solution ap-
proximation also means that the accuracy of the solution depends on the space
between the output points. Thus, we get the unusual behavior that the accu-
racy is increased by putting the output points closer together and the accuracy
is decreased by putting them further apart. We will point out these inconsis-
tencies as they become relevant later in this report. We also note that spacing
the points closer together is not a good way to control the accuracy as it is im-
possible to know beforehand how close the points should be in order to obtain
a desired accuracy.

13

I(t)

time

Figure 3: The result of using the R ‘ode45’ method to solve the same prob-
lem with a very coarse tolerance but with different spaces between the output
points. Here the spacing between the points is 1, 3, 5 and 7. The corresponding
approximate solutions are plotted alongside a highly accurate solution (ANS).

Figure 3 shows an experiment where we solve the time-dependent discontinu-
ity Covid-19 problem using the R ‘ode45’ method, which is an implementation
of DOPRI5 which has error control and an interpolation capability but allows
the output points to affect the integration. We set both the absolute and rel-
ative tolerance to 0.1 and thus expect low accuracy but very good efficiency.
However, the space between the output points becomes the limiting factor for
the step-size. When there are many output points, the computed solution has
more accuracy than is requested and is computed in a very inefficient manner
considering the required tolerance. We record the number of function evalua-
tions in Table 1 and it can be seen that the solver is using many more function
evaluations than are needed to satisfy such a coarse tolerance. In Table 1, ‘spac-
ing’ refers to the distance between the output points and ‘nfev’ is the number
of function evaluations. A spacing of 1 means that the set of output points is
[1,2,...,95]. A spacing of 3 means that only every third point from the above
list of output points is defined, and so on.

Table 1: R DOPRI5 output point spacing experiment number of function eval-
uations.

spacing nfev

1 572
3 188
) 116
7 80

14

From Figure 3 and Table 1, we note that we did not ask the solver for an
accurate solution but it is giving us a solution that is much more accurate than
requested when the spacing between the output points is small. This extra
accuracy comes at a price of around 500 more function evaluations. Accuracy
should ideally be completely determined by the tolerance but using this method
of stepping to the output points substantially interferes with this ideal. This
results in the solver not being allowed to take as big a step as it should, based
on the tolerance, and this leads to substantial inefficiency.

It is important that users employ the interpolation option for an ODE solver
whenever such an option is readily available so that the solvers can run as
efficiently as possible. We also reiterate that the interpolant should have an
interpolation error that is at least of order p if the ODE solver gives a solution
with an error that is of order p so that the interpolation error is not larger than
the error of the numerical solution.

1.5 Discontinuities and their effects on solvers

The main purpose of this report is to discuss how to solve Covid-19 models with
discontinuities and how these discontinuities affect the process of computing an
accurate numerical solution to the model. In this section, we will show what
happens when a solver encounters a discontinuity and how this discontinuity
leads to inaccurate solutions.

We first note that one of the key assumptions made in the derivation of
the numerical methods upon which ODE solvers are based is that the function
f(t,y(t)) and a sufficient number of its higher derivatives are continuous. If
the right-hand side function is discontinuous, this can have a major (negative)
impact on the performance and accuracy of the solver.

We will see that discontinuities will have huge impacts on the accuracy and
efficiency of the solvers, and that some solvers, even with error control, will
require an extremely sharp tolerance in order to step over a discontinuity in a
way that allows them to obtain a reasonably accurate solution approximation.
We will also show that fixed-step solvers simply cannot solve these problems
accurately.

It is important to note that the step taken by a solver that first meets a
discontinuity will almost always fail. This is because in order for the solver to
step over a discontinuity, the step size needs to be much smaller than the one
that is typically being used before the discontinuity is encountered. The solver
will thus have to retake the step with a smaller step size and as long as the
error estimate associated with the numerical solution computed on the step is
not small enough, it will need to continue reducing the step-size. This leads to
a large number of function evaluations near the discontinuity.

In Figures 4 and 5, we run ‘LSODA’ and ‘DOP853’ from Python on the
time-dependent discontinuity problem where a discontinuity is introduced at
t=27 and plot the time at which each function evaluation occurs. We see a
spike in the number of function evaluations at the discontinuity as the solvers
repeatedly retake the step with smaller and smaller step-sizes.

15

— line at 27
—— cumulative nfev
120

100
80 1
60 4
40 4

20 A

cumulative number of function evaluations
I

0 10 20 30 40 50

Figure 4: Function evaluations for the Python ‘LSODA’ method for the time-
dependent discontinuity problem with a discontinuity at t=27.

Following from the above discussion, we can suggest that, for the case where
the location of the time discontinuity is unknown, researchers could carry out
a manual discontinuity detection experiment to see if their model has a dis-
continuity and if so, where it is located. A trivial experiment can be done by
collecting data that shows the time at which the solver makes each call to the
function that evaluates the right hand side of the ODE. When a plot of the
time against the cumulative count of the function calls gives an almost vertical
line, this typically indicates that the function was called repeatedly at a specific
time and thus that the solver repeatedly changed the step-size in this region
in order to attempt to step over a discontinuity. In the remainder of this re-
port, we will outline ways to accurately and efficiently solve problems with such
discontinuities.

16

— line at 27
@ 2501 — cumulative nfev rr’f
-
m
=
S 200
[
[
=
S P
S 150
2 Fi
e
] ﬁ;,
W
2 100 | d,
=1 :
c
o =
2
=1
o 50 4
El
£
3
3

Figure 5: Function evaluations for the Python ‘DOP853" method for the time-
dependent discontinuity problem with a discontinuity at t=27.

17

2 Time-dependent discontinuity model

For the time-dependent discontinuity problem, we change the value of the pa-
rameter S from 0.9 to 0.005 at t=27. This introduces a discontinuity into the
problem. We will show that this discontinuity leads to inaccuracies in the solu-
tions computed by some of the solvers, particularly the fixed-step solvers. We
then introduce a form of discontinuity handling, using what are known as cold
starts, to show how to obtain an efficient and accurate approach for solving
time-dependent discontinuity problems.

2.1 Naive solution of the time-dependent discontinuity
model

A naive implementation of the model involves using an ‘if’ statement inside the
right-hand side function, f(¢,y), to implement the change in § as measures are
implemented.

In pseudo code, this looks like:

function model_with_if(t, y)
beta = 0.005
if t < 27:

beta = 0.9
/1l

// return (dSdt, dEdt, dIdt, dRdt)

Also, to stay true to a naive treatment, we will use the default tolerances in
this section. Discrepancies across the programming environments that are due
to tolerance issues are investigated in Section 2.3. We also note than for the
fixed step-size methods in the R environment, the step-size is 1 as the solvers will
default to the distance between two consecutive output points, and we choose
as our standard output point sequence t = 1,2,...,95.

18

2.1.1 Naive solution to the time-dependent discontinuity model in
R

20000- legend

Isoda
daspk
euler

I(t)

ode45

10000- radau
= bdf
— adams

0 25 50 75
time
Figure 6: Solutions to the time-dependent discontinuity model using solvers
from R.

From Figure 6, we can see that all the methods except ‘euler’ and ‘rk4’ compute
solutions that agree to “eyeball” accuracy, which typically means that they
agree to about two significant digits. The ‘rk4’ method gives a solution that is
somewhat close to the solutions obtained by the other solvers but the solution
computed by the ‘euler’ method is noticeably inaccurate. We note that all the
other methods have error control while the ‘rk4’ and ‘euler’ methods are fixed
step-size solvers.

We also note that the ‘rk4’” method does better than the ‘euler’ method for
this specific problem as it has a higher order. But, since ‘rk4’ is using a fixed
step-size with no error control, its performance is still better than expected. We
show that this is entirely because of the issue associated with how output points
are handled, as discussed in Section 1.4. If we use an output point sequence
with a larger spacing between the output points, the ‘rk4” methods gives results
that are of similar accuracy to the results yielded by the ‘euler’ method. Figure
7 shows an experiment with ‘rk4’ used with different spacings between output
points plotted together with an accurate solution (in red). We can see that as
we increase the output point spacing, the solver does not give accurate results.
Analyzing the source for ‘rk4’ and ‘euler’ shows that these methods select the
step size based on the requested output points. Spacing out the output points
affects the step-size which affects the accuracy of the fixed step-size solvers.

19

) legend
8 — space=2
3 space=5
N space=7
i — space=1
o — lIsoda
234
-
-
[=]
o |
[=]
e
o -
T T T T T
0 20 40 60 80
time

Figure 7: Solutions computed by ‘rk4’ in R with output point spacings compared
with an accurate solution computed by LSODA.

If a user wants to use ‘rk4’ or ‘euler’, to get an accurate solution, the user
would have to choose a small step-size. However, the user cannot know be-
forehand how small a step-size is small enough to deliver a desired accuracy.
Furthermore, there is the issue that a sufficiently small step-size can vary from
one part of the domain to another as the problem difficulty changes. A fixed
step-size solver will have to choose the smallest step required anywhere in the
domain and this can lead to substantial inefficiency. A better approach is to
not use fixed step-size solvers. Reliable methods with error control should be
preferred since these solvers can adaptively choose a stepsize sequence that will
deliver the desired accuracy.

20

2.1.2 Naive solution to the time-dependent discontinuity model in

Python
25000 baf
Isoda
—— radau
20000 — rk45
—— dop853
15000 rk23
10000
5000
0

0 20 40 60 80
time
Figure 8: Solutions to the time-dependent discontinuity model using solvers
from Python.

From Figure 8, we can see that all the methods in the Python’s solve_ivp()
function work reasonably well. There is some blurring at the peak, indicating
some disagreement among the methods, but all the methods provide reasonably
accurate results. Python only provides error-controlled solvers and thus we can
see that a reasonably sharp tolerance with an error-control method is what is
required to step over this type of discontinuity. (Recall that all Python methods
use a default absolute tolerance of 1076 and a relative tolerance of 1073.)

21

2.1.3 Naive solution to the time-dependent discontinuity model in
Scilab

30 000 -
25000 -

20000 4

It

15 000 -

10 000 -

5000 =

1
o 10 20 30 40 50 a0 70 80 @0 100

time

Figure 9: Solutions to the time-dependent discontinuity model using solvers
from Scilab.

From Figure 9, we can see that in Scilab, all the methods give similar solutions
except for ‘rkf’. This is interesting as we know that ‘rkf’ uses error control.
This is explained by noting that ‘rkf’ uses coarser default absolute and relative
tolerances. We will show, through a tolerance analysis in Section 2.3, that with
a sharp enough tolerance, ‘rkf’ also provides a reasonably accurate solution.

The other methods are all error-controlled and give similar results as ex-
pected. We note that all of the other methods have a higher default tolerance
than ‘rkf” and thus this result is not surprising.

These results also confirm that an error control solver with a sharp tolerance
can step over this type of discontinuity.

22

2.1.4 Naive solution to the time-dependent discontinuity model in
Matlab

<10*

3 T T T T T
= ode4b

0 10 20 30 40 50 60 70 80 90 100
time

Figure 10: Solutions to the time-dependent discontinuity model using solvers
from Matlab.

Figure 10 shows that Matlab’s ode45 and odelbs are not in complete agree-
ment. This is unexpected because both are error controlled. We note that the
behaviour of ode4b is similar to what we have seen for ‘rkf’ in Scilab but the
methods are based on different algorithms. In Matlab, both ode45 and odel5s
have the same default tolerances so we can rule out that a tolerance difference
is the reason for this behavior. We will see, in Section 2.3, that oded5 can give a
similar result to odel5s when the tolerance is sharp enough. From this we can
suggest that the issue may be associated with differences in the way that the
two solvers apply the absolute and relative tolerances.

2.1.5 Summary of naive approach of solving time-dependent discon-
tinuity problems

Generally, the time-dependent discontinuity problem can be solved accurately
by solvers that employ error control with a sufficiently sharp tolerance. However
as we will see in the next section, the computations are quite inefficient. (See
Section 1.5 for an explanation of why this inefficiency arises.)

2.2 An improved approach for the solution of the time-
dependent discontinuity model

A better way to solve the time-dependent discontinuity problem is to make
use of cold starts. This means that we integrate up to the time at which the

23

discontinuity arises and then after the discontinuity we continue the integration
with a separate call to the solver. Restarting a solver with a cold start at the
time of the discontinuity improves the accuracy as we will see in this and the
next section. It also improves the efficiency as fewer function calls are required
since we do not have the spike in function calls due to the repeated step-size
resizing described in Section 1.5.

A cold start means that we restart the solver with method parameters set
so that the solver starts the computation with no values from the previous
computation. It will also involve using a small initial step size and for methods
of varying order like the ‘BDF’ and ‘Adams’ methods, they will restart with the
default order which is order 1.

To solve the time dependent discontinuity problem, we will integrate from
time O to the time that measures are implemented, t=27, with one call to the
solver and then use the solution values at t=27 as the initial values to make
another call that will integrate (restarting with a cold start) from t=27 to t;.
The pseudo-code is as follows:

initial_values = (S0, E0, 10, RO)

tspan_before = [0, 27]

solution_before = ode(intial_values, model_before_measures,
tspan_before)

initial_values_after = extract_last_.row (solution_before)
tspan_after = [27, 95]
solution_after = ode(intial_values_after ,

model_after_measures , tspan_after)

solution = concatenate(solution_before, solution_after)

This technique can be applied to any problem where it is known when the
discontinuity is introduced. This is a much better approach than intro-
ducing a time-dependent ‘if’ statement into the model.

24

2.2.1 Solving the time-dependent discontinuity model in R using a

cold start
20000 legend
Isoda
daspk
= euler
= — rk4
ode45
10000- radau
= bdf
— adams

0 25 50 75
time
Figure 11: Solutions to the time-dependent discontinuity model using solvers
from R and a cold start at t=27.

From Figure 11, we see that the ‘euler’ method still fails even when the cold
start form of discontinuity handling is introduced. This is as expected as this
method has no error control and thus it still suffers from accuracy issues and
will require smaller steps to achieve even “eyeball” accuracy.

We see that breaking the integration into two parts allows ‘rk4’ perform
better. The method has higher order but this exceptionally good performance
is still unexpected. We will show in Figure 12 that the performance of ‘rk4’ is
associated with the method of handling output points as described in Section
1.4.

25

o
[=]
3 legend
Q egen
— space=2
N space=5
space=7
Q — space=1
o
Q Isoda
z 2
o
o |
(=]
o]
o -
T T T T T
0 20 40 60 80
time

Figure 12: The R version of ‘rk4’ with larger spacings between the output points
and with discontinuity handling.

Thus our recommendation to avoid fixed step size solvers still holds since
users will not typically know how small the step size needs to be to obtain
sufficient accuracy.

We also note again, that all the error-controlled solvers perform well. We
will see, from the efficiency data, that using cold starts results in a more efficient
computation. Using cold starts, the error control solvers do not have to step
over the discontinuity and we will not have the spike in the number of function
evaluations as we discussed in 1.5. Table 2 shows that discontinuity handling
generally reduces the number of function evaluations.

Table 2: R efficiency data for the time-dependent discontinuity problem - num-
ber of function evaluations

method no discontinuity handling with discontinuity handling

euler 96 97
rk4 381 382
Isoda 332 272
ode4d5 735 599
radau 679 585
bdf 423 263
adams 210 176
daspk 517 521

Our analysis of the efficiency data in Table 2 starts by noting that the non-
error controlled solvers in the ‘euler’ and rk4’” methods have essentially the same
number of function evaluations in both cases, the additional evaluation being
due to evaluating the function twice at time 27. This indicates that they are

26

just stepping from output point to output point using the same fixed step-size
both with and without the discontinuity handling.

Next, we note significant decreases in the number of function evaluations
for all the remaining solvers except ‘daspk’. These reductions in the number
of function evaluations will have a significant impact on the CPU time for the
difficult problem. This is entirely explained in Section 1.5 where the error-
controlled solvers have to repeatedly resize the step-size as they encounter the
discontinuity.

