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Abstract

This report introduces BACOLIKR, a new event detection software
package for the error controlled numerical solution of systems of one-
dimensional time-dependent partial differential equations (PDEs). A novel
feature of this package is that it allows the user to specify a solution depen-
dent condition, called an event, and then the software will determine the
point in time at which the specified event occurs. This feature is a general-
ization of the well-known event detection capability commonly available in
state-of-the-art software for the numerical solution of initial value ordinary
differential equations. BACOLIKR employs adaptive B-spline Gaussian
collocation for the spatial discretization of the PDE system within a spa-
tial error control algorithm. The event detection capability in BACOLIKR
is based on its use of a modified version of the time integrator, DASKR,
which implements time-dependent event detection within a temporal error
control algorithm. BACOLIKR was developed through modifications of
an earlier error control PDE solver, BACOLI. This report first provides
an overview of the BACOLI and DASKR packages and then describes
the software modifications required in order to develop BACOLIKR. The
rest of the report demonstrates the use of BACOLIKR for the solution
of a number of PDE-based event detection problems including solution
layer-boundary intersection detection and solution layer merge detection
in fluid mechanics models, critical tumor mass detection in a brain tumor
model, steady state detection in the Cahn-Allen equation and the Gierer-
Meinhardt model, and boundary event detection in a discontinuous heat
flow model.
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1 Introduction

The numerical solution of partial differential equations (PDEs) arises as an
important step in a wide variety of applications including investigations in mi-
crobial biogeochemistry [26], electrons in a non-thermal plasma [25], pulsed
microwave discharge in nitrogen [6], and one-dimensional, dynamic, catalytic
reactor models [5]. This report introduces a new software package, called BA-
COLIKR, for the error controlled numerical solution of time-dependent PDEs
in one space dimension. A novel feature of this package is that it allows the
user to specify a solution dependent condition, called an event, and then the
software will determine the point in time at which the specified event occurs.
This feature is a generalization of the well-known event detection capability
commonly available in state-of-the-art software for the numerical solution of
initial value ordinary differential equations. To our knowledge, BACOLIKR, is
the only available error control PDE solver that offers time and space dependent
event detection.

A simple example of an event detection task would be to ask when the
solution to a PDE, at a given point in the spatial domain, takes on a specified
value. However, as we will see in this report, more complex events that depend
on, for example, the temporal or spatial derivative of the solution, or on the
integral of the solution over the spatial domain, can be treated. Examples
discussed in this report include solution layer-boundary intersection detection
and solution layer merge detection in fluid mechanics models, critical tumor
mass detection in a brain tumor model, steady state detection in the Cahn-
Allen equation and the Gierer-Meinhardt model, and boundary event detection
in a discontinuous heat flow model.

The advantage of software with an event detection capability is that the
software itself, to within the accuracy with which the numerical solution is
computed, can determine when a specified condition arises. (This is in contrast
to a standard PDE solver where the user must explicitly specify when the solver
should finish, and in this case there is no straightforward way for the user to
determine the point in time when a solution dependent event of interest occurs.)
As well, once an event has been detected, it is straightforward to modify the
problem and then continue the computation from the point of the event, if so
desired.

Accurate event detection requires that the numerical solution of the PDE be
computed using error control. Since the event itself will depend on the value of
the solution and/or its derivatives and/or its spatial integral, if the numerical
solution is not computed accurately, then it will be impossible to determine
the event time accurately. Error control means that for every time step taken
by the solver, high quality estimates of the temporal and the spatial errors are
computed, and the numerical solution computed on the time step is not accepted
until these error estimates satisfy the user tolerance. Advantages of computing
an error controlled numerical solution include the facts that the user can have
reasonable confidence that the numerical solution has an error that is within
the requested tolerance, that the cost of the computation will be proportional
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to the requested tolerance, and that, when the solver has an event detection
capability, the point in time when the event happens will also be determined to
within the requested tolerance.

The capability for time-space event detection depends heavily on the fact
that the approximate solution computed by BACOLIKR is represented as a
continuous function of time and space. We will discuss these features of the
approximate solution later in this report.

The problem class we consider in this report is a PDE system of size NPDE
of the form,

ut(x, t) = f (t, x, u(x, t), ux(x, t), uxx(x, t)) , a ≤ x ≤ b, t ≥ t0, (1)

with separated boundary conditions,

bL (t, u(a, t), ux(a, t)) = 0, bR (t, u(b, t), ux(b, t)) = 0, t ≥ t0, (2)

and initial conditions,

u(x, t0) = u0(x), a ≤ x ≤ b. (3)

In addition, there is a vector function of size NRT, called the gstop function,
which has the form

g (t, x, u(x, t), ux(x, t), uxx(x, t), ut(x, t)) . (4)

Each component of the gstop function defines an event and must be set to an
expression whose value changes sign at the point in time where the event occurs.
That is, each event is defined to occur at a root of one of the components of the
gstop function, and the task of locating the time at which an event occurs is
implemented by finding the roots of the components of the gstop function.

The BACOLIKR package has been developed through a modification of the
BACOLI package [23], which is based on the earlier BACOL package [27]. Ei-
ther BACOLI or BACOL was used to perform the numerical computations in
the applications literature cited at the beginning of this report. The BACOLI
package employs B-spline Gaussian collocation for the spatial discretization of
the PDEs; this discretization process yields a system of time-dependent ordi-
nary differential equations (ODEs). These ODEs, together with the boundary
conditions, represent a system of differential-algebraic equations (DAEs) that
are solved in BACOLIKR using a modification of the DAE solver, DASKR [7, 8],
which is based on a family of Backward Differentiation Formulas (BDFs). For
each time step, DASKR computes an estimate of the temporal error and then
uses both adaptive time stepping and BDF order selection to compute an ap-
proximate solution to the DAEs such that a corresponding error estimate is less
than the user tolerance. For each time step accepted by DASKR, BACOLIKR
then computes an estimate of the spatial error of the numerical solution. If this
spatial error estimate satisfies the user tolerance, then the solution computed
on the current time step is accepted. Otherwise, BACOLIKR will adapt the
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spatial mesh and then restart the computation at the beginning of the current
time step.

The source code for BACOLIKR and the examples considered in this report
are available at

http://cs.smu.ca/~muir/BACOLI-3_Webpage.htm.

This report is organized as follows. In Section 2 we provide an overview of
BACOLI and DASKR, the packages that were modified in order to obtain BA-
COLIKR. In Section 3, we describe the software development process required
to obtain BACOLIKR; this will include a description of the modifications that
were made to the BACOLI and DASKR packages in order to develop BACO-
LIKR. Section 4 describes the application of BACOLIKR to a collection of
problems involving event detection where the event depends on the solution, a
derivative of the solution, or the spatial integral of the solution to a PDE or a
PDE system. We close in Section 5 with our summary, conclusions, and future
work.

2 Overview of BACOLI and DASKR

As mentioned above, the new software, BACOLIKR, has been developed through
modifications of the BACOLI and DASKR software packages. We therefore pro-
vide a brief description of these packages.