Finally, we explain the almost constant value of the number of function
evaluations for the ‘daspk’ method through the fact that, in the R implemen-
tation, it is not using an appropriate interpolation scheme to obtain solution
approximations at the output points. Instead it is using the approach described
in Section 1.4. In another experiment with a larger spacing between output
points, we found that ‘daspk’ uses 627 function evaluations without discontinu-
ity handling and 522 function evaluations with discontinuity handling; a result
that is more consistent with the results from Table 2 for the other error control
solvers.

In Section 2.3, we will see that this type of discontinuity handling also allows
us to use coarser tolerances, which improves the efficiency of the computation.

2.2.2 Solving the time-dependent discontinuity model in Python us-
ing a cold start

bdf
lsoda
radau
k45
dop853
k23

25000 4

20000

15000 4

I(t)

10000 4

5000 -

time

Figure 13: Solutions to the time-dependent discontinuity model using solvers
from Python and a cold start at t=27.

The Python solvers did not have significant accuracy issues even without dis-
continuity handling. This is because all the available methods use error control
and the default tolerances are sharp enough. From Figure 13, we can see that

27

the Python solvers again give sufficiently accurate results. Furthermore, the
slight blurring at the peak has disappeared indicating that there is an even bet-
ter agreement among the solvers. The addition of discontinuity handling also
significantly reduces the number of function evaluations. This can be seen in
Table 3.

Table 3: Python efficiency data for the time-dependent discontinuity problem -
number of function evaluations

method no discontinuity handling with discontinuity handling

Isoda 162 124
rk45 134 130
bdf 202 146
radau 336 220
dop&53 329 181
rk23 152 127

The Python solvers do not allow the space between the output points to
affect the accuracy. They use some form of local interpolation within each step
where there are output points.

From Table 3, we see that when discontinuity handling is introduced, the
methods use fewer function evaluations. There are some significant improve-
ments for ‘BDF’, ‘DOP853’ and ‘Radau’. There are slight decreases for ‘LSODA’
and ‘RK23’ and only a very small decrease for ‘RK45’.

28

2.2.3 Solving the time-dependent discontinuity model in Scilab us-
ing a cold start

30 000
25 000 -

20 000 4

It

15 000 -

10 000

5000 -

T T T T T T T T T 1
o 10 20 30 40 50 60 70 a0 a0 100

time

Figure 14: Solutions to the time-dependent discontinuity model using solvers
from Scilab and a cold start at t=27.

We can see from Figure 14 that all the methods show good agreement and thus
the time-dependent discontinuity model is being solved to a reasonable accuracy.
The ‘rkf” method is also giving reasonable results. This is despite ‘rkf’ having
a coarser default tolerance.

The addition of discontinuity handling also significantly reduces the number
of function evaluations as seen in Table 4.

Table 4: Scilab efficiency data for the time-dependent discontinuity problem -
number of function evaluations.

method no discontinuity handling with discontinuity handling

Isoda 346 292
stiff 531 362
rkf 589 590
rk 1649 1473
adams 304 221

From Table 4, we see that all the methods use fewer function evaluations ex-
cept for ‘rkf’. We see substantial decreases in the number of function evaluations
for ‘Isoda’, ‘stiff’, ‘rk’ and ‘adams’.‘

The unusual result for ‘rkf’ occurs because ‘rkf’ is using the method for
handling output points as outlined in Section 1.4. The results, when we space

29

out the output points more, are 335 function evaluations without discontinuity
handling and 292 function evaluations with discontinuity handling.

We note that the high number of function evaluations in ‘rk’ with and with-
out discontinuity handling is because it is using Richardson extrapolation to get
an error estimate. Richardson involves using the Runge-Kutta method twice,
once to get the solution approximation at the end of the step and once again
with half the step-size to do two steps in the same interval to get a more accu-
rate solution to use to obtain an error estimate. Thus in one actual step, there
are three ‘steps’ and this leads to a large number of function evaluations.

2.2.4 Solving the time-dependent discontinuity model in Matlab us-
ing a cold start

5200 ; .
odeds
ode15s
25+ A
P
=15
10
0.5
0 \ . \ \
0 10 20 30 40 50 60 70 80 90 100

time

Figure 15: Solutions to the time-dependent discontinuity model using solvers
from Matlab and a cold start at t=27.

From Figure 15 we can see that both solvers give similar solutions. We remember
that with an ‘if’ statement inside the function f(¢,y(t)), the two solvers gave
somewhat different solutions. As we will show in Section 2.3, the discontinuity
handling allows us to use a coarser tolerance and thus allows ode45 to give a
reasonably accurate result.

We also show in Table 5 that discontinuity handling allows the solvers to
use fewer function evaluations.

30

Table 5: Matlab efficiency data for the time-dependent discontinuity problem -
number of function evaluations

method no discontinuity handling with discontinuity handling
ode4d5 175 164
odelbs 144 113

From Table 5, we see that oded5 uses 11 fewer function evaluations while
odel5s uses 31 fewer function evaluations.

2.3 Efficiency data and tolerance study for the time-dependent
discontinuity model

It is not uncommon for researchers to use an ODE solver in a loop or within an
optimization algorithm so that they can study models with different problem-
dependent parameter values. In such contexts, it may be reasonable to coarsen
the tolerances when the computation is taking too long. In this section, we
investigate how coarse we can set the tolerance while still obtaining reasonably
accurate results for the time-dependent discontinuity model.

We investigate ‘Isoda’ across R, Python, and Scilab as they all appear to
use the same source code. We use this experiment to show that discontinuity
handling allows us to use coarser tolerances.

We will also investigate ‘rkf’ in Scilab as it has a smaller default tolerance
than the other Scilab solvers, and ode45 in Matlab, both of which failed to solve
the time-dependent discontinuity model with an accuracy that was comparable
to that of the other solvers. We will show that they can solve the problem with
reasonable accuracy without discontinuity handling only at sharper tolerances
than the default tolerances. We also investigate solvers based on Runge-Kutta
pairs of the same order as the pair used in ‘rkf’ and ode45 in the other pro-
gramming environments; R and Python each have a version of DOPRI5 but do
not share the same source code. The DOPRI5 in Python is a Python imple-
mentation and the one in R is an interface to a C implementation. The Matlab
solver, oded5, uses DOPRI5 but it is implemented in the Matlab programming
language.

2.3.1 Comparing LSODA across platforms for the time-dependent
discontinuity model

Time-dependent discontinuity LSODA tolerance study in R In
this section, we run the R LSODA solver with multiple tolerances with and
without discontinuity handling. We will set both the relative and absolute
tolerances to various values and see how coarse we can set the tolerance while
still obtaining reasonably accurate results. We also look at efficiency data to
observe the number of function evaluations.

31

20000-
legend

— 1e-01
— 1e-02

1e-03

1e-04
— 1e-05
— 1e-08
— 1e-07

I(t)

10000-

50 75
time

o
=
4]

Figure 16: Time-discontinuity model tolerance study on the R version of LSODA
without a cold start.

20000-
legend

— 1e-01
— 1e-02

1e-03

1e-04
— 1e-05
— 1e-08
— 1e-07

I(t)

10000-

50 75
time

o
=
4]

Figure 17: Time-discontinuity model tolerance study on the R version of LSODA
with a cold start.

From Figures 16 and 17, we can see that the introduction of discontinuity
handling allows the solver to use coarser tolerances and still get a reasonable re-
sult; we need a tolerance at least as sharp as 10~3 without discontinuity handling
but can use a tolerance as coarse as 10~2 with it. This supports the observation
that the use of discontinuity handling when solving a discontinuous problem is
advantageous. Also, using coarser tolerances leads to better efficiency, as we
will see in Table 6.

32

Table 6: The R LSODA time-dependent discontinuity model tolerance study -
number of function evaluations

tolerance no discontinuity handling with discontinuity handling

le-01 197 200
le-02 214 206
1le-03 264 212
le-04 264 224
le-05 317 244
1le-06 332 272
le-07 393 298

From Table 6, we see that for the coarser tolerances, the number of function
evaluations is roughly the same. But with sharper tolerances, many more func-
tion evaluations are required and thus if we had a user-provided function that
was expensive to evaluate, we would see clear reductions in computation times.

A similar number of function evaluations for the coarser tolerances should
not distract us from the fact that the solver without discontinuity handling at
these tolerances gives results that are not as accurate as the results obtained
using the solver with discontinuity handling. The small differences of 3 function
evaluations for the 0.1 tolerance case and 8 function evaluations in the 0.01
case do not excuse the fact that the solutions obtained when no discontinuity
handling is employed are significantly less accurate.

Time-dependent discontinuity LSODA tolerance study in Python
In this section, we run the Python version of the LSODA solver with multiple
tolerances with and without discontinuity handling. We note that the Python
solvers give sufficiently accurate results in both cases apart from some small
disagreements in the case where no discontinuity handling is employed but we
will see how coarse we can choose the tolerance while still obtaining reasonably
accurate results. We set both the relative and absolute tolerances to various
values. We also look at efficiency data to see the decreases in the number of
function evaluations.

33

25000 4

20000+

15000 1

Ity

10000 4

5000 4

time

Figure 18: Time-dependent discontinuity model tolerance study on the Python
version of LSODA without a cold start.

25000+

20000 4

15000

I(t)

10000 4

5000 -

time

Figure 19: Time-dependent discontinuity model tolerance study on the Python
version of LSODA with a cold start.

From Figures 19 and 18, we see that with the use of the discontinuity han-
dling, a tolerance of 102 is enough to get a reasonably accurate result whereas
a tolerance of 1073 is needed otherwise. Also, the use of coarser tolerances leads
to better efficiency, as can be seen in Table 7.

34

Table 7: Python LSODA time-dependent discontinuity model tolerance study -
number of function evaluations

tolerance no discontinuity handling with discontinuity handling

0.1 79 86

0.01 98 93
0.001 156 116
0.0001 185 146
le-05 259 186
1e-06 283 228
le-07 361 272

Again, in Table 7, we see that at coarse tolerances, the number of function
evaluations is roughly the same. This similar number of function evaluations
does not excuse the fact that the coarser tolerances are giving inaccurate solu-
tions when discontinuity handling is not employed.

At sharper tolerances, where solutions of reasonable accuracy are obtained
in all cases, the number of function evaluations is much smaller with disconti-
nuity handling than without. There are 40 fewer function evaluations at 0.001
and 0.0001 and there are substantially fewer function evaluations for sharper
tolerances. We note that if the function for the evaluation of the right-hand
side of the ODE was more time-consuming, this reduced number of function
evaluations will cause a significant decrease in the CPU times.

Time-dependent discontinuity LSODA tolerance study in Scilab
In this section, we run the Scilab version of the LSODA solver with multiple
tolerances with and without discontinuity handling. We will set both the relative
and absolute tolerances to various values and see how coarse we can set the
tolerance while still getting reasonably accurate results.

35

35000

30 000 -

25 000 -

20000 -

It)

15 000

10 000 -

5000 =

time

Figure 20: Time-dependent discontinuity model tolerance study on the Scilab
version of Isoda without a cold start.

30000

Te-1

25000 -

20000 4

It)

15 000 =

10 000

5000 -

time

Figure 21: Time-dependent discontinuity model tolerance study on the Scilab
version of Isoda with a cold start.

From Figures 20 and 21 we can see that for tolerances from 10! to 1074,
the Scilab version of LSODA without discontinuity handling does not yield
reasonably accurate solutions but we are able to use a tolerance as coarse as
102 with discontinuity handling.

It is interesting to see how inaccurate the solution without discontinuity
handling is at a tolerance of 10~!. We also note that this behavior is different

36

from the R and the Python version LSODA but this may be due to the way
Scilab handles the tolerances.

Table 8: Scilab LSODA time-dependent discontinuity model tolerance study -
number of function evaluations

tolerance no discontinuity handling with discontinuity handling

0.1 80 82
0.01 98 92
0.001 156 116
le-4 185 146
le-5 255 186
le-6 280 228
le-7 361 272

Again, in Table 8, we see that the number of function evaluations is roughly
the same at coarser tolerances but that at sharp tolerances, where both types
of computations give reasonably accurate solutions and thus allow for a fair
comparison, the solver with discontinuity handling performs better than the
solver without discontinuity handling. We can use up to 90 fewer function
evaluations through the use of discontinuity handling.

2.3.2 Comparing solvers based on Runge-Kutta pairs across plat-
forms for the time dependent discontinuity problem

Time dependent discontinuity model tolerance study on the R ver-
sion of DOPRI5 In this section, we use the R version of DOPRI5, which is
the ‘ode45’ method of the ode function, with multiple tolerances with and with-
out discontinuity handling. We will set both the relative and absolute tolerances
to various values and see how coarse we can choose the tolerance while still get-
ting reasonably accurate results. We also look at efficiency data to examine the
number of function evaluations in each case.

37

20000-
legend

1e-01
— 1e-02
1e-03
1e-04
— 1e-05
1e-08
— 1e-07

I(t)

10000-

50 75
time

o
=
4]

Figure 22: Time-dependent discontinuity model tolerance study on the R version
of DOPRI5 without discontinuity handling.

20000-
legend

1e-01

— 1e-02

1e-03

1e-04

_ — 1e-05
10000 1008
— 1e-07

I(t)

50 75
time

o
=
4]

Figure 23: Time-dependent discontinuity model tolerance study on the R version
of DOPRI5 with discontinuity handling.

From Figures 22 and 23, we see that the addition of discontinuity handling
lets us use a coarser tolerance and still get a reasonably accurate answer. With-
out discontinuity handling, we had to use 10~* for both the absolute and relative
tolerances but with discontinuity handling, we can use 1071,

However, as we will see in the Python version of DOPRI5, the results from
Figures 22 and 23 are suspicious and stem from the fact that R is not using a
proper interpolation scheme to produce the results. It is using an algorithm that
depends on the selected output points and which affects efficiency and accuracy,
as discussed in Section 1.4.

38

Table 9: The R DOPRI5 time-dependent discontinuity model tolerance study -
number of function evaluations

tolerance no discontinuity handling with discontinuity handling

le-01 572 574
le-02 572 574
le-03 572 074
le-04 612 074
le-05 692 587
1e-06 735 599
le-07 926 702

Table 9 also confirms our suspicions since, at coarser tolerances, 10™! to
1073, the number of function evaluations does not change at all. This indicates
that something else, not the tolerance nor the discontinuity, is the limiting factor
for the number of function evaluations and that this other factor leads to a need
for around 572 or 574 function evaluations.

We suspect that the R DOPRI5 version is not using an appropriate inter-
polation scheme to evaluate the numerical solution and that it is integrating
using the output points to determine the step-size. We therefore perform the
following experiment where we specify a smaller set of output points with the
points further spaced out from each other.

30000~

legend

1e-01
— 1e-02
1e-03
1e-04
— 1e-05
1e-06
— 1e-07

20000~

I(t)

10000-

0 25 50 75
time

Figure 24: Time-dependent discontinuity model tolerance study on the R version

of DOPRI5 without discontinuity handling and with output points more spaced
out.

39

20000-
legend

1e-01

— 1e02

1e-03

1e-04

10000- — 1e05
1e-06

— 1e07

I(t)

0 25 50 75
time
Figure 25: Time-dependent discontinuity model tolerance study on the R version
of DOPRI5 with discontinuity handling and with output points more spaced out.

From Figures 24 and 25, we can now see a more significant change in the
solution when the output points are further spaced out. Also, we see in Table
10 that the number of function evaluations actually changes with the tolerance.

Using these two figures, we also see that discontinuity handling is allowing
us to use coarser tolerances. We can even use a tolerance of 10~! with discon-
tinuity handling while getting a reasonably accurate result, whereas, without
discontinuity handling, we need to use a tolerance of 102 or sharper to get a
reasonably accurate answer.

Table 10: R DOPRI5 time-dependent discontinuity model tolerance study with
spaced out output points - number of function evaluations

tolerance no discontinuity handling with discontinuity handling

le-01 116 112
le-02 142 125
le-03 168 131
le-04 246 162
le-05 352 235
le-06 614 349
le-07 796 042

Our analysis of Table 10 begins by noting that the set of output points is
no longer a limiting factor. We can see that the number of function evaluations
changes with the tolerance and this indicates that the tolerance is controlling the
step-size. This confirms our suspicion that the R implementation of DOPRI5 is
not using an appropriate scheme for treating the output points. Instead, it is

40

allowing the output points determine the step-size and thus dictate the efficiency
of the solver.

Regarding the accuracy of the solver as we coarsen the tolerance we can
see from Figures 24 and 25 that even at a tolerance of 107!, the solver with
the discontinuity handling is still able to produce reasonably accurate solutions
whereas it requires a tolerance of 10~2 for the solver without discontinuity han-
dling.

The new table, Table 10, does offer some more insights. Again we can
see that at coarser tolerances, the decrease in the number of function evalu-
ations when discontinuity handling is employed is small but as the tolerance
is sharpened, the number of function evaluations when discontinuity handling
is employed decreases significantly. The relatively similar number of function
evaluations at the coarser tolerances must be viewed in light of the fact that
the solver without discontinuity handling is not getting a reasonably accurate
answer.

Time dependent discontinuity model tolerance study on the Python
version of DOPRI5 In this section, we run the Python version of DOPRI5,
which is aliased under "RK45’ from the solver_ivp function, with multiple tol-
erances, with and without discontinuity handling. We will set both the relative
and absolute tolerances to various values and see how coarse we can choose
the tolerance while still obtaining reasonably accurate results. We also look at
efficiency data to determine the number of function evaluations in each case.

50000 4

40000 1

30000

I(t)

20000 4

10000 4

Figure 26: Time-dependent discontinuity model tolerance study on the Python
version of DOPRI5 without discontinuity handling.

41

25000+

20000+

15000]

Ity

10000

5000 - /

T T T T T
0 20 40 60 80
time

Figure 27: Time-dependent discontinuity model tolerance study on the Python
version of DOPRIb5 with discontinuity handling.

From Figures 27 and 26, we can see clear differences in the computed solu-
tions at different tolerance values. From studying Python’s solve_ivp interface
and source code, we note that Python is using interpolation to treat the output
points.

We then compare the Python version of DOPRI5 with and without discon-
tinuity handling. We can see that the use of discontinuity handling allows us
to use coarser tolerances while obtaining reasonably accurate results. We see
that we need a tolerance of 10~° or sharper to get reasonably accurate solutions
without discontinuity handling while a tolerance of 102 is small enough when
discontinuity handling is employed. We will also see in Table 11 that the solver
with discontinuity handling is much more efficient.

Table 11: Python DOPRI5 time-dependent discontinuity model tolerance study
- number of function evaluations

tolerance mno discontinuity handling with discontinuity handling

0.1 68 70
0.01 86 88
0.001 146 124
0.0001 224 172
le-05 326 250
le-06 488 370
le-07 752 568

From Table 11, we see that at coarser tolerances, the number of function

42

evaluations is greater with the discontinuity handling than without discontinuity
handling but we must point out that DOPRI5 at coarse tolerances gives very
inaccurate results; the errors are too large to excuse the small gain in efficiency.

At sharper tolerances where we get reasonably accurate results both with and
without discontinuity handling, and thus a fair comparison can be done, we can
see that the solver that uses discontinuity handling performs much better. At a
tolerance of 1075 or sharper, the decrease in the number of function evaluations
is 75 or more.

Time dependent discontinuity model tolerance study on the Scilab
version of RKF45 In this section, we run the Scilab version of RKF45 aliased
as ‘rkf’ in the ode function with different tolerances. We note that the default
tolerance for the Scilab ‘rkf’ function was not sufficiently small to solve the
problem to reasonable accuracy without discontinuity handling but using cold
starts did solve the problem even with that default tolerance.

By running ‘rkf’ at various tolerances, we will show that it can also compute
reasonably accurate solutions at sharper tolerances without discontinuity han-
dling. Thus the anomaly we saw in Section 2.1 occurred entirely because the
solver has a coarser default tolerance than the other methods.

We will also see that using discontinuity handling leads to the use of fewer
function evaluations which, given a more complex problem, would result in a
significant improvement in computation times.

30000

Te-
Te2
1e-3
1ed
18
1e-8
20 000 4 Te?

25000 -

It)

15 000 =

10 000 -

5000 -

time

Figure 28: Time discontinuity model tolerance study on the Scilab version of
RKF45 without discontinuity handling.

43

30000

—_— el

1e-3

25000 ted

20 000 4 1e7

It)

15 000 =

10 000 -

5000 -

time

Figure 29: Time discontinuity model tolerance study on the Scilab version of
RKF45 with discontinuity handling.

We see from Figure 28 that using 10~ for both the absolute and the relative
tolerance gives reasonably accurate answers and that anything coarser leads
to somewhat inaccurate solutions. We then recall that the relative tolerance
defaults to 10~2 and the absolute tolerance defaults to 10~* for ‘tkf’ which is
slightly coarser than what is needed to get a reasonably accurate solution.

Figure 29 is also interesting as it seems to indicate that a tolerance of 10~}
is enough to get a reasonably accurate solution with discontinuity handling.
This is surprising but consistent with our observations for the R and Python
Runge-Kutta pairs.

Table 12: Scilab RKF45 time-dependent discontinuity model tolerance study -
number of function evaluations

tolerance no discontinuity handling with discontinuity handling

0.1 77 o84
0.01 LY 584
0.001 583 584
le-4 641 590
le-5 674 608
le-6 847 764
le-7 924 830

We can see from Table 12 that the Scilab RKF45 method is not using in-
terpolation to treat the output points. We can make this conclusion because at
extremely coarse tolerances, it is using the same number of function evaluations

44

despite the tolerance. There is also no difference with and without discontinuity
handling. We also note that a change in the tolerance did not lead to a change
in the number of function evaluations and thus something else is determining
the number of function evaluations. Doing the same experiment with the points
further spaced out shows us that it is the spacing of the output points that is
causing the issue. We thus replicate the experiments in the previous sections
with the output points more spread out.

35 000

30 000 -

25000 -

20 000 4

It

15 000 4

10 000 -

5000 -

time

Figure 30: Time discontinuity model tolerance study on the Scilab version of
RKF45 without discontinuity handling.

30000
Te-1

1e-3
25 000 4 /\ s
I '.\

Te-5

188

20000 4 : 1e7

It)

15 000 =

10 000 -

5000 -

o — T T T T T T T T
o 10 20 30 40 50 a0 70 80 @0 100

time

Figure 31: Time discontinuity model tolerance study on the Scilab version of
RKF45 with discontinuity handling.

45

Figures 30 and 31 show a clear indication regarding why discontinuity han-
dling is important. We can see that without it, we need a tolerance of 1073 to
get reasonably accurate results but with the discontinuity handling, we can use
a tolerance of 107!, The impact on the number of function evaluations, shown
in Table 13, is clear.

Table 13: Scilab RKF45 with spaced out output points, time-dependent discon-
tinuity model, tolerance study - number of function evaluations

tolerance mno discontinuity handling with discontinuity handling

0.1 133 134
0.01 166 152
0.001 208 176
le-4 322 254
le-5 417 338
le-6 606 482
le-7 864 704

Table 13 shows that the number of function evaluations, when discontinuity
handling is employed, is smaller. We also note that at coarse tolerances, the
number of function evaluations is similar but that at those tolerances, the solver
without discontinuity handling is not obtaining reasonably accurate results. We
can thus conclude that using discontinuity handling lets us use coarser tolerances
and leads to a smaller number of function evaluations while improving accuracy.

Time-dependent discontinuity model tolerance study on the Mat-
lab version of DOPRI5 We perform the same experiment using ode45 in
Matlab. We set both the absolute and relative tolerance to various values and
examine how the solver perform. We recall that, using the default tolerance,
ode45 did not give a reasonably accurate solution. We also recall that ode45 did
not have a smaller default tolerance than odel5s. In this section, we show that
with a sharper tolerance, ode45 is also capable of solving the problem without
discontinuity handling but we will see that it is more efficient with discontinuity
handling. Discontinuity handling will, again, allow us to use coarser tolerances
and still obtain reasonably accurate solutions.

46

<10*

—_—1e-1

1e-2

251

0.5

0 10 20 30 40 50 60 70 80 90 100
time

Figure 32: Time discontinuity model tolerance study on the Matlab version of
DOPRI5 without discontinuity handling.

We first note from Figure 32 that at sufficiently sharp tolerances, we can
get a reasonably accurate answer without discontinuity handling whereas the
default tolerances did not give a reasonably accurate solution.

<104

1e-1

2571

051

0 10 20 30 40 50 60 70 80 90 100
time

Figure 33: Time discontinuity model tolerance study on the Matlab version of
DOPRI5 with discontinuity handling.

From Figures 32 and 33 we see that discontinuity handling allows us to
use coarser tolerances while still getting a reasonably accurate solution. We
note that we could use a tolerance of 10~! with discontinuity handling but we
had to use a tolerance of 1073 to get a reasonably accurate solution when no

47

discontinuity handling is employed. We will also see that discontinuity handling
allows the solver to use fewer function evaluations in Table 14.

Table 14: The Matlab DOPRI5 time-dependent discontinuity model tolerance
study - number of function evaluations

tolerance no discontinuity handling with discontinuity handling

0.1 85 146

0.01 121 146
0.001 169 158
0.0001 229 200
le-05 355 302
le-06 o047 446
1le-07 823 692

Table 14 show that at coarser tolerances the solver without discontinuity
handling uses fewer function evaluations. However, at these tolerances, the
solver does not give a reasonably accurate solution. At shaper tolerances, where
the solver without discontinuity handling gives a reasonably accurate solution,
the number of function evaluations for the solver with discontinuity handling is
lower.

48

3 State-dependent discontinuity model

In this section, we consider the state-dependent discontinuity problem. We
start by noting that this problem cannot be solved with the form of discontinuity
handling used in the previous study since we do not know when the discontinuity
arises. Also, this problem will be more challenging than the time-dependent
discontinuity problem as the parameter 5 will be changed more than once as
we attempt to model the periods of imposition of Covid-19 measures followed
by periods where these measures are removed. As in Section 2, changes in the
modelling parameter 8 introduce discontinuities in the function f(¢,y(t)) and
thus the error control solvers will “thrash” when trying to solve the problem (as
described in Section 1.5).

This model uses the state variable, E(t), the number of exposed people,
to determine when to change the parameter 8. When the number of exposed
people is greater than 25000, measures will be introduced and S will change
from 0.9 to 0.005. When the number of exposed people drops to 10000, the
measures will be relaxed and 3 is set back to 0.9 (corresponding to the case where
vaccinations are not available). We will run this model over a longer time period
toggling the parameter 8 back and forth to model the periods of alternating the
imposition and relaxing of the measures. This scenario corresponds to the case
of an unvaccinated population where the only means of controlling the spread
of the virus is through measures such as social isolation, masking, etc. The
ability of the virus to infect people is not diminished as time progresses, and
when measures to stop the spread of the virus are removed, the infection rate
of the virus returns to its original value. More sophisticated models could be
considered by treating the [parameter as a function of time. The numerical
challenges would be similar.

We start with a simple treatment of the problem with ‘if’ statements em-
ployed inside the function that defines the right-hand side of the ODE system
and show how this form of the problem cannot be solved with reasonable accu-
racy, by any of the solvers, even at sharp tolerances. Finally, we will introduce
an approach to efficiently and accurately solve the problem using an approach
involving the use of what is known as event detection to handle the discontinu-
ities.

3.1 Simple treatment of Covid-19 state-dependent discon-
tinuity model

A simple treatment of this problem is to use global variables for tracking when
measures are implemented and relaxed and to toggle these global variables as
we reach the required thresholds. We use this approach because we need to
know if the number of exposed people is going up or down to know whether we
need to check for the maximum or the minimum threshold. We then have an ‘if’
statement that will choose the value of parameter 8 based on whether measures
are being implemented or not. The pseudo-code for this algorithm is as follows:

49

measures_implemented = False

7 2

direction = "up

function model_with_if(_, y):

3.1.1

//

global measures_implemented, direction

if (direction == "up”):
if (E> 25000):
measures_implemented = True
direction = "down”
else:
if (E < 10000):
measures_implemented = False
direction = "up”

if measures_implemented:
beta = 0.005

else:
beta = 0.9

//

return (dSdt, dEdt, dIdt, dRdt)

Simple solution of the state-dependent discontinuity model in
R

50000-
40000~
legend
1 — Isoda
30000 daspk
= euler
Ll — rk4
20000- ode45
radau
= bdf
— adams

10000-

0 50 100 150

Figure 34: Solutions to the state-dependent discontinuity model in R, based on
the simple approach.

In Figure 34, we show the results from the use of a number of solvers in R based
on the simple implementation described above, using default tolerances. Figure

50

34 shows how difficult this problem is with a simple treatment. We note that
none of the solutions are aligned and that none of the solvers get a reasonably
accurate solution (described in Section 3.4) as none of the computed solutions
cleanly oscillate between 10000 and 25000 with clear peaks and troughs.

We note that none of the solvers, even the error-controlled ones, issued a
warning about the integration and thus users may be tempted to think that the
solver has solved the problem to within reasonable accuracy. Having no warning
also tells us that the error estimation and error control algorithms employed
by all the solvers did not detect anything abnormal; the solvers return with
an indication that the provided solutions are accurate to within the requested
tolerance. We would expect the solvers with error control to repeatedly reduce
the step-size to satisfy the tolerance and compute solutions that align with each
other but Figure 34 shows that this is not the case.

We also note that the result for ‘euler’ is especially poor as it reaches a max-
imum of 40000. This is again as expected as ‘euler’ has no error control; ‘rk4’,
the other fixed step-size method, is also performing poorly; we see the solution
it computes reach approximately 30000 in its third peak. This is happening
even though the space between the output points is as small as it was when we
were investigating the time-dependent discontinuity problem. Because of this,
we will not run any spacing of output points experiments in this section.

Another important fact to note is how poorly ‘Radau’, as shown in Figure 35,
performs. This is not an issue with the R programming environment as similar
results will be seen in when we consider the Python version of this solver in the
next section and the original Fortran version of this solver in Section 4. The
solution grows exponentially even after the parameter § is switched to 0.005,
which should force the solution to begin to decay. We perform an analysis with
the Fortran version of the solver later in this report to show that 3 is indeed
0.005 while this exponential growth is happening.

2.0e+07-

1.5e+07-

legend

= 1.0e+07-
L radau

5.0e+06-

0.0e+00-
0 50 100 150
time

Figure 35: Solution from ‘Radau’ for the state-dependent discontinuity model
in R, based on the simple approach.

o1

We next proceed to show that sharp tolerances are not enough to solve this
problem as was the case for the time-dependent discontinuity problem. We
repeat our experiments at the sharpest tolerance that could be used prior to
some of the solvers failing. This was at 10713 in the R environment. We set
both the absolute and relative tolerance to that value and show the results in
Figure 36.

50000-
40000-
legend
1 — lIsoda
30000 daspk
= euler
Ll — rk4
20000- ode45
radau
— bdf
— adams

10000-

0 50 100 150
time
Figure 36: Solutions to the state-dependent discontinuity model in R with a
sharp tolerance, using the simple approach.

We can see from Figure 36 that the situation has only marginally improved.
None of the solvers give solutions that are in agreement with each other and none
of the solutions cleanly oscillate between 10000 and 25000. We note that the
error-controlled solvers are following the correct pattern and that until about
time 20-30, some of them give solutions that are in agreement, showing that
sharp tolerance error-control can help some of the solvers to step over one
state-dependent discontinuity. (See the comparison against the final solution
in Section 3.1.5 to see that even this sharp tolerance solution is not accurate
enough.)

The fixed step-size method ‘euler’ and ‘rk4’ results are the same as in Figure
34 since these solvers do not employ a tolerance.