2.1 BACOLI

For the problem, (1), (2), (3), as mentioned earlier, BACOLI employs B-spline
Gaussian collocation for the spatial discretization. The numerical solution,
U(x, t), is represented in terms of a B-spline basis of C1-continuous piecewise
polynomials in x, of degree p on each subinterval of a spatial mesh, {xi}NINT

i=0 ,
which partitions [a, b]. U(x, t) has the form,

U(x, t) =

NCp∑

i=1

y
p,i

(t)Bp,i(x), (5)

where y
p,i

(t) is the unknown time dependent vector coefficient of the i-th B-

spline basis function, Bp,i(x), and NCp = NINT (p−1)+2. The B-spline basis
is implemented in BACOLI using the de Boor B-spline package [10]. The use
of Gaussian collocation for the spatial discretization of the PDE means that
U(x, t) is required to satisfy (1) at p− 1 collocation points on each spatial mesh
subinterval, where the collocation points are the images of the Gauss points,
{ρj}p−1

j=1 , mapped on to each subinterval. Letting ηj be the jth collocation
point, the corresponding collocation condition has the form,

U t(ηj , t)− f (t, ηj, U(ηj, t), Ux(ηj, t), Uxx(ηj , t)) = 0, (6)
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j = 2, . . . , NCp − 1. U(x, t) is also required to satisfy the boundary conditions
at η1 = a and ηNCp

= b; these have the form,

bL (t, U(a, t), Ux(a, t)) = 0, bR (t, U(b, t), Ux(b, t)) = 0. (7)

The equations, (6) and (7), represent an index-1 system of differential alge-
braic equations (DAEs) and the solution of this DAE system gives the B-spline
coefficients, y

p,i
(t), and, once these coefficients are available, one obtains the

numerical solution to the PDE from (5).
This collocation discretization yields a numerical solution that, for an arbi-

trary point in the spatial domain, has a spatial error that is O(hp+1), where
h = maxNINT

i=1 hi [9, 12]. (The numerical solution is said to be of order p + 1.)
In BACOLI, this DAE system is solved using a modified version of the

DASSL package [22], which computes error controlled approximations to the
B-spline coefficients using a variable time step/variable order algorithm based
on a family of BDFs of orders 1 to 5. One of the most significant modifications
made to DASSL was the introduction of a new option for the treatment of
the type of linear systems that arise during the computation of the B-spline
coefficients. Due to the use of a B-spline basis, these linear systems have what
is known as an almost block diagonal (ABD) structure [11], and therefore the
modified version of DASSL employed in BACOLI makes use of the COLROW
package [11], which is designed to efficiently treat such systems. The tolerance
employed in the modified version of DASSL is slightly sharper than the user
tolerance which is employed in the spatial error control algorithm implemented
in BACOLI. This means that, generally, the time error associated with the
computation of the B-spline coefficients will be slightly smaller than the spatial
error of the approximate solution.

The spatial error control algorithm implemented in BACOLI requires that a
high quality estimate of the spatial error of the numerical solution be computed.
BACOLI has two options for computing a spatial error estimate for U(x, t).

The first option, described in [2], is based on the observation that, at cer-
tain points within the spatial domain, the spatial accuracy of U(x, t) is at least
one order higher, i.e., O(hp+2), than it is at an arbitrary point in the spa-
tial domain; these solution values are said to be superconvergent. The points at
which U(x, t) is superconvergent include the mesh points as well as certain other
points (see [2]) internal to each subinterval. It is also the case that the Ux(x, t)
values at the mesh points are superconvergent. For each spatial mesh subinter-
val, a Hermite-Birkhoff polynomial interpolant is constructed that interpolates
the superconvergent U(x, t) and Ux(x, t) mesh point values at each end of the
subinterval as well as the superconvergent U(x, t) values that are internal to
the subinterval. Furthermore, in order to obtain an interpolant whose interpo-
lation error is dominated by the error of the interpolated U(x, t) values internal
to the subinterval, this Hermite-Birkhoff interpolant also interpolates the two
closest superconvergent U(x, t) values internal to the left and right adjacent
subintervals.

This Hermite-Birkhoff interpolant, known as the SuperConvergent Inter-
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polant (SCI), has the following form on the ith subinterval, [xi, xi+1]. Let
s1 = xi and s2 = xi+1 and let wj , j = 1, . . . , k, be the non-mesh points where
the superconvergent solution values are to be interpolated. (Here k = p − 3.)
Then, at time t, the Hermite-Birkhoff interpolant has the form [14]

2∑

j=1

Hj(x)U(sj , t) + h

2∑

j=1

Hj(x)Ux(sj , t) +

k∑

j=1

Gj(x)U(wj, t), (8)

where x ∈ [xi, xi+1], h = xi+1 − xi,

Hj(x) = (1 − (x − sj)γj)
ξ2
j (x)φ(x)

ξ2
j (sj)φ(sj)

, Hj(x) = (x − sj)
ξ2
j (x)φ(x)

ξ2
j (sj )φ(sj)

,

Gj(x) =
φj(x)ξ2(x)

φj(wj)ξ2(wj)
,

where

φ(x) =

k∏

r=1

(x − wr), φj(x) =

k∏

r=1
r 6=j

(x − wr),

ξ(x) =

2∏

r=1

(x − sr), ξj(x) =

2∏

r=1
r 6=j

(x − sr),

and

γj =

k∑

i=1

1

sj − wi

+ 2

2∑

i=1
i 6=j

1

sj − si

.

Since the interpolation error of the above interpolant is dominated by the
spatial error of the superconvergent interpolated values, the spatial error of
the Hermite-Birkhoff interpolant is the same as the error of these supercon-
vergent interpolated values, i.e., O(hp+2). Over [a, b], these Hermite-Birkhoff
interpolants, taken together, represent a C1-continuous piecewise polynomial
solution approximation, which we refer to as Ũ(x, t). Scaled differences (see (9)

and (10)) of U(x, t) and Ũ(x, t) are computed in order to obtain spatial error
estimates for U(x, t). These spatial error estimates are employed in BACOLI
to provide what is known as standard (ST) spatial error control.

The second option available in BACOLI for computing a spatial error esti-
mate for U(x, t) costs slightly less to implement than the SCI, does not make use
of approximate solution values from outside a given subinterval when construct-
ing the polynomial interpolant for that subinterval, and provides a conservative
estimate, i.e., an over estimate, of the spatial error. This interpolant interpo-
lates the solution and derivative values at the end points of the subinterval as
well as the solution at k = p− 4 points that are internal to the subinterval. On
the ith subinterval, this interpolant, which we will refer to as U(x, t), is also
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a Hermite-Birkhoff interpolant of the form (8), but in this case the wj values
are chosen so that the interpolation error of this Hermite-Birkhoff interpolant
is asymptotically equivalent to the spatial error for a collocation solution of one
order lower than U(x, t). We therefore refer to U(x, t) as the Lower Order
Interpolant (LOI); the number of interpolation points is chosen so that the in-
terpolation error dominates the error of the values being interpolated, and thus
the LOI has a spatial error that is O(hp). See [3] for further details.

Scaled differences (again see (9) and (10)) of U(x, t) and U(x, t) then provide
an estimate of the spatial error for U(x, t). Since U(x, t) is returned to the user
but the spatial error control is based on a spatial error estimate that is for
a solution approximation that is of one order lower than U(x, t), we have an
example of what is known as Local Extrapolation (LE) error control - see, e.g.,
[18].

When BACOLI is called with a given input value for p, it computes and
returns a numerical solution based on B-splines of degree p. If the ST spatial
error control mode is chosen, then the code constructs the SCI to generate a
spatial error estimate which is then used as the basis for ST spatial error control.
If the LE spatial error control mode is chosen, then BACOLI constructs the LOI
and uses it to generate a spatial error estimate which is then used to provide
LE spatial error control. Thus the availability of the two types of interpolants
corresponds to providing two options for spatial error control, ST mode or LE
mode, similar to what is available when a Runge-Kutta formula pair is used to
provide error control for an initial value ODE - see, e.g., [18]. See [24] for a
detailed performance analysis of BACOLI using these two error control modes.