At sharp tolerances ‘Radau’ no longer computes solutions exhibiting the
abnormal behavior we saw previously. From Figure 37, we can see that the so-
lution computed by ‘Radau’ oscillates approximately between 10000 and 25000.
From supplementary experiments, we observe that ‘Radau’ starts performing at
a level that is comparable to the other solvers at a tolerance of 10~ or sharper.

92

25000

20000~

15000-
legend

— radau

E(t)

10000-

5000-
0 50 100 150
time

Figure 37: Solution from ‘Radau’ for the state-dependent discontinuity model
in R with a sharp tolerance, using the simple approach.

3.1.2 Simple solution of the state-dependent discontinuity model in
Python

25000+

20000+

Figure 38: Solutions to the state-dependent discontinuity model in Python,
based on the simple approach.

Figure 38 shows what happens when the problem is solved using the simple
implementation and default tolerances in Python. We can see that the results
are similar to those obtained in R. This happens even though all solvers in
Python have error control.

We note that all the solvers except ‘RK23’ give solutions that at least oscil-

93

late between 10000 and 25000, though in completely dissimilar patterns. The
solutions have peaks and troughs at different times. No warnings were given by
the solvers.

The ‘RK23’ solver, whose solution is shown in purple, computes a solution
with a completely different pattern than the other solvers. It never reaches
25000 and only oscillates between around 10000 and 15000.

Again, as shown in Figure 39, ‘Radau’ computes a solution that has F(t)
growing exponentially even though the parameter 3 is eventually set to 0.005
which should give a solution with an exponential decay in the E(¢) component,
as we see with all other solvers.

le7?

— radau

T T T T
0 25 50 75 100 125 150 175
time

Figure 39: Solution from ‘Radau’ for the state-dependent discontinuity model
in Python, based on the simple approach.

We then used very sharp tolerances to solve the problem but, as is the case in
the R environment, none of the solvers obtained a reasonably accurate solution.
The highest tolerance we could use in Python without any method failing was
107'2. Both the absolute and relative tolerances were set to this value and
Figure 40 shows the results from this sharp tolerance experiment.

o4

25000 4

20000+

15000

E(t)

10000

Figure 40: Solutions to the state-dependent discontinuity model in Python with
a sharp tolerance, using the simple approach.

Figure 40 shows that the results have improved. However, the solvers give
solutions that are not in agreement. We note that none of the solvers are
oscillating beyond 25000 as was the case with the fixed-step solvers in R. At
sharp tolerances, the solutions are aligned for the first few discontinuities with
only some blurring until about t=25 when the solvers give substantially different
solutions. Though the pattern is correct, none of the solvers give solutions that
are in agreement telling us that none were able to compute a reasonably accurate
solution such as the one that we present in Section 3.4. (See the comparison
with the final solution in Section 3.1.5 to see that even these sharp tolerance
solutions are not accurate enough.)

We note that ‘RK23’ is now following the correct pattern in that it oscillates
between 10000 and 25000 whereas it only reached 15000 at the default tolerance.

99

25000 1

20000 4

15000 4

E(t)

10000 4

5000

04 —— radau

T T T T
0 25 50 75 100 125 150 175
time

Figure 41: Solution from ‘Radau’ for the state-dependent discontinuity model
in Python with a sharp tolerance, using on the simple approach.

Again, as shown in Figure 41, the ‘Radau’ solver begins to give reasonable
solutions at these sharp tolerances; the solutions follows the pattern we are ex-
pecting but as we will show in Section 3.4, they are still not sufficiently accurate.
The ‘Radau’ solver starts performing reasonably well at around a tolerance of
10719 We also note that the R and Python implementation of ‘Radau’ are
different. The ‘Radau’ solver in Python is implemented in Python with the
NumPy library whereas R calls the Fortran version of the solver. Thus we elim-
inate the possibility of an issue stemming from the interface from R to Fortran
or from Python to NumPy. The problem is simply in how the Radau algorithm
interacts with this simple implementation of the state-dependent discontinuity.
In our experiments with the Fortran version of Radau, in Section 4, the same
behavior is observed.

96

3.1.3 Simple solution of the state-dependent discontinuity model in
Scilab

26 000 -
24000 -

22 000 4

! \
i 1 I
20 000 -4 | 1
l |
12 000 4 I] |

! I
16 000] | [|

14000 [\ ‘I'I I .‘1 |
12 000 i Ij i i

10 000 -

E()

2000 4

8000 -

4000 4

2000 -

o T T T T T T
o 20 40 B0 80 100 120

time

Figure 42: Solutions to the state-dependent discontinuity model in Scilab, based
on the simple approach.

Figure 42 shows the same issues that we saw before. None of the solvers give
solutions that are aligned which prompts us to conclude that none of them are
getting a reasonably accurate solution. All of the solvers in Scilab have error
control and we can also see that their solutions all follow the correct pattern
of oscillating approximately between 10000 and 25000. However, as we will
discuss in Section 3.4, none of the solutions are very accurate. We note that
the spacing between output points is not important in this analysis as at the
current spacing, even the solvers that depend on the spacing return inaccurate
answers.

We then repeat the experiment at sharp tolerances. The Scilab ‘rkf’ method
does not allow the use of very sharp tolerance as it has a cap of 3000 derivative
evaluations so it was omitted from this experiment. The sharpest tolerance we
can use in Scilab before the other methods fail is 107'3; the results are shown
in Figure 43.

o7

26 000 -

24000 -

22 000 4

20 000 -

18 000

16 000 -

14000

E®

12 000

10 000 -

5000 4

8000 -

4000 4

2000 -

T T T T T T 1
o 20 40 B0 80 100 120 140 180 180

time

Figure 43: Solutions to the state-dependent discontinuity model in Scilab with
a sharp tolerance, using the simple approach.

Again, in Figure 43 we can see that the use of sharp tolerances is not enough
to force the solvers to compute reasonably accurate solutions. All the solvers
yield solutions that follow the correct pattern but none oscillate between 10000
and 25000 with clear peaks and troughs at those values. For the time period
between 0 to 30, the solutions all seem to show reasonable agreement but as we
go further in time, all of the solutions start to disagree more substantially with
each other. We also note that none of the solvers compute solutions in reason-
able agreement with the solution discussed in Section 3.4. (See the comparison
against the final solution in Section 3.1.5 to see that even these sharp tolerance
solutions are not accurate enough.)

98

3.1.4 Simple solution of the state-dependent discontinuity model in

Matlab
4
3 10 . ; ;
= odedb
ode15s
25r
Pas
ﬁ 1.5
1k
0.5

0 2‘0 4‘0 6‘0 8‘0 1(;0 12‘0 11‘10 1é0 180

time
Figure 44: Solutions to the state-dependent discontinuity model in Matlab,
based on the simple approach.

In Figure 44, we see in accurate solutions, similar to what we saw in the previous
experiments, when the solvers are run with the simple implementation, at the
default tolerances. The solvers do not give solutions that consistently reach
25000. We then use a sharper tolerance to see if the solutions are improved.

4
2510 .

E®

0.5

0 20 40 60 80 100 120 140 160 180
time

Figure 45: Solutions to the state-dependent discontinuity model in Matlab with
a sharp tolerance, using the simple approach.

99

Figure 45 shows the results of the experiment at sharp tolerances. We get
surprisingly good solutions compared to the solutions we obtained in the pre-
vious environments. However, as we will see in Section 3.4, these solutions are
computed extremely inefficiently and they are not as accurate as the solution
presented in Section 3.4, especially for later time periods. (See the comparison
against the final solution in Section 3.1.5 to see that even these sharp tolerance
solutions are not accurate enough.)

3.1.5 State-dependent discontinuity model - solution comparisons

In all the previous subsections, we have maintained that even the sharp toler-
ance solutions, though more in agreement, are not accurate. Here, we present
a comparison between the solution obtained by LSODA in Python using the
simple approach at the default tolerance and at the sharpest tolerance, along-
side an accurate solution that we will present shortly which is obtained using
event detection. We can see from Figure 46 that the solutions from LSODA
both at default and the sharp tolerance obtained using the simple approach do
not agree with the more accurate solution.

25000+

20000 4

15000 +

E(t)

10000

5000 4
— default
—— sharpest
—— accurate

T T T T
0 25 50 75 100 125 150 175
time

Figure 46: Solutions to the state-dependent discontinuity model from LSODA
based on the simple approach using the default tolerance and a sharp tolerance,
alongside an accurate solution.

3.2 Why the solvers fail even with sharp tolerances

In this section we discuss why sharp tolerances were not enough to force the
solvers to accurately solve the problem in the simple way that the model is
implemented, i.e, using global variables and ‘if’ statements.

Whenever there is a change in the value of 8, the step where the discontinuity
is first encountered will almost always be a failed step. As discussed in Section

60

1.5, the step-size required to accurately step through a discontinuity will always
have to be much smaller than the step-size on the continuous region to the left
of the discontinuity. Thus the first encounter of a solver with any discontinuity
will always be in the context of a failed step.

During this failed step, the value of E(t) will cross the threshold. The global
variables will thus be toggled. But then, when the solver attempts to retake the
step using a smaller step-size, to the left of the discontinuity, it will be using
the wrong (value.

This observation is crucial as it allows us to conclude that once a failed
step has occurred due to the solver encountering a discontinuity, the function
evaluations made to the left of the discontinuity should be based on the previous
B value but they are in fact obtained using the new [value. There is no trivial
way to implement the model in a way that avoids this behavior in the ODE
function, f(t,y(t)), since the time at which the discontinuities arise is unknown.

In summary, the issue is that the solvers need to figure out how to step up
to the discontinuity such that to the left of the discontinuity, the solver employs
function evaluations that use the previous 5, and then after the discontinuity,
the solver employs function evaluations that use the new 8 value. This cannot
be implemented in a straightforward way using the interfaces available in the
programming environments.

In the next few sections, we will present a better approach for treating prob-
lems with state-dependent discontinuities that will allow us to get reasonably
accurate solutions in an efficient manner.

3.3 Event detection

For the time-dependent discontinuity problem, we saw that if we used error-
controlled software, then the solvers can accurately work through one discon-
tinuity at sufficiently high tolerances. We also showed that this was not the
most efficient way to solve the problem. For the state-dependent discontinu-
ity problem, we showed in the previous section that the solvers, using even
sharp tolerances, are not be able to solve this problem with reasonable accu-
racy. Because we do not know when the discontinuities occur, we cannot use
the discontinuity handling technique, involving a cold restart, that we used to
solve the time-dependent discontinuity problem. However, the idea that we
developed in Section 2.2 about integrating continuous sub-problems separately
and combining them into a final solution can be applied here.

To integrate continuous sub-problems, we need a way to detect that a thresh-
old has been met, and then as soon as we reach such a point, we can perform a
cold start. This will allow the solvers to integrate the problem one continuous
subinterval at a time. In this section, we will explain the capability of modern
solvers to detect events and we will show how to encode the E(t) thresholds
(either E(t) = 25000 or E(t) = 10000) as events so that the times at which they
occur can be determined. We can then perform a cold start at these times.

To perform event detection, an ODE solver requires two functions from the
user: the usual ODE right-hand side function, f(¢,y(t)), and another function,

61

the root function (commonly denoted by g(t,y(t))), that defines an event.

The root function is a function that, given the value of the solution y(t) at
time ¢ to the ODE at the current step will return a value. The event function,
g(t,y(t)), is said to have a root whenever the value of the root function is zero.
The key idea is that each event must be written so that it occurs at the root of
a root function.

The solver calls the root function at the end of each successful step and
records its value. It will then compare the value of the root function with the
corresponding value from the previous step to see if there has been a change of
sign. If the value of the root-function has changed sign, the solver will then run
a root-finding algorithm on that step to find the point where the root-function
equals zero. The solver will then return, allowing us to perform a cold start.

Using event detection thus entails defining a function that takes the value
of the ODE solution at the current point and returns a value which is zero
whenever there is an event. For example, if we want to detect when y is 100, it
is sufficient to define (y - 100) to be the root function. In the next section, we
will elaborate on how to use event detection to accurately and efficiently solve
the state-dependent discontinuity problem.

We also mention that many modern solvers have event detection built-in.
Thus users should be able to use event-detection solvers within their preferred
programming environments, without any additional software being required.

3.4 Solving the state-dependent discontinuity model using
event detection

As mentioned earlier, each change in the value of the parameter § introduces a
discontinuity in the function f(t,y). Since none of the solvers are designed to
solve discontinuous problems, they return the inaccurate solutions reported in
3.1. We have seen that although sharp tolerances do result in somewhat better
solutions being computed, none of the solvers were able to obtain a sufficiently
accurate solution. The use of such sharp tolerances leads to inefficiencies as well.
We will now present an approach using event detection that is both accurate
and efficient.

The idea is to use the thresholds that we have defined in our model to define
events and integrate up to the time at which each threshold is reached using the
event detection capability of the solver. We can then cold start from there and
continue the process with a different right-hand side function corresponding
to the new [value and with a different root function that encodes the next
threshold we are looking for. We repeat this process until we reach the end
of the time interval. This approach allows the solvers to integrate continuous
sub-problems, one at a time, and the solutions to these sub-problems can then
be combined to obtain the final solution.

For our specific problem, event detection is used as follows. We start by
solving the problem with $=0.9 and with a root function that detects when
E(t) is equal to 25000. Once, using the event detection capability of the solver,
we reach the time at which E(t) = 25000, we do a cold start. We evaluate the

62

solution computed by the solver at the time of the event and use that solution as
the initial value for our next call to the solver. This next call will have 8 = 0.005
and a root function that detects a root when E(t) = 10000. We again integrate
up to that new threshold and cold start when we reach it. The new integration
will have 5=0.9 and the root function will look for E(t) = 25000 as the event.
This is repeated until we reach the desired end time. The pseudo-code is as
follows:

function model_-no_measures(t, y):
beta = 0.9
// code to get dSdt, dEdt, dIdt, dRdt
return (dSdt, dEdt, dIdt, dRdt)

function root-25000(t, y):
E=y[l]
return E — 25000

function model_with_measures(t, y):
beta = 0.005
// code to get dSdt, dEdt, dIdt, dRdt
return (dSdt, dEdt, dIdt, dRdt)

function root_-10000(t, y):
E = y[1]
return E — 10000

res = array ()

t_initial = 0

y-initial = (S0, E0, 10, RO)
while t_initial < 180:

tspan = [t_initial , 180]
if (measures_implemented):
sol = ode(model_with_measures, tspan, y_initial,
events=root_10000)
measures_implemented = False
else:
sol = ode(model_ no_measures, tspan, y_initial
events=root_25000)
measures_implemented = True
t_initial = extract_last_t_from_sol(sol)
y-initial = extract_last_row_from_sol(sol)
res = concatenate (res, sol)

// use res as the final solution

Some programming environments, such as Python, by default, do not stop
the integration when the first event is detected. To do a cold start, we need

63

the solver to stop at events, and to make this happen, in some programming
environments we need to set appropriate input parameters.

3.4.1 Solving the state-dependent discontinuity model in R using
event detection

25000

Legend
— lIsoda
B radau

adams
— bdf

15000
1

5000
Il

0
1

T T
0 50 100 150
time

Figure 47: Solving the state-dependent discontinuity model in R with event
detection.

Several of the solvers in R have event detection capabilities. These are: ‘adams’,
‘bdf’, ‘Isoda’, ‘Radau’, and they will be used in this section to solve the state-
dependent discontinuity model using the approach described in the previous
subsection. From Figure 47, we can see that all the solvers give solutions that are
in agreement except ‘Radau’. This is in contrast with what happened previously
when we were integrating a discontinuous problem, even at sharp tolerances.

The case of ‘Radau’ is interesting as it was giving a poor quality solution at
the default tolerances, without event detection but it is now giving at least a
solution that is exhibiting the correct pattern. We note that at sharp tolerances
‘Radau’ with event detection gives results that approach the results from the
other solvers, as shown in Figure 48. We will also note the poor performance of
Radau in Table 15. We also note that Fortran version of ‘Radau’ does not have
built-in event detection and that the event detection has been added through
the C interface, which may explain the disparity in performance that we see for
that solver.

64

25000

Legend
— lIsoda
B radau

adams
— bdf

15000
Il

E(t)

5000

0
|

T T
0 50 100 150
time

Figure 48: Solving the state-dependent discontinuity model in R with event
detection at a sharp tolerance

We will show in Table 15 that introducing event detection also makes the
computation significantly more efficient while giving us more accurate results.

We note that it is unfair to compare the efficiency of the solvers at the default
tolerances with the efficiency of the solvers when they use event detection as
the results for the former are inaccurate.

Table 15: Efficiency data for R state-dependent discontinuity model - number
of function evaluations

method no event no event-sharp tol. with event with event-sharp tol.

Isoda 2135 4658 1248 3435
radau 1002 21835 2151 14681

bdf 3300 9803 1678 7963
adams 1368 3467 817 2689

We can see from Table 15 that with event detection we are gaining an im-
provement of around 1000 function evaluations for ‘lsoda’, 7000 in ‘Radau’
(sharp tol comparison), 2000 in ‘bdf’, and 500 in ‘adams’ while having more
accuracy. This significant decrease in the number of function evaluations will
lead to much faster CPU times, especially when the right-hand side function is
more complex.

Also, we can see from the table that the solvers use fewer function evalua-
tions compared with event detection than without event detection at the default
tolerances. When comparing the values at the sharp tolerances, the use of event
detection also led to a decreased number of function evaluations.

65

3.4.2 Solving the state-dependent discontinuity model in Python us-
ing event detection

25000 1

20000

15000 4

E(t)

10000 +
Isoda
bdf
radau
rk45
dop853
04 k23

5000 4

0 25 50 75 100 125 150 175
time

Figure 49: Solving the state-dependent discontinuity model in Python using
event detection.

All the solvers in Python have event detection and thus all will be used in
this part of the study. In Python, solve_ivp() does not stop when an event is
detected by default. We thus need to set the terminal flag of the root functions.
(Example: 100t_10000.terminal = True). Again, Figure 49 shows that all
the solvers give solutions that are in agreement, suggesting that this is the
correct solution. This is different from our results at sharp tolerances when event
detection was not employed. We will also see that this is a much more efficient
approach across all the solvers. The solve_ivp() implementation of ‘Radau’ is in
Python itself and thus it is different from the R implementation. We note that
we did not have to provide the Python ‘Radau’ implementation with a sharp
tolerance to make its performance align with the other solvers’ performances,
suggesting that the issue in R may be due to the C implementation of event
detection.

As is the case with R, we cannot compare the default tolerance efficiency data
to the event detection efficiency data as the former corresponds to inaccurate
results. So, in Table 16, we compare the sharp tolerance efficiency data with
the data from the event detection computation.

Table 16 shows that the number of function evaluations when the solvers
use event detection is far less when they do not; ‘LSODA’ used around 3000
fewer function evaluations, ‘BDF’ used 11000 less, ‘Radau’ used 74000 less,
‘RK45’ used 17000 less, ‘DOP853’ used 20000 less and ‘RK23’ used 246000 less.
The reduction in CPU times from this will be significant across all the solvers,
especially with a more complex right-hand side function.

66

Table 16: Efficiency data for Python state-dependent discontinuity model -
number of function evaluations

method no event no event with sharp tol. with event detection

lsoda 2357 4282 535
bdf 2301 11794 808
radau 211 74723 990
rk45 1484 17648 674
dop853 11129 21131 1514
rk23 4307 246644 589

3.4.3 Solving the state-dependent discontinuity model in Scilab us-
ing event detection

26 000

24000 -

22 000 4

20 000 -

18 000

16 000 -

14000

E®)

12 000

10 000 -
2000 4
8000 -

4000 — root

2000 -

o T T T T T T T T
o 20 40 B0 80 100 120 140 180 180

time

Figure 50: Solving the state-dependent discontinuity model in Scilab with event
detection.

There is only one solver with root functionality in Scilab; it is ‘lsodar’, the root-
finding version of ‘Isoda’. Judging from the solutions we obtained from Python
and R, it seems that ‘Isodar’ gives an accurate solution as well. It oscillates in
the correct pattern and goes sharply between 10000 and 25000.

From Table 17, we can see that ‘Isoda’, using its event detection mode, uses
fewer function evaluations than when it does not use event detection, both at
sharp and default tolerances.

67

Table 17: Efficiency data for Scilab state-dependent discontinuity model - num-
ber of function evaluations

method no event no event with sharp tol. with event detection
Isoda 2794 4636 1327

3.4.4 Solving the state-dependent discontinuity model in Matlab us-
ing event detection

3 <10* .

odeds
odel5s

251

0.5

0 20 40 60 80 100 120 140 160 180
time

Figure 51: Solving the state-dependent discontinuity model in Matlab with
event detection.

Both ode45 and odel5s have an event detection capability. (The root functions
need to set an input parameter to indicate that the root is terminal in order
to allow a cold start to be performed.) We applied event detection to solve
the problem with the solvers in the Matlab environment and the results are
shown in Figure 51. We remember that the solutions in Matlab without event
detection were surprisingly accurate but were in disagreement with each other
at points further in time. We can see that with event detection, the solutions
are all in agreement at the default tolerances even at points further in time.

We can see in Table 18 that the computation with event detection uses fewer
function evaluations than the computation without event detection at default
and sharp tolerances. We see that the computations with sharp tolerances,
although they give acceptable solutions, use 20000 more function evaluations
for ode4b5 than the computation with event detection and 11000 in the case of
odelbs than the computation with event detection.

68

Table 18: Efficiency data for Matlab state-dependent discontinuity model -
number of function evaluations

method no event no event with sharp tol. with event detection
ode4b 2023 22411 859
odelbs 1397 11550 620

3.5 Efficiency data and tolerance study for the state-dependent
discontinuity model

In this section, we will investigate how sharpening the tolerance improves the
results in the case of the non-event detection experiment. We will also inves-
tigate coarsening the tolerance with event detection to determine how coarse a
tolerance we can use while getting acceptable results.

We will perform this analysis on LSODA across R, Python, and Scilab, as
they appear to use the same source code, and with R and Python versions of
DOPRI5 which do not use the same algorithm but do use the same Runge-
Kutta pair and with the Scilab version of RKF45 which does not use the same
algorithm, nor the same pair, but does use a Runge-Kutta pair of the same
order. We also use odedb in Matlab as it is an implementation of DOPRI5 in
Matlab.

3.5.1 Comparing LSODA across platforms for the state-dependent
discontinuity model

State-dependent discontinuity LSODA tolerance study in R In
this section, we use the R version of LSODA at multiple tolerances. We set
both the relative and the absolute tolerance to various values and examine the
solutions.

Figure 52 shows that LSODA without event detection applied at different
tolerances gives vastly different results. We would expect the solutions at the
sharper tolerances to be along very similar curves but that is not the case. This
further supports our statement that for any state-dependent discontinuity, we
cannot get reasonable results simply by sharpening the tolerance.

From Figure 53, we can see the clear advantage of using event detection.
Event detection allows us to use a tolerance of 1073 to get reasonable results
while the computation without event detection failed even at a tolerance of
10713, We also analyze the differences in efficiency between the two modes of
operation of LSODA in Table 19.

Table 19 shows a decrease in the number of function evaluations when event
detection is employed across all tolerances which will translate into faster CPU
times when the right-hand side function is more complex. We note that the
comparison is unfair as the computations without event detection do not give
a reasonably accurate answer. Furthermore, the latter computations use more

69

20000-
legend
— 1e-01
— 1e-02

1e-04
— 1e-06

1e-07
— 1e-08
— 1e-10
— 1e-11

E(t)

10000~

0 50 100 150
time

Figure 52: State-dependent discontinuity model tolerance study on the R version
of LSODA without event detection.

Table 19: R version of LSODA applied to state-dependent discontinuity model
tolerance study - number of function evaluations

tolerance no event detection with event detection

le-01 675 560
le-02 1856 522
le-04 1863 752
le-06 2135 1248
1le-07 2676 1874
1e-08 2730 2060
le-10 3337 2604
le-11 3603 3054

function evaluations. This supports our conclusion that event detection is the
appropriate way to solve state-dependent discontinuity problems when the dis-
continuity can be characterized in terms of an event.

State-dependent discontinuity model LSODA tolerance study in
Python In this section, we use the Python version of LSODA at multiple tol-
erances to see how it performs. We recall that LSODA without event detection,
even at very sharp tolerances, in Python was still not giving accurate results
but we will see how the solutions change as the tolerance is sharpened. We will
also show that coarse tolerances can be used with the computation that uses
event detection.

Again Figure 54 exposes that LSODA applied at different tolerances gives
substantially different results. We would expect the computations at the sharper

70

o
S
8 1
8 Legend \
1e-7 v
| — 1e1 | UL
T1e-2 \ ‘\ |
o || — 1e4)
8 | 1e-6 \ |
= 0 — 1e-8 | |
= T | — te-10 |
w | — te-11
o
o |
o
3}
o 4
T T T T
0 50 100 150
time

Figure 53: State-dependent discontinuity model tolerance study on the R version
of LSODA with event detection.

tolerances to give quite similar results but this is not the case.

From Figures 55 and 54, we can see that the addition of event detection al-
lows for the use of a coarser tolerance. We also note that the computations with
event detection blur as we go further in time. This is because the coarser toler-
ance computations are not giving a sufficiently accurate solution. In Python, it
is at a tolerance of 10™* and sharper that we get reasonably accurate results.

We analyze the efficiency of the computations in Table 20. We must note
that this analysis is unfair as the computation without event detection does
not give an accurate solution to the problem. Still, we will see that the event
detection computation uses fewer function evaluations while getting a more
accurate answer.

Table 20: Python version of LSODA applied to state-dependent discontinuity
model tolerance study - number of function evaluations

tolerance no event detection with event detection

0.1 1207 425

0.01 1627 454
0.0001 1968 689
1le-06 2122 1305
1e-07 2684 1807
1e-08 2730 2099
le-10 3337 2639
le-11 3603 3098

71

25000

20000 4

15000 4

E(t)

10000 -

5000 -

T T T T
0 25 50 75 100 125 150 175
time

Figure 54: State-dependent discontinuity model tolerance study on the Python
version of LSODA without event detection.

State-dependent discontinuity model LSODA tolerance study in
Scilab We perform the same experiment in Scilab. We set the absolute and
relative tolerance to the same values as in the other experiments and run the
solvers. For the different tolerance values, we plot the solutions and examine
how the solutions computed without event detection change as the tolerance is
sharpened; we also determine how coarse a tolerance we can use with the event
detection solver.

Again, Figure 56 exposes the behavior whereby the same solver at different
tolerances gives substantially different results. We would expect the solver at
the sharper tolerances to give very similar solutions but clearly, LSODA, even
at sharp tolerances, does not.

From Figure 57, we can see that the use of the event detection allows us
to use a coarser tolerance. We can use a tolerance of 1073 and still get an
accurate answer whereas, without event detection, even a tolerance of 10712 is
not sufficient.

Table 21 shows the number of function evaluations that LSODA uses with
and without event detection to solve the state-dependent discontinuity problem
at multiple tolerances. We can see that even at coarse tolerances, using event
detection allows LSODA use fewer function evaluations while giving more ac-
curate solutions. This reinforces that event detection is the better way to solve
state-dependent discontinuity problems.

72

25000 4 0.1
0.01
0.0001
le-06
le-07
le-08
le-10
le-11

20000

15000 1

E(t)

10000 4

5000 +

T T T T T T T T
0 25 50 75 100 125 150 175
time

Figure 55: State-dependent discontinuity model tolerance study on the Python
version of LSODA with event detection.

3.5.2 Comparing Solvers based on Runge-Kutta pairs across plat-
forms for state-dependent discontinuity model

In this section, we consider solvers based on Runge-Kutta pairs of the same
order: DOPRI5 in R aliased as ‘ode45’, DOPRI5 in Python aliased as ‘RK45’,
DOPRI5 in Matlab through the ode45 function, and RKF45 in Scilab aliased
as ‘rkf’.

We recall that without event detection, none of these solvers across the
platforms solved the problem to reasonable accuracy even with sharp tolerances.
We will show what happens to the solutions computed by these solvers as the
tolerance is sharpened. We also coarsen the tolerance for the case where the
solvers use event detection to see how coarse the tolerance can be while still
obtaining reasonable accuracy.

Tolerance study on state-dependent discontinuity model using the
R version of DOPRI5 The R version of DOPRIb does not have event detec-
tion but we still perform the experiment on this solver without event detection.
We pick several values for the absolute and relative tolerances and run the solver.
In so doing we see how the solver performs as the tolerance is sharpened.

From Figure 58, we see that DOPRI5 applied with different tolerances gives
significantly different solutions. We then report the efficiency data for this case
in Table 22. Table 22 shows the number of function evaluations the ‘ode45’
solver uses. As it does not have event detection unlike the equivalent solvers in
Python and Matlab, we cannot compare how the number of function evaluations
differs with and without event detection. However, looking at the efficiency data
of the Runge-Kutta pairs in the other environment and with R’s LSODA solver,

73

30000

25000 -

20000 4

E®

15 000 =

10 000 -

5000 -

o T T T T T T T T
o 20 40 B0 80 100 120 140 180 180

time

Figure 56: State-dependent discontinuity model tolerance study on the Scilab
version of LSODA without event detection.

we can argue that it too will use fewer function evaluations with event detection
than without.

Tolerance study on state-dependent discontinuity model using the
Python version of DOPRI5 We perform the same experiment in Python.
The Python version of DOPRI5 does have an event detection capability. The
absolute and relative tolerances are set to a range of values and the solver is run
both with and without event detection. We report on how the solver performs
as the tolerance is sharpened in the case without event detection. Since the
Python version of DOPRI5 has event detection, we will see how coarse the
tolerance can be set while still giving us a reasonably accurate solution. We will
use results from the Runge-Kutta pair in Python and in Matlab, that both have
event detection, to suggest what we can expect the results from the Scilab ‘rkf’
and the R ‘odedb’ solvers, which do not have event detection, to be. We note
that the solver crashes if we ask for a tolerance of 0.1.

In Figure 59, corresponding to the case with no event detection, we can see
that even at sharp tolerances, the solver is not able to compute a reasonably
accurate solution. In contrast, in Figure 60, which corresponds to the case where
we use event detection, the solver can use very coarse tolerances and still obtain
a reasonably accurate solution. We can see that a tolerance of 10~ is sharp
enough to solve the given problem accurately; the blurring that occurs is due to
the coarser tolerances. We present the efficiency data in Table 23 to show that
the solver with event detection is also far more efficient.

We can see in Table 23 that across all the different tolerances, the solver with
event detection requires fewer function evaluations, around several thousand
fewer for the sharper tolerances.

74

28 000
—_— et
24000 o | | — a2
| i 1e-d

e
1e-7
' 1e-8
18 000 RRERA —_— let0
1e11

22 000 4

20 000 -

16 000 - 11

= il

10 000 -

E®

5000 4 !
000
4000 4

2000 -

o T T T T T T T T T
o 20 40 a0 B0 100 120 140 160 180 200

time

Figure 57: State-dependent discontinuity model tolerance study on the Scilab
version of LSODA with event detection.

Tolerance study on state-dependent discontinuity model using the
Scilab version of RKF45 Scilab uses RKF45 which is a different Runge-
Kutta pair from what is used in DOPRI5 but the pairs have the same order.
It does not have event detection but we can still perform the experiment on
the solver without event detection. We pick several values for the absolute and
relative tolerances and run the solver. In so doing we see how the solver performs
as the tolerance is sharpened.

The Scilab version of ‘rkf’ can only integrate up to time 90 as it has a hard
cap of 3000 derivative evaluations but this is enough to see that even at sharper
tolerances, the solutions are not in agreement. Figure 61 shows that the problem
cannot be solved by simply using sharper tolerances.