For either error control mode, two types of spatial error estimates for U(x, t)
are computed by BACOLI. The first is the set of error estimates, Ej(t), j =
1, . . . , NPDE; each of these values represents a scaled spatial error estimate,
over the entire spatial domain, for one component of the solution. These have
the form,

Ej(t) =

√√√√
∫ b

a

(
Uj(x, t) − Ûj(x, t)

ATOLj + RTOLj |Uj(x, t)|

)2

dx, (9)

where t is the current time, ATOLj and RTOLj are the absolute and relative

tolerances for the j-th approximate solution component, Uj(x, t), and Û j(x, t)

is the jth component of either Ũ(x, t) or U(x, t). The second set of spatial error

estimates are, Êi(t), i = 1, . . . , NINT ; each of these values provides a scaled
spatial error estimate, over all components of U(x, t), for the ith subinterval.
These are of the form,

Êi(t) =

√√√√
NPDE∑

j=1

∫ xi

xi−1

(
Uj(x, t) − Ûj(x, t)

ATOLj + RTOLj|Uj(x, t)|

)2

dx. (10)

Again, Û j(x, t) is the jth component of either Ũ(x, t) or U(x, t).
These spatial error estimates are computed after each accepted time step

taken by DASSL. A step is accepted when Ej(t) < 1 for j = 1, . . . , NPDE.
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Otherwise the step is rejected and the Êi(t) values are used as the basis for
a spatial mesh refinement algorithm that attempts to construct a new mesh
such that (i) the numerical solution computed on that mesh will have a spatial
error estimate that satisfies the tolerance and (ii) the spatial error estimates
over the subintervals of that mesh will be approximately equidistributed. Both
the location and number of mesh points can be changed during a remeshing in
order to adapt to the size (with respect to the user tolerance) and distribution
of the spatial error estimates over the spatial domain. Once a new spatial
mesh is constructed, solution information from the current time step and several
previous time steps is interpolated to the new mesh. See [29] for further details.

Important related recent work has seen the development of the software
package, EBACOLI (Extended BACOLI) [17], which is a modification of BA-
COLI that can compute error-controlled solutions to systems of PDEs coupled
with initial value ODEs in time and/or boundary value ODEs in space.

2.2 DASKR

The DASKR solver was obtained through an extension of the solver DASPK
[7], which itself was developed from the original member of this software family,
DASSL. As mentioned earlier in this report, DASKR is based on a family of
BDFs and uses both adaptive time stepping and BDF order selection to control
an estimate of the temporal error. DASKR represents the approximate solution
it computes in terms of a continuous piecewise polynomial interpolant. The
temporal error control is applied only to the solution approximation at the
end of each time step; the order of the interpolant is chosen to be consistent
with the order of the BDF used to obtain the solution approximation at the
end of the step. In addition to a choice of direct methods (dense or banded)
for the treatment of the linear systems that arise during the computation of
a numerical solution, DASKR also provides the user with the option of using
a Krylov method, the Generalized Minimum Residual (GMRES) method, in
either complete or incomplete form, with scaling and preconditioning [7], for
use when the linear systems are large. As well, DASKR improves upon DASSL
by providing an option for the calculation of consistent initial conditions for the
DAE system to be solved, when the user is not able to provide these.

Furthermore, as mentioned earlier, DASKR has a time-dependent event de-
tection capability that can be employed while the solver is computing a numerical
solution to a DAE system. At the end of each accepted time step, DASKR calls
a routine which evaluates the user’s gstop function in order to monitor for sign
changes in any of the components of the gstop function. When a sign change
is detected, DASKR uses the interpolant to the approximate solution together
with the search algorithm described in [19] to locate the root of the correspond-
ing component of the gstop function, and then returns to the calling program.

While, as mentioned above, DASKR has the capability for treating large
DAE systems using the preconditioned GMRES algorithm, we have not yet
incorporated this feature of DASKR into the BACOLIKR package; this would
require a further major modification to BACOLIKR and we therefore identify
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this as a potential project for future work. Also, the algorithm provided within
DASKR for computing consistent initial conditions is not employed because
BACOLIKR computes its own consistent initial conditions for the DAE system
before calling DASKR.

3 Development of BACOLIKR

As mentioned earlier, event detection is implemented through a user defined
gstop function, each component of which is used to characterize an event; this is
done by writing each component of the gstop function so that it has a root at the
point in time where the event occurs. It is therefore common for event detection
software to be described in terms of a root finding capability where the goal of
determining the time at which an event occurs is described in terms of finding
roots of the gstop function. Thus, in this section, we make reference to root
finding rather than event detection when describing the software modifications.

3.1 Major modifications

This subsection describes the major modifications that were made to BACOLI
and DASKR in order to develop BACOLIKR. The overall structure and user
interface for BACOLIKR is similar to that of BACOLI and we therefore refer
the reader to [23] for additional details.

• As mentioned earlier in this report, BACOLI makes use of a modified
version of DASSL. See Section 3 of [27] for a detailed description of the
changes that were made to DASSL. In order to use DASKR within BA-
COLIKR it was therefore necessary to make similar changes to DASKR.
One major change involved modifying DASKR to provide an option for
it to use the ABD linear system solver, LAMPAK [20], to solve the ABD
linear systems that arise. (BACOLIKR uses LAMPAK, rather than the
COLROW package used by BACOLI, in order to remove any proprietary
dependencies. The use of LAMPAK rather than COLROW does not lead
to any significant impact on performance.)

• A subroutine called BACRT was added. This subroutine calls the user’s
gstop subroutine, which we will refer to as RT; for a given time, t, RT
evaluates the components of the user’s gstop function (4). These compo-
nents can depend on the current solution approximation, U(x, t) and/or
its derivatives, U t(x, t), Ux(x, t), Uxx(x, t). The BACRT routine provides
an interface between the rest of BACOLIKR and the user’s RT routine in
order to simplify the argument list for the RT routine and hide a number
of implementation details.

• A number of small changes were made in order to manage the root finding
capability. The major changes of this type implemented communication
between DASKR, BACOLIKR, and the BACRT routines.
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• When an event is located, BACOLIKR will return to the calling program.
There are three common scenarios that arise regarding what should hap-
pen next. In the simplest case, the user is interested only in locating the
event and the computation can simply terminate. In the second case, the
user wishes to continue the computation but does not wish to make any
changes to the problem; in this case BACOLIKR should simply continue
the computation; this is what is known as a warm start and this is the de-
fault mode when BACOLIKR is called again after it has returned having
located an event. The third case is when the user wishes to change the
problem (either the PDEs or the boundary conditions) after the event has
been located and in this case BACOLIKR should be called using what is
known as a cold start. This means that BACOLIKR will restart DASKR
with a low order BDF and a small step size. Use of a cold start leads to a
much more efficient computation than if a warm start were attempted. In
order to accommodate this last case, a capability was added to allow the
user to force BACOLIKR to restart DASKR for the next time step using
a cold start.

3.2 User interface modifications

This subsection describes changes to the user interface, as well as the motivations
for each change. The BACOLIKR package is based on a Fortran95 wrapper that
wraps a Fortran 77 solver within which the primary computations take place.

3.2.1 Fortran 95

• Added to the BACOLIKR initialization routine, BACOLI95 INIT, the
optional integer argument, NRT, which specifies the number of roots of the
gstop function that will be searched for over the course of the computation.
This is equal to the number of components of the gstop function. If NRT
is greater than 0 then the main solver subroutine, BACOLI95, expects to
be passed the name for the user’s root finding subroutine; see below. (As
mentioned above, this routine is known internally as RT, but the actual
name can of course be different.)

• Added to the main solver routine, BACOLI95, an optional argument that
allows the user to specify the actual name of the root finding subroutine.
It has the signature:

subroutine RT(T, X, NINT, UB, UTB, NEQ, RVAL, NRT),

where T, the current point in time, X, the current spatial mesh, NINT, the
current number of mesh subintervals, UB, the array of B-spline coefficients
at the current time, and UTB, the array of time derivatives of the B-
spline coefficients at the current time, are input arguments, and RVAL,
the array for which RVAL(i), i = 1, ..., NRT, gives the value of the ith
component of the gstop function, is the lone output argument. (The UB
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array can be employed in a call to the VALUES routine to obtain values of
the approximate solution and its first and second spatial derivative. The
UTB array can be employed in a call to the VALUES routine to obtain
values of the time derivative of the approximate solution.)

• Added a new field to the structured solution type, BACOLI95 SOL; the
new field is an integer array, JROOT, where the value of JROOT(i), i =
1, . . . , NRT, can indicate when there has been a change in sign in the ith
component of the gstop function. On any return:

– BACOLI95 SOL%JROOT(i) = 0 indicates that the ith component
of the gstop function has not changed sign during the current time
step,

– BACOLI95 SOL%JROOT(i) = 1 indicates that the ith gstop root has
been found and the sign of the ith component of the gstop function
during the current time step has gone from negative to positive,

– BACOLI95 SOL%JROOT(i) = -1 indicates that the ith gstop root
has been found and the sign of the ith component of the gstop func-
tion during the current time step has gone from positive to negative.

When a root is found, BACOLIKR sets BACOLI95 SOL%IDID = 5. Then
the BACOLI95 SOL%JROOT array can be examined to detect which root
have been found by checking for a non-zero component.

• When the user sets BACOLI95 SOL%MFLAG(1) = 2, BACOLIKR is
forced to call DASKR using a cold start for the next time step. This is
useful, as mentioned earlier, for problems where the discovery of a root
may require a change in the problem. Attempting to restart, in such
a case, with a warm start could lead to a failure by DASKR, or at least
multiple failed time steps as DASKR reduces the order of the BDF method
and the size of the time step, in order to step past the discontinuity in
an error controlled manner, leading to a very inefficient computation. As
mentioned earlier, the cold start forces DASKR to begin with the first
order BDF and a small time step, making the computation more likely to
succeed despite the change to the problem.

3.2.2 Fortran 77

The interface to the Fortran 77 solver that is contained within BACOLIKR dif-
fers from the interface to the Fortran 77 solver that is contained within BACOLI
in two major ways:

• In BACOLIKR, the integer work array IPAR and the floating point work
array RPAR have different sizes than they do in BACOLI; the change in
size depends on the value of NRT.

• In BACOLIKR, the arguments, NRT, JROOT and RT must always be
passed to the Fortran 77 solver since optional arguments are not available
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in Fortran 77. In the case where no root finding is to be done, NRT is set
to 0 and dummy arguments for JROOT and RT are given.

4 Application of BACOLIKR to event detection

problems

In this section, we demonstrate the capabilities of the BACOLIKR package by
showing how to apply it to a number of event detection problems that are based
on the solution of a PDE or a system of PDEs. Each subsection will consider one
problem and will outline how to write an appropriate root finding routine and
corresponding main program in order to implement the specific type of event
detection required for each problem. These examples can be easily modified to
be adapted to whatever application the user is interested in.

In order to apply BACOLIKR to an event detection problem, the user needs
to modify a module called ROOTFINDING. The primary component of this
module is the subroutine called RT, within which the characterization of a single
event or multiple events can be specified. As mentioned earlier, the specification
of a event may require, within RT, an auxiliary computation involving, for
example, the numerical solution, its derivatives in time or space, or its integral
over the spatial domain. The evaluation of the numerical solution and/or its
time or spatial derivatives is performed through a call to the VALUES routine.
Within the RT routine, assignments are made to the gstop vector, RVAL, in
order to define the conditions that characterize each event as a root of one
component of the gstop function.

In addition to the RT routine, the ROOTFINDING module includes the
SETSOL routine. The latter dynamically allocates a work array that is used
within the RT routine, and, for those applications in which a spatial integral
must be computed, it also computes the Gaussian quadrature points that will
be used to obtain a numerical approximation to the integral.

The other primary software component associated with the use of BACOL-
IKR for event detection is the main program that will make calls to the solver
routine, BACOLI95, as appropriate for whatever event or events are to be de-
tected.

The other software components of BACOLIKR that are used in the example
main programs are the BACOLI95 INIT routine, which initializes the compu-
tation, the BACOLI95 VALS routine, which is used to evaluate the numerical
solution and its first and second spatial derivatives, the BACOLI95 SOL data
structure which contains a number of fields where information associated with
the approximate solution is stored, and the BACOLI95 SOL TEARDOWN rou-
tine which must be called at the end of the computation to release the dynamic
memory that is allocated during the computation.

In addition to modifying the ROOTFINDING module and the main pro-
gram, the user must also provide problem definition routines that define the
PDE(s), the boundary conditions, and the initial condition(s). We refer the
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reader to

http://cs.smu.ca/~muir/BACOLI-3_Webpage.htm.

to see complete source code for the main program, the ROOTFINDING module,
and the problem definition routines for each problem we consider.

4.1 Solution Layer Crossing Detection for the One Layer

Burgers’ Equation

Burgers’ equation is a standard model in fluid mechanics. Here we consider
an instance of this problem which we call the One Layer Burgers’ Equation
(OLBE); it has the form,

ut = εuxx − uux, (11)

with boundary conditions at x = 0 and x = 1 (t > 0) and an initial condition
at t0 = 0 (0 ≤ x ≤ 1) taken from the exact solution,

u(x, t) =
1

2
− 1

2
tanh

(
x − t

2
− 1

4

4ε

)
, (12)

where ε is a problem-dependent parameter. We will choose ε = 10−3 for this
example. We solve this problem from t0 = 0 to tf = 2 and choose a tolerance
of 10−6. For t0 = 0, the solution has a sharp layer located at x ≈ 0.25; the
solution to the left of the layer is approximately equal to 1; the solution to the
right of the layer is approximately equal to 0. As t goes from 0 to 1, the layer
moves to the right and is located at x ≈ 0.75 for t = 1. See Figure 4 of [28] for
a plot of the solution to this problem.

In order to demonstrate the event detection capability of BACOLIKR in a
simple form, we will define a very basic event for this problem. The task will
be to determine the time at which the approximate solution, U(x, t), satisfies
the condition that U(0.4, t) = 0.5. (If we define the layer to be the point at
which the solution is halfway between the transition from 1 to 0, then this is
equivalent to asking when the layer crosses the point x = 0.4.) Thus there will
be one root and the gstop function will be U(0.4, t)− 0.5.

Within the RT routine, we make one call to the VALUES routine which
computes the value of the approximate solution at the current time, for a given
choice of x. We pass the vector of B-spline coefficients to the VALUES routine
so that the solution itself is computed. We call VALUES with x = 0.4. The
difference between the returned solution approximation and the target value,
0.5, is then assigned to the RVAL output argument of RT, in order to define the
event for this example.