Tolerance study on state-dependent discontinuity model using the
Matlab version of DOPRI5 We apply different tolerances to the state-
dependent discontinuity model with and without event detection the ode45
function which is a Matlab implementation of DOPRI5.

From Figure 62, we can see that the solution obtained with a tolerance of
0.1 is of poor quality without event detection. It does not follow the correct
pattern of oscillating between 10000 and 25000. The computations of the other
tolerances follow the correct pattern but are not in agreement.

In Figure 63, we can see that the computations corresponding to most tol-
erances give solutions that are in agreement. A tolerance of 0.1 now follows
the correct pattern but is not in agreement with the other tolerances at further
points in time. For tolerances of 1072 and sharper, we get accurate solutions.

Table 25, although being an unfair comparison since the solver without event
detection did not give accurate solutions, shows that solving the problem with-

(6]

Table 21: Scilab version of LSODA applied to state-dependent discontinuity
model tolerance study - number of function evaluations

tolerance no event detection with event detection

0.1 1141 287
0.01 1606 262
0.0001 1968 523
0.000001 2122 983
0.0000001 2684 1307
1.000D-08 2730 1567
1.000D-10 3380 1963
1.000D-11 3603 2331

30000~

legend

— 1e-01
— 1e-02

1e-04
— 1e-06

1e-07
— 1e-08
— 1e-10
= 1e-11

20000~

E(t)

10000-

0 50 100 150
time
Figure 58: State-dependent discontinuity model tolerance study on the R version
of DOPRI5 without event detection.

out event detection is also less efficient. At the tolerance of 0.1, the smaller
number of function evaluations for the solver without event detection is not
relevant since the solution at a tolerance of 0.1 is very inaccurate. At all the
other tolerances, the solver with event detection is both more accurate and more
efficient, usually using less than half the number of function evaluations that
the solver uses when event detection is not employed.

76

Table 22: R version of DOPRI5 applied to state-dependent discontinuity model
tolerance study - number of function evaluations

tolerance no event detection

le-01 1082
le-02 1142
le-04 2014
1e-06 2027
1e-07 2193
1e-08 2919
le-10 5194
le-11 7690

Table 23: The Python version of DOPRI5 applied to state-dependent disconti-
nuity model tolerance study - number of function evaluations

tolerance no event detection with event detection

0.01 1400 664
0.0001 8462 806
1le-06 6248 1232
1le-07 6848 1754
1le-08 7082 2354
le-10 10262 5066
le-11 13058 7688

35000 4

30000 4

250004

20000+

E(t)

15000

10000

T T T T T T T T
0 25 50 75 100 125 150 175
time

Figure 59: State-dependent discontinuity model tolerance study on the Python
version of DOPRI5 without event detection.

7

25000 4

20000

T T T T T T T T
0 25 50 75 100 125 150 175
time

Figure 60: State-dependent discontinuity model tolerance study on the Python
version of DOPRI5 with event detection.

35000

30 000 -

25 000 -

20000 -

E®)

15 000

10 000 -

5000 -

time

Figure 61: State-dependent discontinuity model tolerance study on the Scilab
version of RKF45 without event detection.

78

Table 24: Scilab version of RKF45 applied to state-dependent discontinuity
model tolerance study - number of function evaluations

tolerance no event detection

0.1 o547
0.01 732
0.001 1294
le-4 1956
le-5 2364
le-6 2662
le-7 2802

<10?
;

} . . , , | , , ,
0 20 40 60 80 100 120 140 160 180
time

Figure 62: State-dependent discontinuity model tolerance study on the Matlab
version of DOPRIb5 without event detection.

Table 25: Matlab version of DOPRI5 applied to state-dependent discontinuity
model tolerance study - number of function evaluations

tolerance no event detection with event detection

0.1 415 650

0.01 1339 661
0.0001 4891 901
le-06 5803 1411
1e-07 7225 1873
1le-09 9739 4039
le-10 12385 6043
le-11 16357 9277

79

4
3 =10 .

251

0.5

1e-1
1e-2
le-4
1e-6
1e-7
1e-9
1e-10
1e-11

0 20 40 60 80
time

Figure 63: State-dependent discontinuity model tolerance study on the Matlab

version of DOPRI5 with event detection.

80

100

120

140

160

180

4 Investigation of the Radau software applied to
the state-dependent discontinuity model

In this section, we try to solve the state-dependent discontinuity problem with
the Fortran solver radaub.f. We investigate how the original Fortran solver
deals with the discontinuity. We recall that in both R and Python that ‘Radau’
exhibits an unusual behavior where the solution that is computed does not
oscillate between 10000 and 25000 but rather grows exponentially.

We first try the Fortran solver at a tolerance of 1076, which is the default
in R.

18207 | — Radau at 1e-6

T T T T T T T T
o 20 40 -+ 80 100 120 140 180 180

time

Figure 64: Solution from the Fortran radau5.f solver at tolerance of 1076.

From Figure 64, we again see the unusual behaviour. We also note that
it behaves exactly as Radau does in the R environment. We then repeat the
process with a tolerance of 107'2. In Figure 65, we can see that the computed
solution now follows the correct pattern, although it is still not as accurate as
the solution that we described in Section 3.4.

From this investigation of the Fortran solver, we can conclude that the issue
is not with the interface from R to the Fortran solver or the Python implementa-
tion. We also added ‘print’ statements during our investigation to confirm that
the parameter 8 was set to 0.005 when appropriate. The issue appears to be
with the ‘Radau’ algorithm itself. Further detailed investigation of the ‘Radau’
algorithm will be required in order to determine the source of this issue.

81

26 000

24000

22000

20000

18 000 -

16 000 —

14000 o

E®

12 000 -

10 000 —

8000 -

&000 - — Radau at 1e-12
4000

2000+

T T T T T T
o 20 40 B0 80 100 120 140 180 180

time

Figure 65: Solution of the state-dependent discontinuity model from the Fortran
radau5.f solver at tolerance of 10712

82

5 Modelling the Imposition and Relaxation of
Public Health Measures using a Sharply Chang-
ing [/ Parameter

5.1 Introduction

Up until this point in this report, we have modelled the imposition and re-
laxation of public health measures by introducing sudden, i.e., discontinuous,
changes in the transmission parameter, 5. However, a more realistic modelling
of these interventions would correspond to a continuous change in the 3 pa-
rameter value over a short period of time, corresponding to there being a time
interval over which the population responds to the imposed or relaxed measures.

In this section of this report, we will consider modelling the decrease in the 3
parameter using the inverse sigmoid function scaled between 0.9 and 0.005 (see
below), and for the modelling of the increase in the § parameter, we will use
the sigmoid function scaled between 0.005 and 0.9 (see below). These functions
will be used instead of the ‘if’-statements that were used to cause discontinuous
changes in the [parameter as considered in previous sections of this report.

We will use these sharply changing functions for the 5 parameter to model
the imposition and relaxation of public health measures and show how they
introduce thrashing, inaccuracy, and efficiency issues for numerical solvers. We
will consider modeling both a time-dependent discontinuity and a state-dependent
discontinuity model with these rapidly changing functions. We will also report
on ways to improve the performance of the solvers.

5.1.1 Functions Used to Model the § Parameter

The inverse sigmoid function: An inverse sigmoid function defined as,

_0.895¢~x(t—te)

6(t) = W + 0005, (6)

is a function that decreases from 0.9 to 0.005 at time ¢. with the steepness of
change determined by the value of a. This function can be used to model the
introduction of Covid-19 measures at time t. and the steepness of change, a,
models how quickly the population adapts to the introduction of these measures.
By varying the value of a, we can change the speed with which the measures
are responded to by the general public. Figure 66 shows how different values of
a impact on the change of the § parameter as a function of time. We can see
that the larger the value of a, the faster that g decreases from 0.9 to 0.005.

83

— a=0.1
a=1

0.8 1 — a=10

0.6

0.4 4

beta(t) - inverse sigmoid

0.2 A

0.0 1

t

Figure 66: Inverse sigmoid function centered at t. = 50 with steepness of change,
a, equal to 0.1, 1, 10.

The sigmoid function: A sigmoid function defined as,

0.895

B(t) = (0 F e et

+ 0.005, (7)
is a function that increases from 0.005 to 0.9 at ¢. with the steepness of change
determined by the value of a. This function can be used to model the relaxation
of Covid-19 measures at time t. and the steepness of change, a, models how
quickly the population adapts to relaxation of these measures.

From Figure 67, we can see that the larger the value of a, the faster the
parameter 3 changes from 0.005 to 0.9.

84

— a=0.1
a=1
081 — a=10

0.6

0.4 4

beta(t) - inverse sigmoid

0.2 A

0.0 1

T
0 20 40 60 80 100

Figure 67: Sigmoid function centered at t. = 50 with steepness of change, a,
equal to 0.1, 1, 10.

5.1.2 Existence of thrashing

In this section, we show that, depending on the steepness of the change, the
phenomenon of thrashing of ODE solvers (considered earlier in this report) can
also occur for this type of model.

Figures 68 and 69 shows the cumulative number of function evaluations as a
function of time when solving the Covid-19 time-dependent discontinuity model
using the inverse sigmoid function to model the change in the parameter [at
t = 27 for the ‘LSODA’ and the ‘DOP853” methods of solve_ivp in Python. We
can see that for small values of the steepness of change parameter, a, there is
no spike in the number of function evaluations at t = 27 but as the value of a is
increased, a progressively sharper spike can be seen. This indicates some level
of thrashing by the solvers since repeated step-size reductions are required in
order to cross the region where the 8 parameter changes quickly.

85

160

140

120 A

100 -

80

cumulative nfev

60 -

40 4

20 A

T T T T T
0 20 40 60 80
time

Figure 68: Thrashing by LSODA; inverse sigmoid function used to change £
from 0.9 to 0.005 at ¢ = 27 with « = 0.1,0.5, 1, 5, 10.

2504

2001

150

cumulative nfev

100 -

50 A

T T T T T
0 20 40 60 80
time

Figure 69: Thrashing by DOP853; inverse sigmoid function used to change
from 0.9 to 0.005 at ¢ = 27 with a = 0.1,0.5,1, 5, 10.

In the remainder of this section, we attempt to solve the sharply changing
time-dependent and state-dependent problems with steepness of change, a, equal
to 0.1, 1 and 10 and will analyze the performance of several ODE solvers applied
to these models. We will also show how using cold starts for the time-dependent
sharply changing problem and event detection for the sharply changing state-
dependent problem improves accuracy and efficiency.

86

5.2 Time-dependent Sharply Changing Model
5.2.1 Naive solution of the time-dependent sharply changing model

A naive implementation of the model involves using the inverse sigmoid function
with t. = 27 to define the parameter 5 inside the right-hand side function,
f(t,y), in order to represent the change in 5 as measures are implemented and
using the solvers to solve the problem with a single call from ¢ = 0 to ¢ = 95.
Also, to stay true to a naive treatment, we will use default tolerances.

The pseudo code for this case is:

function model_with_inverse_sigmoid(t, y)

/!

beta = inverse_sigmoid (t, t_c=27)

// return (dSdt, dEdt, dIdt, dRdt)

Figures 70, 71, and 72 show the naive solution to the time-dependent sharply
changing problem using steepness of change values of 0.1, 1 and 10.

bdf
lsoda
radau
k45
dop853
k23

50000 4

40000 +

30000

Ity

20000+

10000 4

T T T T T
0 20 40 60 80
time

Figure 70: Naive solution to the time-dependent sharply changing problem using
the inverse sigmoid function with a steepness of change value of 0.1.

Figure 70 shows the results from the naive solution approach with a steepness
of change of 0.1. We can see that the solutions from the solvers are aligned with
each other which indicates that the solvers are able to accurate with reasonable
accuracy past the region where the value of 8 changes sharply.

87

25000 4

20000 4

15000

Ity

10000 4

5000 -

bdf
lsoda
radau
k45
dop853
k23

Figure 71: Naive solution to the time-dependent sharply changing problem using
the inverse sigmoid function with a steepness of change value of 1.

Figure 71 shows the results from the naive solution approach with a steepness
of change of 1. We can see that the solutions from the solvers are mostly aligned
with each other but there is some slight blurring which indicates that some of
the solvers are having some difficulty in integrating with reasonable accuracy

time

past the region where 8 changes sharply.

250004

20000+

15000 4

I(t)

10000

5000 -

bdf
lsoda
radau
k45
dop853
k23

Figure 72: Naive solution to the time-dependent sharply changing problem using
the inverse sigmoid function with a steepness of change value of 10.

Figure 72 shows the results from the naive solution approach with a steepness
of change of 10. We can see that the solutions from the solvers are no longer all

time

88

aligned with each other. This behaviour is as expected, since, as the steepness
of change in the § parameter becomes more extreme, the problem becomes
closer to being discontinuous, and thus there is more thrashing and a decrease
in accuracy.

In the next section, we address this issue using cold starts and show how it
improves the accuracy of the computations.

5.2.2 Solving the time-dependent sharply changing model using a
cold start

A better way to solve the time-dependent sharply changing problem is to make
use of cold starts. This means that we integrate up to the time at which the
sharp change arises and then we continue the integration with a separate cold
start call to the solver.

To solve the time dependent sharply changing problem, we will integrate
from time 0 to the time that measures are implemented, ¢ = 27, with one call
to the solver and then use the solution values at t=27 as the initial values to
make another call that will integrate (restarting with a cold start) from t=27
to ty. The pseudo-code is as follows:

initial_values = (S0, EO, I0, RO)

tspan_before = [0, 27]

solution_before = ode(intial_values , model_before_measures,
tspan_before)

initial_values_after = extract_last_row (solution_before)
tspan_after = [27, 95]
solution_after = ode(intial_values_after ,

model_after_measures, tspan_after)

solution = concatenate(solution_before, solution_after)

Figures 73, 74, and 75 show the solutions to the time-dependent sharply
changing problem using steepness of change values of 0.1, 1 and 10, using a cold
start at ¢t = 27.

89

bdf
lsoda
radau
k45
dop853
k23

50000 4

40000 +

30000 4

Ity

20000 4

10000 -

time

Figure 73: Solutions to the time-dependent sharply changing problem using the
inverse sigmoid function with a steepness of change of 0.1 using solvers from
Python and a cold start at t = 27.

—— bdf
lsoda
radau
k45
dop853
k23

25000 4

20000 4

15000 4

I(t)

10000 4

5000

time

Figure 74: Solutions to the time-dependent sharply changing problem using
the inverse sigmoid function with a steepness of change of 1 using solvers from
Python and a cold start at t = 27.

90

25000

20000 4

15000 4

Ity

10000 4

5000 4

6 2‘0 4‘0 ﬁID BID
time
Figure 75: Solutions to the time-dependent sharply changing problem using the

inverse sigmoid function with a steepness of change of 10 using solvers from
Python and a cold start at t = 27.

Using a cold state at t = 27 allowed the solvers to obtain solutions that are
aligned at all three steepness of change values. Thus the cold start improves
accuracy. However, for this type of model, the use of the cold start can add
somewhat to the cost of the computation. This is due to the fact that the cold
start forces the solver to restart with a very small stepsize and it may take
several steps in order for the solver to build back up to the stepsize it was using
earlier in the integration. This cost has to be balanced against the number of
extra steps that the solver takes when it starts to thrash upon encountering the
region of sharp change in the g parameter.

Table 26: Python efficiency data for the time-dependent sharply changing prob-
lem with a steepness of change value of 0.1 - number of function evaluations

method no cold start cold start

Isoda 109 116
rk45 116 130
bdf 127 140
radau 182 201
dop853 134 181
rk23 113 121

91

Table 27: Python efficiency data for the time-dependent sharply changing prob-
lem with a steepness of change value of 1 - number of function evaluations

method no cold start cold start

lIsoda 145 150
rk4b 122 136
bdf 166 173
radau 241 247
dop853 203 211
rk23 131 139

Table 28: Python efficiency data for the time-dependent sharply changing prob-
lem with a steepness of change value of 10 - number of function evaluations

method no cold start cold start

Isoda 154 164
rk45 140 148
bdf 186 174
radau 288 287
dop853 284 262
rk23 134 142

5.2.3 LSODA time-dependent sharply changing problem tolerance
study

Steepness of change value of 0.1: Here we examine the performance of
LSODA from Python when the steepness of change parameter has a value of
0.1.