The corresponding main program first initializes the computation with a
call to the BACOLI95 INIT routine. This is followed by a call to the SETSOL
routine and then a call to the BACOLI95 solver routine. The BACOLI95 routine
monitors the output from the RT routine looking for a time step on which there
is a change in the sign of the gstop function. Once this happens and the specific
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Figure 1: Numerical solution to OLBE when U(0.4, t) ≈ 0.5; we determine,
using the event detection capability of BACOLIKR, that this occurs when t ≈
0.3. It can be seen from the above plot that the solution at x = 0.4 has a value
of ≈ 0.5.

point in time where the root occurs has been determined, BACOLI95 returns
to the main program with an indication that the root has been found. For this
example, the event that we are searching for occurs when t ≈ 0.3. The main
program writes out the solution at the time of the event and then calls the
solver again in order to complete the computation through to tf = 2. Since the
problem has not changed, a warm start can be employed. The solver returns
with an indication that tf has been reached, and the solution at tf is printed
out. See Figure 1 for a plot of the solution at the time of the event. We do
not provide a plot of the solution at tf = 2 since by then the layer has moved
beyond the spatial domain, [0, 1], and thus the solution is approximately equal
to 1 across the entire spatial domain.
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4.2 Solution Value Detection Involving Multiple Events

for a Catalytic Surface Reaction Model

The Catalytic Surface Reaction Model (CSRM) [30] considered here involves
a PDE system of the form,

(u1)t = −(u1)x + n(D1u3 − A1u1γ) + (u1)xx/Pe1,

(u2)t = −(u2)x + n(D2u4 − A2u2γ) + (u2)xx/Pe1,

(u3)t = A1u1γ − D1u3 − Ru3u4γ
2 + (u3)xx/Pe2,

(u4)t = A2u2γ − D2u4 − Ru3u4γ
2 + (u4)xx/Pe2, (13)

where γ = 1 − u3 − u4, and n, r, P e1, P e2, D1, D2, R, A1, and A2 are problem
dependent parameters. The initial conditions at t0 = 0 (0 ≤ x ≤ 1) are,

u1(x, 0) = 2 − r, u2(x, 0) = r, u3(x, 0) = u4(x, 0) = 0,

and the boundary conditions at x = 0 and x = 1 (t > 0) are,

(u1)x(0, t) = −Pe1(2 − r − u1(0, t)), (u2)x(0, t) = −Pe1(r − u2(0, t)),

(u3)x(0, t) = (u4)x(0, t) = 0,

(u1)x(1, t) = (u2)x(1, t) = (u3)x(1, t) = (u4)x(1, t) = 0.

See Figures 12-15 of [28] for plots of the solution components for Pe1 = Pe2 =
100, D1 = 1.5, D2 = 1.2, R = 1000, r = 0.96, n = 1, and A1 = A2 = 30. Here
we choose the problem dependent parameters as above except, in order to make
the problem more challenging, we choose Pe1 = Pe2 = 10000. We choose a
tolerance of 10−5.

We define two simple events. We wish to find the time at which U3(0.2, t) =
0.24 and the time at which U4(0.2, t) = 0.24. Thus there are two roots and the
gstop vector function is (

U3(0.2, t)− 0.24
U4(0.2, t)− 0.24

)
.

Inside RT, we make one call to the VALUES with x = 0.2. The VALUES
routine returns a vector of the four solution component values for this value of
x and at the current time. The difference between the third component of the
returned solution approximation and the target value, 0.24, is then assigned to
the first component of RVAL while the difference between the fourth component
of the returned solution approximation and the target value, 0.24, is assigned to
the second component of RVAL. DASKR checks, on every step, to see if either
component of RVAL changes sign, thereby monitoring both of the events over
the duration of the computation.

The main program first initializes the computation with calls to the BA-
COLI95 INIT and SETSOL, and then calls BACOLI95. The solver returns
with an indication that one of the roots has been found. (The specific root that
has been found is specified by the solver.) For this example, the first root that
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Figure 2: Third component of the numerical solution to CSRM when
U3(0.2, t) ≈ 0.24; this occurs when t ≈ 1.2008. It can be seen from the above
plot that this solution component, at x = 0.2, has a value of ≈ 0.24.

is found corresponds to the gstop function component, U3(0.2, t)−0.24, and this
root is found for t ≈ 1.2008. The main program writes out the solution for this
event time. See Figure 2 for a plot of the solution at the time of this first event.
The main program then calls BACOLI95 again in order to continue the com-
putation. Since the problem has not changed, a warm start can be employed.
BACOLI95 returns a second time with an indication that a root has been found.
In this case the root of the gstop function component, U4(0.2, t)−0.24, is found
for t ≈ 1.8816. The solution at this time is then printed out and the compu-
tation is terminated. See Figure 3 for a plot of the solution at the time of the
second event.

4.3 Layer Merge Detection for the Two Layer Burgers’

Equation

The Two Layer Burgers’ Equation (TLBE) is based on the PDE, (11), but
with boundary conditions at x = 0 and x = 1 (t > 0) and an initial condition
at t0 = 0 (0 ≤ x ≤ 1) taken from the exact solution,

u(x, t) =
0.1e−A + 0.5e−B + e−C

e−A + e−B + e−C
,

where,

A =
0.05

ε
(x − 0.5 + 4.95t), B =

0.25

ε
(x − 0.5 + 0.75t), C =

0.5

ε
(x − 0.375),
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Figure 3: Fourth component of the numerical solution to CSRM when
U4(0.2, t) ≈ 0.24; this occurs when t ≈ 1.8816. It can be seen from the above
plot that this solution component, at x = 0.2, has a value of ≈ 0.24.

where ε is a problem-dependent parameter. For this example, we choose ε =
10−3. When t0 = 0, the solution has two sharp layers, one at x = 0.25, where
the solution transitions rapidly from approximately 1.0 to approximately 0.5,
and one at x = 0.5, where the solution transitions rapidly from approximately
0.5 to approximately 0.1. As t increases, these layers move to the right and
eventually merge, forming a single layer. See Figure 1 of [28] for a plot of the
solution to this problem.

Our goal in this example is to determine the time at which the two layers
merge. Since the left layer corresponds to a sharp transition in the solution
value from approximately 1.0 to approximately 0.5, we will therefore define the
location of this layer to be at the point, xL, where the solution has the value
0.75, halfway through the transition in the solution values that characterizes
this layer. Similarly, since the right layer corresponds to a transition in the
solution value from approximately 0.5 to approximately 0.1, we will define the
location of this layer to be at the point, xR, where the solution has the value
0.3, halfway through the transition in the solution values that characterizes this
layer. Even after the layers merge, xL will always be slightly to the left of xR.
An examination of these values after the layers have merged shows that, for the
above choice of ε, xL and xR remain a distance of about 0.0049 ≈ 5ε apart for
the rest of the computation, i.e., for t values after the time at which the layers
merge. Thus there will be one root and the gstop function will be |xL−xR|−5ε.
We will solve this problem using a tolerance of 10−6.

Within the RT routine, we begin by evaluating the approximate solution
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Figure 4: Numerical solution, U(x, t), to TLBE when the two layers merge;
this occurs when t ≈ 0.622056.

at the endpoints of the spatial domain. These values are then used as input
to a bisection algorithm that is used to determine the point, xL, in the spatial
domain where U(xL, t) = 0.75, the location of the left layer for the current time,
t. Similarly, we use a second bisection algorithm to determine the point, xR, in
the spatial domain where U(xR, t) = 0.3, the location of the right layer for the
current time, t. And then, as indicated above, the |xL − xR| − 5ε is assigned to
the RVAL output argument of RT in order to define the event for this example.

The corresponding main program first initializes the computation with a call
to the BACOLI95 INIT routine and then makes a call to the SETSOL routine.
This is followed by a call to the BACOLI95 solver. The solver then returns
with an indication that the root has been found. For this example it turns out
that the two layers are determined to have merged for t ≈ 0.622056. The main
program writes out the solution at the time of the event and then terminates.
See Figure 4 for a plot of the solution at the time of the event.

4.4 Critical Tumor Mass Detection in a Brain Tumor Model

This problem (BTM) models the growth of a brain tumor within a region
of the brain that includes three consecutive regions involving gray-white-gray
matter [4] with a corresponding discontinuous diffusion coefficient. We consider
a modification of this model in which the discontinuous diffusion coefficient that
arises due to the different brain matter regions (grey or white) is replaced with
a continuous diffusion coefficient that has sharp layer regions corresponding to
the transitions between the brain matter regions.
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Figure 5: Diffusion coefficient, D(x) (15), with w1 = −0.5, w2 = 0.5, γ = 0.2,
and l = 30.

The PDE for this problem is

ut(x, t) = (D(x)ux(x, t))x = Dx(x)ux(x, t) + D(x)uxx(x, t), (14)

where,

D(x) =

((
1

e−l(x−w1) + 1

)
+

(
1

el(x−w2) + 1

)
− 1

)
(1 − γ) + γ, (15)

approximates a step function whose value to the left and right of the region
[w1, w2] (a subregion of the spatial domain, [a, b]) is γ, and whose value within
the region [w1, w2] is 1. The parameter l controls the sharpness of the transition
layers between [w1, w2] and the rest of the spatial domain. We choose w1 = −0.5,
w2 = 0.5, γ = 0.2, and l = 30. In Figure 5, we give a plot of D(x) for the above
choice of parameters on [−5, 5]. The boundary conditions are

ux(a, t) = 0, ux(b, t) = 0,

where a = −5, b = 5, and the initial condition (at t0 = 0) is

u(x, 0) =
e

−(x−ξ)2

η2

η
√

π
,

where ξ = −2 and η = 0.2. This gives an initial solution that has a spike of
height approximately 2.8 centered at x = −2. We choose a tolerance of 10−6.
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The tumor concentration, c(x, t), is obtained from the solution, u(x, t), of
the above PDE from the equation,

c(x, t) = etu(x, t).

The tumor grows both in size and width across the spatial domain as time
progresses, with different growth rates in the grey and white matter regions, as
determined by the different values of the diffusion coefficient across the spatial
domain.

For this problem we wish to find the time at which the total mass of the
tumor reaches the critical value of 10. The mass of the tumor at a given point in
time is obtained by integrating the tumor concentration, c(x, t), over the spatial
domain [a, b]. Thus, each time the RT routine is called, we need to compute an
approximation to the integral of the approximate solution, U(x, t), over [a, b]. To
do this, we will use a Gaussian quadrature rule on each subinterval of sufficiently
high degree that the integral of U(x, t) over the subinterval will be computed
to high accuracy. (It may be possible to obtain a more efficient computation
by using an adaptive quadrature routine to approximate the integral of U(x, t)
over [a, b] to an accuracy that is consistent with the tolerance employed in the
computation of U(x, t) but we do not consider this here since the specific way
in which the integral is computed is not central to our discussion.)

Inside the RT subroutine, we first compute the specific Gauss points and
weights for use on each subinterval of the current spatial mesh. We then call
the VALUES routine with the Gauss points as input to (simultaneously) eval-
uate the approximate solution at all Gauss points on all subintervals. We then
multiply these values by the appropriate Gauss weights and sum over all subin-
tervals to get an approximation to the integral of U(x, t), over [a, b]. Finally, we
multiply this integral approximation by et to obtain an approximation to the
mass of the tumor over [a, b] at the current time t. The gstop function in this
case is the difference between the approximate mass of the tumor at the current
time and the target value of 10.

The corresponding main program, after calling BACOLI95 INIT and SET-
SOL, calls BACOLI95 to determine the point in time where the approximate
tumor mass reaches the critical value of 10. We find that this happens when
t ≈ 2.30258. The main program prints out the solution and then terminates.
See Figure 6 for a plot of the approximate concentration, C(x, t) = etU(x, t),
where U(x, t) is the approximate solution to (14), at the time of the event.

4.5 Steady State Detection via Layer-boundary Tracking

for the One Layer Burgers’ Equation

This problem also considers the OLBE and, for this example, the event detection
task is to discover when the solution reaches steady state.

For a typical problem, the detection of steady state requires a more elaborate
computation (see the next two examples) but for the OLBE, the behavior of
the solution makes obtaining the answer to this question straightforward.
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Figure 6: Approximate concentration, C(x, t), for BTM when the mass of the
tumor reaches the critical value of 10; this occurs when t ≈ 2.30258.

Recall that the OLBE has a solution that, initially, has a sharp layer region
at x ≈ 0.25, and, as t goes from 0 to 1, the layer moves to the right and is
located at x ≈ 0.75 for t = 1. At any point in time, to the left of the layer, the
solution value is approximately 1.0 while to the right of the layer, the solution
is approximately 0.0.

At some point in time after t = 1, the layer moves past the right boundary,
and from that point in time onward, the solution is equal to 1 across the entire
spatial domain [0, 1], i.e., the solution has reached a steady state. Thus the
determination of the time at which the solution reaches steady state is, for this
problem, equal to the time at which the moving layer passes beyond the right
boundary. This will be the time at which the solution at the right boundary
equals 1, since, prior to this time, the solution at the right boundary will always
be less than 1. Thus, for this problem, the determination of the time when
the solution reaches steady state reduces to determining when the approximate
solution, U(x, t), satisfies the condition U(1, t) ≈ 1, and we can use event detec-
tion to determine when this happens. For this example, we choose a tolerance
of 10−6.

The RT subroutine and the main program are quite similar to those for the
first example. The computation terminates after the event has been found.

For this example, BACOLIKR determines that steady state has been reached,
i.e., U(1, t) ≈ 1.0, for t ≈ 1.6. (We do not provide a figure showing the solution
at this point in time since it is approximately equal to 1.0 across the entire
spatial domain.)
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4.6 Steady State Detection for the Cahn-Allen Equation

The Cahn-Allen Equation (CaAl) [1] models phase separation in multi-component
alloy systems. It has the form

ut(x, t) = εuxx(x, t) − u(x, t)3 + u(x, t),

where ε is a problem dependent parameter which we choose to be 10−6 for this
investigation. The boundary conditions are,

ux(0, t) = 0, ux(1, t) = 0,

and initial solution is,
u(x, 0)) = 0.01 cos(10πx).

This initial solution is a low amplitude oscillating function with a period of
0.2. As time proceeds, this initial solution grows in amplitude and develops (at
steady state) into a step function that has a series of regions where the solution
value is approximately constant, alternating in value between 1 and -1, with
sharp transition layers from one region to the next. See Figure 7.

Our goal is to determine the time at which the numerical solution to the
Cahn-Allen equation reaches steady state (to within the tolerance with which
the numerical solution is computed). We choose a tolerance of 10−8.

We will define steady state to have been reached when the absolute value
of the time derivative of the solution over the spatial domain has (effectively)
reached a value of 0. This will be when the absolute value of time derivative
of the solution, over the spatial domain, is as small as the tolerance with which
the numerical solution has been computed.