92

60000

50000

40000 +

30000 4

Ity

20000

10000 4

T
0 20 40 60 80
time

Figure 76: Time-dependent sharply changing problem tolerance study on the
Python version of LSODA without a cold start and with a steepness of change
value of 0.1.

60000
50000 4
40000 4
= 30000 4
20000+

10000 +

T
0 20 40 60 80
time

Figure 77: Time-dependent sharply changing problem tolerance study on the

Python version of LSODA with a cold start and with a steepness of change value
of 0.1.

93

Table 29: Python LSODA time-dependent sharply changing problem with a
steepness of change value of 0.1 tolerance study - number of function evaluations

tolerance mno cold start cold start

0.1 78 87
0.01 81 93
0.001 99 108
0.0001 127 136
le-05 161 176
1e-06 199 228
le-07 235 266

From the above figures and table, we see that when the change in the
parameter is sufficiently slow, there is no need to intervene with a cold start.

Steepness of change of 1: Here we examine the performance of LSODA
from Python when the steepness of change parameter has a value of 1.

30000 A
250004
20000+
=} 15000 1
10000 4

5000 -

T T T T
0 20 40 60 80
time

Figure 78: Time-dependent sharply changing problem tolerance study on the

Python version of LSODA without a cold start with a steepness of change value
of 1.

94

25000+

20000 4

15000 4

Ity

10000 4

5000

T T T T T
0 20 40 60 80
time

Figure 79: Time-dependent sharply changing problem tolerance study on the
Python version of LSODA with a cold start with a steepness of change value of
1.

Table 30: Python LSODA time-dependent sharply changing problem with a
steepness of change value of 1 tolerance study - number of function evaluations

tolerance no cold start cold start

0.1 78 88

0.01 89 99
0.001 135 140
0.0001 173 182
le-05 215 234
le-06 261 286
le-07 333 370

From the above figures and table, we see that when the change in the
parameter is somewhat faster there is some improvement in the accuracy of the
solutions for coarse tolerances, when a cold start is employed. The use of a cold
start does increase the cost somewhat.

Steepness of change of 10: Here we examine the performance of LSODA
from Python when the steepness of change parameter has a value of 10.

95

25000 1

20000+

15000 1

Ity

10000 4

5000 4

time

Figure 80: Time-dependent sharply changing problem tolerance study on the
Python version of LSODA without a cold start with a steepness of change value
of 10.

25000

20000 4

15000 +

I(t)

10000 1

5000 -

time

Figure 81: Time-dependent sharply changing problem tolerance study on the
Python version of LSODA with a cold start with a steepness of change value of
10.

96

Table 31: Python LSODA time-dependent sharply changing problem with a
steepness of change value of 10 tolerance study - number of function evaluations

tolerance mno cold start cold start

0.1 T 86
0.01 98 99
0.001 140 151
0.0001 191 205
le-05 264 263
1e-06 320 335
le-07 386 415

From the above figures and table, we see that when the change in the
parameter is fast there is some improvement in the accuracy of the solutions for
coarse tolerances, when a cold start is employed. The use of a cold start does
increase the cost somewhat.

5.2.4 RKA45 time-dependent sharply changing problem tolerance study

Steepness of change of 0.1: Here we examine the performance of RK45 from
Python when the steepness of change parameter has a value of 0.1.

50000 4

40000 4

30000 4

I(t)

20000 4

10000

0 20 40 60 80
time

Figure 82: Time-dependent discontinuity model tolerance study on the Python
version of RK45 without a cold start with a steepness of change of 0.1.

97

60000

50000 4

40000 +

30000 4

Ity

' N
20000 \

10000 4

time

Figure 83: Time-dependent discontinuity model tolerance study on the Python
version of RK45 with a cold start with a steepness of change of 0.1.

Table 32: Python RK45 time-dependent discontinuity model with exponential
change with a steepness of change of 0.1 tolerance study - number of function
evaluations

tolerance no cold start cold start

0.1 62 70

0.01 80 94
0.001 110 130
0.0001 158 172
le-05 230 244
le-06 350 370
le-07 536 550

From the above figures and table, we see that when the change in the
parameter is sufficiently slow, there is no need to intervene with a cold start.

Steepness of change of 1: Here we examine the performance of RK45
from Python when the steepness of change parameter has a value of 1.

98

25000 1

20000 4

15000 4

Ity

10000 4

5000 -

time

Figure 84: Time-dependent discontinuity model tolerance study on the Python
version of RK45 without a cold start with a steepness of change of 1.

25000 4

20000+

15000

I(t)

10000 4

5000

time

Figure 85: Time-dependent discontinuity model tolerance study on the Python
version of RK45 with a cold start with a steepness of change of 1.

99

Table 33: Python RK45 time-dependent discontinuity model with exponential
change with a steepness of change of 1 tolerance study - number of function
evaluations

tolerance mno cold start cold start

0.1 68 76
0.01 86 100
0.001 116 130
0.0001 164 178
le-05 248 262
1le-06 374 382
le-07 572 586

From the above figures and table, we see that when the change in the g
parameter is somewhat faster there is still no point in employing a cold start.

Steepness of change of 10: Here we examine the performance of RK45
from Python when the steepness of change parameter has a value of 10.

50000

40000

30000

I(t)

20000

10000

T T T T
0 20 40 60 80
time

Figure 86: Time-dependent discontinuity model tolerance study on the Python
version of RK45 without a cold start with a steepness of change of 10.

100

25000 4

20000 4

15000 1

Ity

10000 4

5000 4

T T T T T
0 20 40 60 80
time

Figure 87: Time-dependent discontinuity model tolerance study on the Python

version of RK45 with a cold start with a steepness of change of 10.

Table 34: Python RK45 time-dependent discontinuity model with exponential
change with a steepness of change of 1 tolerance study - number of function
evaluations

tolerance no cold start cold start

0.1 68 76
0.01 86 106
0.001 116 124
0.0001 182 190
le-05 284 292
le-06 410 424
le-07 644 652

From the above figures and table, we see that when the change in the g
parameter is fast there is some improvement in the accuracy of the solutions for
coarse tolerances, when a cold start is employed. The use of a cold start does
increase the cost somewhat.

5.3 State-dependent Sharply Changing Model

In this section, we consider an extension of the state-dependent discontinuity
problem where we use the sigmoid and inverse sigmoid functions to change the
parameter [instead of using if-statements. We again attempt a long term
forecast where measures are introduced and relaxed based on E(t), the number
of exposed individuals at time, .

101

As in Section 2, changes in the modelling parameter 8 introduce changes
in the function f(¢,y(t)) and thus the error control solvers will “thrash” when
trying to solve the problem (as described in Section 1.5).

When there are no measures and E(t) reaches 25000, we assume that mea-
sures are introduced which will reduce the value of the parameter 8 from 0.9
to 0.005. When there are no measures and E(t) reaches 10000, we assume that
measures are relaxed which increases the value of the parameter 5 from 0.005
back to 0.9.

We start with a simple treatment of the problem with ‘if’ statements em-
ployed inside the function that defines the right-hand side of the ODE system
which chooses between the sigmoid and the inverse sigmoid functions based on
whether measures are introduced or not and show how this form of the problem
cannot be solved with reasonable accuracy, by any of the solvers, even at sharp
tolerances. Finally, we will introduce an approach to efficiently and accurately
solve the problem using an approach involving the use of event detection.

5.3.1 Naive solution of the state-dependent sharply changing model

A simple treatment of this problem is to use global variables for tracking when
measures are implemented and relaxed and to toggle these global variables as
we reach the required thresholds. We use this approach because we need to
know if the number of exposed people is going up or down to know whether we
need to check for the maximum or the minimum threshold. We then have an ‘if’
statement that will choose between the sigmoid and inverse sigmoid functions
for implementing the change in the parameter based on whether measures are
being implemented or not. The pseudo-code for this algorithm is as follows:

102

measures_implemented = False
7 2

direction = "up
time_last_changed = 0

function model_with_if(t, y):

//
global measures_implemented, direction , time_last_changed
if (direction = 7up”):
if (E > 25000):
measures_implemented = True
direction = "down”
time_last_changed = t
else:
if (E < 10000):
measures_implemented = False
direction = "up”
time_last_changed = t
if measures_implemented:
beta = inverse_sigmoid (t, t_c=time_last_changed)
else:
beta = sigmoid (t, t_c=time_last_changed)
return (dSdt, dEdt, dIdt, dRdt)

Figures 88, 90, and 92 shows the results of using the naive approach to the

solve the state-dependent sharply changing problem using a steepness of change
value of 0.1, 1 and 10.

103

3.5

bdf
lsoda
k45
dop853
k23

3.0

H
m

E(t)

T T T T
0 25 50 75 100 125 150 175
time

Figure 88: Solutions obtained using the naive approach for the state-dependent
sharply changing problem with a steepness of change value of 0.1.

le7

— radau

T T T T T
0 25 50 75 100 125 150 175
time

Figure 89: Solutions obtained using ‘Radau’ and the naive approach for the
state-dependent sharply changing problem with a steepness of change value of
0.1.

104

bdf
lsoda
k45
dop853
k23

200000 4

150000 -

E(t)

100000 -

50000 +

o
]
w
~
G
5]
S
=
[~
o
-
o
=
=
~
w

Figure 90: Solutions obtained using the naive approach for the state-dependent
sharply changing problem with a steepness of change value of 1.

le7

— radau

©
n
w
~
Iy,
-
S 4
S
=
]
wn
-
w
=]
=
~
w

Figure 91: Solutions obtained using ‘Radau’ and the naive approach for the
state-dependent sharply changing problem with a steepness of change value of
1.

105

le7

—— bdf
1.4+ lsoda
— k45
1.2 — dop853
— rk23
1.0+
= 0.8 1
w
0.6
0.4 1
0.2
0.0 1
T T T T T T T T
0 25 50 75 100 125 150 175

time

Figure 92: Solutions obtained using the naive approach for the state-dependent
sharply changing problem with a steepness of change value of 10.

lell

0.0

—0.5 -

-1.0

E(t)

1.5

2.0

—— radau

—2.5

T T T T T T T T T
0 20 40 60 80 100 120 140 160
time

Figure 93: Solutions obtained using ‘Radau’ and the naive approach for the
state-dependent sharply changing problem with a steepness of change value of
10.

5.3.2 Naive sharp tolerance solution of the state-dependent sharply
changing model

Figures 94, 95, and 96 show results from the naive approach to solving the
state-dependent sharply changing problem using steepness of change values of
0.1, 1 and 10, at absolute tolerance and a relative tolerances of 10712,

106

bdf
lsoda
k45
dop853
k23
radau

350000 -

300000 -

250000 4

200000 A

E(t)

150000 -

100000 -

50000 4

0

T T T T
0 25 50 75 100 125 150 175
time

Figure 94: Naive approach sharp tolerance solutions to the state-dependent
sharply changing problem with a steepness of change value of 0.1.

bdf

=E]
W W W W W W

10000 4

T T T T T
0 25 50 75 100 125 150 175

Figure 95: Naive approach sharp tolerance solutions to the state-dependent
sharply changing problem with a steepness of change value of 1.

107

25000 4

20000+ \

15000 1 \

10000 -

E(t)

—— bdf
— lIsoda

5000 - — k45
—— dop853

— k23

04 —— radau

T T T T T T T T

0 25 50 75 100 125 150 175

time

Figure 96: Naive approach sharp tolerance solutions to the state-dependent
sharply changing problem with a steepness of change value of 10.

From these figures we can see that using a sharp tolerance does help the
solvers to obtain somewhat more accurate solutions but there are still substantial
differences between the computed solutions obtained by the different solvers
and a good-quality, reasonably accurate solutions (to be presented in the next
subsection.)

5.3.3 Solving the state-dependent sharply changing model using event
detection

We use the idea of defining the thresholds as events. When an event is detected,
that is, a threshold is crossed, we cold start the solver with a new right hand
side function using either the sigmoid or inverse sigmoid function to change the
value of the 8 parameter and a new root function.

For our specific problem, event detection is used as follows. We start by
solving the problem with g using the sigmoid function growing from 0.005 to
0.9 centered at ¢y and with a root function that detects when E(t) is equal to
25000. Once, using the event detection capability of the solver, we determine
the time at which E(t) = 25000, we do a cold start. We evaluate the solution
computed by the solver at the time of the event and use that solution as the
initial value for our next call to the solver. This next call will have 5 defined by
the inverse sigmoid function decreasing from 0.9 to 0.005 centered at the time
of the E(t) = 25000 event just recorded and using a root function that detects a
root when E(t) = 10000. We again integrate up to that new threshold and cold
start when we reach it. The new integration will have S defined by the sigmoid
function growing from 0.005 to 0.9 centered at the time of the E(t) = 10000
event just recorded and the root function will look for E(t) = 25000 as the
event. This is repeated until we reach the desired end time. The pseudo-code

108

is as follows:

function model_-no_measures(t, y, time_last_event):
beta = sigmoid(t, t_c=time_last_event)
// code to get dSdt, dEdt, dIdt, dRdt
return (dSdt, dEdt, dIdt, dRdt)

function root-25000(t, y):
E=y[l]
return E — 25000

function model_with_measures(t, y, time_last_event):
beta = inverse_sigmoid (t, t_c=time_last_event)
// code to get dSdt, dEdt, dIdt, dRdt
return (dSdt, dEdt, dIdt, dRdt)

function root_-10000(t, y):
E = y[1]
return E — 10000

res = array ()

t_initial = 0

y-initial = (S0, E0, I0, RO)
while t_initial < 180:

tspan = [t_initial , 180]
if (measures_implemented):
sol = ode(model_with_measures, tspan, y_initial
events=root_10000, args=[t_initial])
measures_implemented = False
else:
sol = ode(model_no_measures, tspan, y_initial
events=root_25000, args=[t_initial])
measures_implemented = True
t_initial = extract_last_t_from_sol(sol)
y-initial = extract_last_row_from_sol(sol)
res = concatenate(res, sol)

// use res as the final solution

Figures 97, 98, and 99 show the solutions obtained using event detection for

the state-dependent sharply changing problem using steepness of change values
of 0.1, 1 and 10.

109

bdf
350000 A lsoda
k45
dop853
k23
radau

300000

250000 1

200000

E(t)

150000 +

100000 1

50000 7

0

time

Figure 97: Solutions obtained using event detection for the state-dependent
sharply changing problem with a steepness of change value of 0.1.

Table 35: Efficiency data the solution of the state-dependent sharply changing
model with a steepness of change value of 0.1 - number of function evaluations

method no event detection no event detection/sharp tol event detection

Isoda 296 1389 240
bdf 393 5663 297
radau 204 48529 397
rk45 272 10136 282
dop&53 1094 4817 432
rk23 293 168026 237

From the above figure and table we see that event detection allows the
solvers to obtain more accurate solutions (that agree well with each other) than
do either of the approaches that do not use event detection and at a much lower
cost than the sharp tolerance computations. We also note that an accurate
solution to this type of model, where the steepness of change value is sufficiently
small that the behavior of the 8 parameter is not close to the discontinuous case,
is much different than what we have seen earlier in this report for the case where
[changes discontinuously.

110

40000 + bdf
lsoda
k45
dop853
k23

radau

35000 4

30000 4

25000 4
£ 20000
w

15000 4

10000 4

5000 -

0

T T T T T T T T
0 25 50 75 100 125 150 175
time

Figure 98: Solutions obtained using event detection for the state-dependent
sharply changing problem with a steepness of change value of 1.