In order to assess the size of the absolute value of the time derivative of the
solution, at a given point in time, over the spatial domain, we will compute an
approximation to the integral of |Ut(x, t)| over [0, 1]. The gstop function value

will be [
∫ 1

0
|Ut(x, t)|dx− tol], where tol is the user tolerance.

Within the RT routine, we first compute the Gauss points and weights on
each subinterval of the spatial mesh. We then call the VALUES routine with the
Gauss points as input to evaluate the time derivative of the approximate solution
at the Gauss points on all subintervals. In order to obtain values of the time
derivative of the approximate solution, we pass the vector of time derivatives
of the B-spline coefficients into the VALUES routine. We then multiply the
absolute values of these time derivatives by the appropriate Gauss weights and
sum over all subintervals to get an approximation to the integral of |Ut(x, t)|
over [0, 1], for the current time. The gstop function in this case is the difference
between this integral approximation and the tolerance with which the numerical
solution is computed.

The corresponding main program, after calling BACOLI95 INIT and SET-
SOL, calls BACOLI95 to determine the time at which the approximate solution
reaches steady state (as defined above). We find that the solution reaches steady
state when t ≈ 17.684440. The main program prints out the solution and then
terminates. The solution at this time is shown in Figure 7.
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Figure 7: Numerical solution, U(x, t), to CaAl when the approximate solution
reaches steady state; this occurs when t ≈ 17.684440.

4.7 Steady State Detection for the Gierer-Meinhardt Model

The Gierer-Meinhardt Model (GMM) [16] is an activator-inhibitor system as-
sociated with the modeling pattern formation in biological systems. A key
phenomenon in such systems is that for certain parameter choices it is possible
to observe spontaneous pattern formation from an initially (almost) homoge-
neous initial state. The form of the Gierer-Meinhardt Model we will consider
involves a PDE system of the form,

at(x, t) = ε2axx(x, t)− a(x, t) + a(x, t)2/h(x, t),

τht(x, t) = Dhxx(x, t)− µh(x, t) + a(x, t)2,

where ε, τ , D, and µ are problem dependent parameters. For this investigation,
we choose ε = 0.1, τ = 1, D = 0.1, and µ = 1. The boundary conditions are

ax(a, t) = hx(a, t) = 0, ax(b, t) = hx(b, t) = 0,

where the spatial domain is [a, b]. For this example, we choose a = −2, b = 2.
The initial solutions are,

a(x, 0) = h(x, 0) = 0.1564 + 0.01 sin(10πx), h(x, 0) = 0.1564 + 0.01 sin(10πx),

which corresponds to setting each solution component to a constant plus a small
amount of high frequency noise.

The two solution components start out as almost constant functions but,
over time, the first component develops stable spikes, reaching a maximum of
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approximately 1.8, with troughs in between of magnitude approximately 0.1.
The second solution component develops a smoother solution profile, oscillating
between values of approximately 1.4 and approximately 0.7 over the spatial
domain.

Our goal in this example is to determine the time at which the spike solution,
i.e., the first solution component of this model, reaches a steady state. That
is, we will look for a time at which the time derivative of the first solution
component is as small as the tolerance with which the numerical solution has
been computed. We choose a tolerance of 10−6.

As was the case for the previous example, we will define the time derivative
of the first solution component to be sufficiently small when the integral of the
absolute value of the time derivative of the first solution component over [a, b]
is approximately equal to the user tolerance. The gstop function will be the
difference between this integral approximation and the user tolerance.

The organization of the RT routine in this case is similar to that of the previ-
ous example. We compute the Gauss points and weights on each subinterval of
the spatial mesh and then call the VALUES routine to obtain values of the time
derivative of the approximate solution at the Gauss points. We then compute
the weighted sum of the absolute values of the time derivatives to obtain an
approximation to the integral of |at(x, t)| over [a, b]. The gstop function is the
difference between this integral approximation and the tolerance.

The main program, after calls BACOLI95 INIT and SETSOL, then calls
BACOLI95 to determine the point in time where the first component of the
approximate solution reaches steady state. We find that the solution reaches
steady state when t ≈ 746.846. The main program then prints out the solution
and terminates. See Figure 8 for a plot of the two solution components at steady
state.

4.8 Event Detection in the Heat Equation with Changes

in the Boundary Conditions at Unknown Times

(This problem was communicated (privately) to us by Sandeep Chatterjee.)
For this problem, the PDE is the simple heat equation,

ut(x, t) = κuxx(x, t),

where κ is a problem dependent parameter. The left boundary condition is
initially ux(a, t) = α and stays in this form until some unknown point in time
at which u(a, t) reaches a critical value, ucrit. At that point in time, the left
boundary condition suddenly changes to ux(a, t) = −γu(a, t). Similarly, the
right boundary condition is initially ux(b, t) = α until some unknown point in
time (generally different from the time of the event at the left boundary) at
which u(b, t) = ucrit, and then the right boundary condition suddenly changes
to ux(b, t) = −γu(b, t).

The change in each boundary condition will be discontinuous unless the
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Figure 8: Numerical solution components, a(x, t) (solid curve) and h(t) (dashed
curve), to GMM when the solution reaches steady state; this occurs when
t ≈ 746.846.

boundary continuity condition,

α = −γucrit, (16)

is satisfied. (To see this, note that at the point in time when u(a, t) = ucrit,
we switch from the original left boundary condition, ux(a, t) = α, to the new
one, ux(a, t) = −γu(a, t) = −γucrit. Therefore, unless α = −γucrit, there is a
discontinuous change in the left boundary condition. A similar argument holds
for the right boundary condition.)

For this example, we choose the initial solution to be

u(x, 0) = 10e−100(x−0.75)2 + αx.

This initial solution has a peak equal to 10+0.75α at x = 0.75 and the solution
on either side of the peak rapidly decays to αx. This makes the spatial deriva-
tive of the initial solution (essentially) consistent with the boundary conditions
immediately after t = 0. (At t = 0, the first spatial derivative of the solution
at the boundaries is (essentially) α; for t immediately after t = 0, the boundary
conditions require that the first spatial derivative of the solution must equal
α.) We choose the tolerance to be 10−6 and we will terminate the computation
when tf = 5.0.

4.8.1 Continuous boundary conditions

In this subsection, we consider a version of this problem in which the parameters,
α, γ, and ucrit are chosen to satisfy the above boundary continuity condition
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(16). We will refer to this instance of this problem as the Heat equation with
Boundary Conditions: Continuous case (HBCC).

We will choose ucrit to be 1.1. This means that the boundary continuity
condition (16) will force α = −γ × 1.1. For this example, we choose α = 1.0
and then γ becomes −1.0/1.1.

Since the boundary conditions correspond to the algebraic conditions in the
DAE system that is solved by DASKR, the above choice of parameters also
means that the algebraic equations change in a continuous way at the time of
each event, which in turn means that the B-spline coefficients that appear in
the algebraic equations change in a continuous way. However, an examination
of the time derivatives of the algebraic equations shows that they do not change
continuously at the time of an event. (To see this, note that the time derivative
of the algebraic constraint corresponding to the left boundary condition prior
to the event is simply uxt(a, t) but after the event, it is uxt(a, t) + γut(a, t). A
similar situation holds for the right boundary condition.) Consequently, the time
derivative of at least one of B-spline coefficients that appears in each algebraic
constraint must change discontinuously at the time of the event, in order to
satisfy the new boundary condition that is imposed immediately after the event.
Due to this discontinuity in the time derivative of the B-spline coefficient(s), a
cold start should be performed after each event. See below for further discussion
on this point.

The organization of the RT routine in this case is straightforward. We
call the VALUES routine to get solution values at the endpoints of the spatial
domain and then the gstop vector function is [U(0, t)− ucrit, U(1, t)− ucrit]

T .
In the main program, we first call BACOLI95 INIT with NRT = 2 since there

are two events to be tracked. We also call SETSOL as usual. Then BACOLI95
is called at t = 0 with the boundary routines BNDXA1 and BNDXB1, corre-
sponding to the ux(a, t) = α and ux(b, t) = α conditions. The main program is
setup to handle whichever boundary event happens first.

At the end of this first return from BACOLI95, we access the JROOT array
to determine which of the events has been detected. Based on an inspection of
JROOT, the main program writes out a message indicating which of the two
boundaries satisfied the event condition. The time and corresponding solution
values across the spatial domain are written out and then the computation
continues. BACOLI95 is called again, with a cold start. This call uses the
BNDXA2 routine instead of the BNDXA1 routine if the left boundary event
is detected, or the BNDXB2 routine instead of the BNDXB1 routine if the
right boundary event is detected. The BNDXA2 routine imposes the ux(a, t) =
−γu(a, t) boundary condition while the BNDXB2 routine imposes the ux(b, t) =
−γu(b, t) boundary condition.

Next BACOLI95 returns when the second event is found. Again, JROOT
is examined to determine which event has been found and the time and corre-
sponding solution values across the spatial domain are written out.

BACOLI95 is called again, with a cold start, and with inputs BNDXA2 and
BNDXB2 so that both of the new boundary conditions, ux(a, t) = −γu(a, t)
and ux(b, t) = −γu(b, t), are imposed. BACOLI95 returns at tf and the main
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Figure 9: Numerical solution, U(x, t), to HBCC, when the solution at the
right boundary reaches the critical value, ucrit = 1.1; this occurs when t ≈
5.45821× 10−3.

program outputs the final solution.
For this example, with the parameter values chosen as indicated above, we

find that the first event occurs at the right boundary when t ≈ 5.45821× 10−3.
The solution at this point in time is shown in Figure 9. We find that the second
event occurs at the left boundary when t ≈ 1.30837. The solution at this point is
time is shown in Figure 10. The integration terminates at tf = 5. The solution
at this point is time is shown in Figure 11.

For the computation described above, where we first determine the location
of the event and then employ a cold start to restart DASKR after each event,
we found that the time integration requires a total 316 accepted time steps.
When we repeat the above computation, except that we perform a warm start
after each event, we find that the computation requires DASKR to take 498
accepted time steps. As expected, due to the discontinuity in the time derivative
of at least one B-spline coefficient immediately after each event, DASKR has
substantial difficulty in stepping past the discontinuity. It is well-known that
the presence of discontinuities can lead to substantial difficulties for the time
integration. See, e.g., [15], [13], where the multi-step and Runge-Kutta methods,
respectively, are studied for ODEs where discontinuities arise. See, e.g., [21] and
references within, for work on the determination and handling of discontinuities
for the DAE case.
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Figure 10: Numerical solution, U(x, t), to HBCC, when the solution at the left
boundary reaches the critical value, ucrit = 1.1; this occurs when t ≈ 1.30837.
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Figure 11: Numerical solution, U(x, t), to HBCC, when t = 5.
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Figure 12: Numerical solution, U(x, t), to HBCD, when the solution at the right
boundary reaches the critical value, ucrit = 1; this occurs when t ≈ 3.64470×
10−2.

4.8.2 Discontinuous boundary conditions

In this subsection we choose the parameters so that there are discontinuous
changes in the boundary conditions after each event. We will refer to this
instance of this problem as the Heat equation with Boundary Conditions:
Discontinuous case (HBCD). We choose α = 0, ucrit = 1, and γ = 0.5. This
means that there will be jump discontinuities, of magnitude 0.5, imposed on the
first spatial derivative of the solution at the boundaries.

As discussed earlier, the boundary conditions correspond to the algebraic
equations in the DAE system that is given to DASKR. In this instance of the
problem, since there is a jump discontinuity in one of the boundary conditions
after each event, there is a jump discontinuity in the corresponding algebraic
equation, which in turn forces a jump discontinuity in at least one of the B-
spline coefficients at the time of each event. We therefore expect that the
presence of a discontinuity in at least one of the B-spline coefficients will lead
to substantial inefficiencies in the time integration as DASKR attempts to step
past the discontinuity, unless a cold start is performed after each event.

For this case we find that the first event occurs at the right boundary for
t ≈ 3.64470× 10−2. The solution at this point in time is shown in Figure 12.
BACOLI95 is then restarted with a cold start and the new right boundary
condition is imposed. We find that the second event occurs at the left boundary
for t ≈ 1.16926. The solution at this point in time is shown in Figure 13.
We then restart BACOLI95 again with a cold start and impose the new left
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Figure 13: Numerical solution, U(x, t), to HBCD, when the solution at the left
boundary reaches the critical value, ucrit = 1; this occurs when t ≈ 1.16926.

boundary condition. The solver then integrates to tf = 5. The solution at this
point is time is shown in Figure 14.

For the computation described above, DASKR requires 291 accepted time
steps to complete the integration. When we repeat the above computation,
except that we perform a warm start after each event, we find that the compu-
tation requires DASKR to take 568 accepted time steps. As expected, due to
the discontinuity after each event, DASKR has substantial difficulty in stepping
past the two event times when warm starts are employed.

Comparing the number of time steps taken by DASKR for the cases of con-
tinuous and discontinuous boundary conditions, we note that the performance
of DASKR is comparable in both cases. This is due to the fact that the time
integrator must deal with discontinuities immediately after each event in either
case. In particular, even for the case where the boundary conditions change
continuously at the time of the event, the time derivatives of the boundary con-
ditions do not and this leads to discontinuities in the time derivatives of the
B-spline coefficients at the time of the event.

5 Summary, Conclusions, and Future Work

This report introduces, BACOLIKR, a new error control PDE solver that fea-
tures time event detection. To our knowledge, this is the only error control PDE
solver with this capability. We described the modifications to the previously de-
veloped error control PDE solver, BACOLI, and the time-integrator, DASKR,

30



0 10.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9

1.76

1.78

1.75

1.77

1.79

1.755

1.765

1.775

1.785

1.795

Figure 14: Numerical solution, U(x, t), to HBCD, when t = 5.

that were required in order to obtain BACOLIKR. We also provided a number
of examples to demonstrate how a variety of event detection problems can be
handled by the new solver.

We found that, with a relatively straightforward customizations of the main
program and the rootfinding routine that characterizes a given event or events,
it was possible to use BACOLIKR to easily solve a variety of PDE-based event
detection problems.

We observed that when a problem is altered after an event and there is an
expectation that the computation should continue past the event, it is impor-
tant that BACOLIKR be restarted with a cold start due to the well-known
difficulties that arise for error control time integration solvers in the presence of
discontinuities in the DAE system obtained from the discretization of the PDE
system.

Regarding future work, as mentioned earlier, since DASKR also has a feature
that allows it to efficiently treat large DAE systems using Krylov methods, it
would be worthwhile to modify BACOLIKR to take advantage of this capability
in order to improve the efficiency of the solver for problems which lead to large
DAE systems. Another direction for future work would involve the development
of an updated version of the EBACOLI solver, mentioned earlier in this report,
so that an event detection capability could be added to that solver.
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