Table 36: Efficiency data the solution of the state-dependent sharply changing
model with a steepness of change value of 1 - number of function evaluations

method no event detection no event detection/sharp tol event detection

Isoda 589 4829 548
bdf 811 14642 758
radau 211 96933 1076
rk45 566 15800 584
dop&53 2648 14558 1184
rk23 653 306788 527

From the above figure and table we again see that event detection allows
the solvers to obtain more accurate solutions than either of the approaches that
do not use event detection and at a much lower cost than the sharp tolerance
computations. We again observe that an accurate solution to this type of model,
where the way in which S changes is not close to the case where 8 changes
discontinuously, is much different than what we saw earlier in this report for the
case where changes discontinuously.

111

25000 4

20000 4

15000 1

E(t)

10000
—— bdf
— lIsoda
5000 - — k45
—— dop853
— rk23
04 —— radau

T T T T T T T T
0 25 50 75 100 125 150 175
time

Figure 99: Solutions obtained using event detection for the state-dependent
sharply changing problem with a steepness of change value of 10.

Table 37: Efficiency data the solution of the state-dependent sharply changing
model with a steepness of change value of 10 - number of function evaluations

method no event no event with sharp tol. with event detection

Isoda 1503 11518 1098
bdf 1235 27795 1192
radau 1810 164687 1739
rk45 2384 25994 842
dop853 992 27092 2063
rk23 572 440066 785

From the above figure and table we see that for this case event detection
allows the solvers to obtain more accurate solutions than either of the approaches
that do not use event detection and at a much lower cost than the sharp tolerance
computations. Here we see that an accurate solution for this case is close to
the solution we obtain for the case where § is discontinuous. This is expected
since the behavior of 8 in this case is quite close to the case where 3 changes
discontinuously.

5.3.4 LSODA state-dependent sharply changing problem tolerance
study

Steepness of change of 0.1: Here we examine the performance of LSODA at
a variety of tolerances on the state-dependent sharply changing problem with a
steepness of change value of 0.1.

112

600000 -

500000 -

400000 4

=
i

300000 -
200000 +
100000

0

T T T T
0 25 50 75 100 125 150 175
time

Figure 100: State-dependent sharply changing model tolerance study using
LSODA without event detection and with a steepness of change value of 0.1.

350000 4

300000 4

250000 A

200000 4

E(t)

150000 -

100000 -

50000

04

T T T T
0 25 50 75 100 125 150 175
time

Figure 101: State-dependent sharply changing model tolerance study using
LSODA with event detection and with a steepness of change value of 0.1.

113

Table 38: LSODA state-dependent sharply changing model with a steepness of
change of 0.1 tolerance study - number of function evaluations

tolerance no event detection event detection

0.1 200 182
0.01 246 192
0.0001 345 300
le-06 515 478
le-07 621 620
1e-08 782 738
le-10 993 980
le-11 1200 1127

We see from these figures that event detection is of a great help in improv-
ing the accuracy of the computed solutions across the full range of tolerances.
Furthermore, we see from the table that the use of event detection also leads to
a more efficient computation.

Steepness of change of 1: Here we examine the performance of LSODA
at a variety of tolerances on the state-dependent sharply changing problem with
a steepness of change value of 1.

350000 -
300000 -
250000 -

—. 200000

E

150000 -

100000 -

50000 4

0

T T T T T T T T
0 25 50 75 100 125 150 175
time

Figure 102: State-dependent sharply changing model tolerance study using
LSODA without event detection and with a steepness of change value of 1.

114

40000 4

35000 4

30000

25000+

= 20000
[}

15000 1

10000

5000 -

Figure 103: State-dependent sharply changing model tolerance study using
LSODA with event detection and with a steepness of change value of 1.

Table 39: LSODA state-dependent sharply changing model with a steepness of
change of 1 tolerance study - number of function evaluations

tolerance no event detection with event detection

0.1 339 353

0.01 437 431
0.0001 1133 786

le-06 1793 1406
1e-07 2170 1748
1e-08 2640 2242
le-10 3559 3271
le-11 4059 3707

We see from these figures that event detection is of a great help in improv-
ing the accuracy of the computed solutions across the full range of tolerances.
Furthermore, we see from the table that the use of event detection also leads to
a more efficient computation.

Steepness of change of 10: Here we examine the performance of LSODA
at a variety of tolerances on the state-dependent sharply changing problem with
a steepness of change value of 10.

115

400000 4

350000 +

300000 -

250000 4

u"‘-_l 200000 -
150000 -

100000 -

50000 4

0

T T T T
100 125 150 175
time

o4
N
u
3
-
a

Figure 104: State-dependent sharply changing model tolerance study using
LSODA without event detection and with a steepness of change value of 10.

25000 4

20000+

15000 4

E(t)

10000 4

5000

o4
N
w
3

Figure 105: State-dependent sharply changing model tolerance study using
LSODA with event detection and with a steepness of change value of 10.

116

Table 40: LSODA state-dependent sharply changing model with a steepness of
change of 10 tolerance study - number of function evaluations

tolerance no event detection with event detection

0.1 365 763
0.01 504 878
0.0001 2338 1746
le-06 4004 3106
le-07 5224 4004
1e-08 6158 4984
le-10 8565 7367
le-11 10068 7885

We see from these figures that event detection is of a great help in improv-
ing the accuracy of the computed solutions across the full range of tolerances.
Furthermore, we see from the table that the use of event detection also leads to
a more efficient computation.

5.3.5 RKA45 state-dependent sharply changing problem tolerance study

Steepness of change of 0.1: Here we examine the performance of RK45 at
a variety of tolerances on the state-dependent sharply changing problem with a
steepness of change value of 0.1.

N

T T T T T T T T
0 25 50 75 100 125 150 175
time

Figure 106: State-dependent sharply changing model tolerance study using
RK45 without event detection and with a steepness of change value of 0.1.

117

350000 -

300000 -

250000 -

200000 -

E(t)

150000 -

100000

50000

0

T T T T T T T T
0 25 50 75 100 125 150 175
time

Figure 107: State-dependent sharply changing model tolerance study using
RK45 with event detection and with a steepness of change value of 0.1.

Table 41: RK45 state-dependent sharply changing model with a steepness of
change of 0.1 tolerance study - number of function evaluations

tolerance no event detection with event detection

0.1 164 180
0.01 224 222
0.0001 458 360
1e-06 1094 726
1e-07 1490 1062
1e-08 2066 1608
le-10 4430 3834
le-11 6644 6006

We see from the above figures that for RK45, the use of event detection
significantly improves the accuracy of the computed solutions. From the above
table, we see that, except for the most coarse tolerances (where the solution ac-
curacy is poor), the solutions computed using event detection are also computed

more efficiently.
Steepness of change of 1: Here we examine the performance of RK45 at

a variety of tolerances on the state-dependent sharply changing problem with a
steepness of change value of 1.

118

=
m

6

T T T T T T T T
0 25 50 75 100 125 150 175
time

Figure 108: State-dependent sharply changing model tolerance study using
RK45 with event detection and with a steepness of change value of 1.

40000

35000 4

30000 4

25000+

-E- 20000 4

15000 4

10000

T T T T T
0 25 50 75 100 125 150 175

Figure 109: State-dependent sharply changing model tolerance study using
RK45 with event detection and with a steepness of change value of 1.

119

Table 42: RK45 state-dependent sharply changing model with a steepness of
change of 1 tolerance study - number of function evaluations

tolerance no event detection with event detection

0.1 320 434
0.01 416 452
0.0001 1100 776
le-06 2738 1166
le-07 3506 1658
1e-08 4490 2378
le-10 7898 5306
le-11 11042 8126

We see from the above figures that for RK45, the use of event detection
significantly improves the accuracy of the computed solutions. From the above
table, we see that, except for the most coarse tolerances (where the solution ac-
curacy is poor), the solutions computed using event detection are also computed
more efficiently.

Steepness of change of 10: Here we examine the performance of RK45 at
a variety of tolerances on the state-dependent sharply changing problem with a
steepness of change value of 10.

1.5 A

1.0

0.5 1

N B o S o SR i~ i

0.0 1

T T T T T T T T
0 25 50 75 100 125 150 175
time

Figure 110: State-dependent sharply changing model tolerance study using
RK45 with event detection and with a steepness of change value of 10.

120

25000 4

20000+

15000 4

E(t)

10000 -

T T T T T T T T
0 25 50 75 100 125 150 175
time

Figure 111: State-dependent sharply changing model tolerance study using
RK45 with event detection and with a steepness of change value of 10.

Table 43: RK45 state-dependent sharply changing model with a steepness of
change of 10 tolerance study - number of function evaluations

tolerance no event detection with event detection

0.1 410 674
0.01 776 710
0.0001 1346 1040
le-06 3686 2024
1e-07 5402 2756
1e-08 8036 4046
le-10 13574 8978

le-11 18476 13400

We see from the above figures that for RK45, the use of event detection
significantly improves the accuracy of the computed solutions. From the above
table, we see that, except for the most coarse tolerance (where the solution ac-
curacy is poor), the solutions computed using event detection are also computed

more efficiently.

121

6 Summary, Conclusions, and Future Work

6.1 Summary and Conclusions

In this report, we have considered the numerical solution of two Covid-19 models
based on a standard SEIR model. The models include discontinuities associated
with interventions introduced to slow down the spread of the virus. We also
considered continuous but sharply changing versions of these models. We were
particularly interested in investigating the performance of a number of standard
solvers available within several computational platforms.

We have discussed stability and discontinuity issues associated with the mod-
els. We showed how stability issues associated with the exponential growth of
some of the solution components of the models affect the accuracy of the com-
puted solutions. We also showed how discontinuities or sharp changes in the
models reduce the efficiency of the solvers and presented a straightforward way
to detect that a model is discontinuous.

We then used ODE software packages in R, Python, Scilab, and Matlab to
solve the two Covid-19 problems, one with a time-dependent discontinuity and
one with a state-dependent discontinuity. A critical starting assumption for both
models is that we consider reasonable implementations that might typically be
employed by a researcher. This includes some fixed-step size solvers and a num-
ber of error control solvers as well as implementations based on the introduction
of ‘if’ statements into the functions that define the ODE systems.

For the time-dependent discontinuity problem, we have shown that error-
control ODE solvers can step over the one discontinuity that is present with
sufficiently sharp tolerances while fixed step-size solvers cannot. We have shown
that although error-controlled solvers can solve the problem to reasonable accu-
racy if the tolerance is sufficiently sharp, the use of discontinuity handling in the
form of cold starts leads to more efficient solutions that can be obtained using
coarser tolerances. We therefore recommend that if the time of a discontinuity
is known, cold starts at these times should be employed as they result in more
accurate and more efficient solutions that can be obtained at coarser tolerances.

For the state-dependent discontinuity problem, we have shown that even
error control solvers cannot successfully step over multiple state-dependent dis-
continuities. We then introduced event detection and showed how it can be
used to accurately and efficiently solve state-dependent discontinuity problems
by encoding the intervention imposition and relaxation thresholds as events
and applying cold starts. We conclude that using event detection provides an
efficient and accurate way to solve such problems.

We conducted a similar investigation of related sharply changing models
using the solvers from Python and obtained similar results.

From the examination of the different packages, we also found a certain
inconsistency. We noted that R and Scilab do not use the interpolation capabil-
ities for some of their solvers by default. Using the method of forcing the solver
to integrate exactly to given output points reduces the efficiency of the solver
because the solver is no longer allowed to take as big a step as it should.

122

We recommend using some form of discontinuity handling rather than intro-
ducing an ‘if” statement into the right-hand side function that defines the ODE
wherever applicable.

When a researcher has a problem that has a time-dependent discontinuity
that occurs at a known time, we recommend that they use the form of disconti-
nuity handling presented in this report. Using cold starts allows the researcher
to integrate continuous subintervals of the problem in separate calls leading to
efficient and accurate solutions.

When a researcher has a problem that has a state-dependent discontinuity,
we recommend that they determine the conditions under which these discon-
tinuities occur and then use event detection with these thresholds as events.
They can then cold start at each event and integrate continuous subintervals of
the problem in separate calls to the solvers. This leads to a level of efficiency
and accuracy that is not possible using a simple implementation.

6.2 Future Work

In Sections 3.1 and 5, we show that ‘Radau’ exhibits unusual behavior when
solving the state-dependent problem. Further analysis needs to be done on
the algorithm itself as two different implementations of the algorithm in R and
Python and the Fortran code itself gave similarly poor quality solutions.

We also propose to do the same type of analysis on Covid-19 PDE models
with discontinuities to see how error-controlled and non-error-controlled PDE
solvers differ. We will also investigate the use of a PDE solver with event
detection for these models.

123

References

[1]

C. Ohajunwa, K. Kumar, and P. Seshaiyer, “Mathematical modeling,
analysis, and simulation of the COVID-19 pandemic with explicit and
implicit behavioral changes,” Comput. Math. Biophys., vol. 8, pp. 216-232,
2020. [Online]. Available: https://doi.org/10.1515/cmb-2020-0113

C. C. Christara, “Private communication,” 2021.

J. R. Dormand, Numerical methods for differential equations, ser. CRC
Revivals. CRC Press, Boca Raton, FL; CRC Press, Boca Raton,
FL, 2018, a computational approach, Reprint of the 1996 original |
MR1383317], Library of Engineering Mathematics. [Online]. Available:
https://doi.org/10.1201/9781351075107

K. Soetaert, T. Petzoldt, and R. W. Setzer, “Solving differential equations
in R: package desolve,” Journal of Statistical Software, vol. 33, no. 1, pp.
1-25, 2010.

A. C. Hindmarsh, “ODEPACK, a systematized collection of ODE solvers,”
in Scientific computing (Montreal, Que., 1982), ser. IMACS Trans. Sci.
Comput., I. IMACS, New Brunswick, NJ, 1983, pp. 55—64.

P. E. Van Keken, D. A. Yuen, and L. R. Petzold, “DASPK: a new high
order and adaptive time-integration technique with applications to mantle
convection with strongly temperature- and pressure-dependent rheology,”
Geophys. Astrophys. Fluid Dynam., vol. 80, no. 1-2, pp. 57-74, 1995.
[Online]. Available: https://doi.org/10.1080/03091929508229763

E. Hairer and G. Wanner, Solving ordinary differential equations. II,
2nd ed., ser. Springer Series in Computational Mathematics. Springer-
Verlag, Berlin, 1996, vol. 14, stiff and differential-algebraic problems.
[Online]. Available: https://doi.org/10.1007/978-3-642-05221-7

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, I. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen,
E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa,
P. van Mulbregt, and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Al-
gorithms for Scientific Computing in Python,” Nature Methods, vol. 17, pp.
261-272, 2020.

P. Bogacki and L. F. Shampine, “A 3(2) pair of Runge-Kutta formulas,”
Appl. Math. Lett., vol. 2, no. 4, pp. 321-325, 1989. [Online]. Available:
https://doi.org/10.1016,/0893-9659(89)90079-7

124

[10]

“Hairer’s website,” http://www.unige.ch/ hairer/software.html, accessed:
2021-08-01. [Online]. Available: http://www.unige.ch/ hairer/soft-
ware.html

S. L. Campbell, J.-P. Chancelier, and R. Nikoukhah, “Modeling and simu-
lation in SCILAB,” in Modeling and Simulation in Scilab/Scicos with Sci-
cosLab 4.4. Springer, 2010, pp. 73-106.

L. F. Shampine, Numerical solution of ordinary differential equations.
Chapman & Hall, New York, 1994.

“Scilab github,” https://github.com/scilab/scilab, accessed: 2021-08-01.
[Online]. Available: https://github.com/scilab/scilab

L. F. Shampine and H. A. Watts, “Practical solution of ordinary
differential equations by Runge-Kutta methods,” 12 1976. [Online].
Available: https://www.osti.gov/biblio/7318812

L. F. Shampine and M. W. Reichelt, “The Matlab ODE suite,” SIAM
Journal on Scientific Computing, vol. 18, no. 1, pp. 1-22, 1997.

125

