
On the difference set of two transductions

Stavros Konstantinidisa,∗, Nelma Moreirab, Rogério Reisb, Juraj Šebejc

aSaint Mary’s University, Mathematics & CS, 923 Robie Str, B3H 3C3, Halifax, Nova
Scotia, Canada

bCMUP & DM, DCC, Faculdade de Ciências da Universidade do Porto, Rua do Campo
Alegre, 4169-007, Porto, Portugal

cInstitute of Computer Science, Faculty of Science, P. J. Šafárik
University, Košice, Slovakia

Abstract

The difference set ∆s,t of two (nondeterministic, in general) transducers s, t is
the set of all input words for which the output sets of the two transducers are
not equal. When the two transducers realize homomorphisms, their difference
set is the complement of the well known equality set of the two homomorphisms.
However, we show that transducer difference sets result in Chomsky-like classes
of languages that are different than the classes resulting from equality sets. We
also consider the following word problem: given transducers s, t and input w,
tell whether the output sets s(w) and t(w) are different. In general the problem
is PSPACE-complete, but it becomes NP-complete when at least one of the
given transducers has finite outputs. We also provide a PRAX (polynomial
randomized approximation) algorithm for the word problem as well as for the
NFA (in)equivalence problem. Our presentation of PRAX algorithms improves
the original presentation.

Keywords: transducer, difference set, equality set, counter machine,
approximation algorithm, randomized algorithm, NFA equivalence

1. Introduction

We are interested in the difference set ∆S,T between two transductions S
and T that have the same domain:

∆S,T = {w ∈ domS | S(w) ∕= T (w)};

Research supported by NSERC, Canada (Discovery Grant of S.K.) and by CMUP through
FCT project UIDB/00144/2020.

∗Corresponding author
Email addresses: s.konstantinidis@smu.ca (Stavros Konstantinidis),

nelma.moreira@fc.up.pt (Nelma Moreira), rogerio.reis@fc.up.pt (Rogério Reis),
juraj.sebej@upjs.sk (Juraj Šebej)

Preprint submitted to Elsevier January 5, 2024

that is, the set of input words for which the outputs of the two transducers are
different. We also write ∆s,t, for ∆S,T when s, t are transducers realizing S, T :

∆s,t = {w ∈ doms | s(w) ∕= t(w)}.

The theme of this research is a generalization of the work in [3], where the
authors study the language that distinguishes two states of a deterministic finite
automaton. The research in [3] is inspired by older studies on word experiments
that distinguish certain aspects of automata states [7]. Here we consider the
language that distinguishes the behaviour of two transducers. It is not difficult
to see that this is equivalent to distinguishing the behaviour of two states of one
transducer. Here moreover, we deal with transducers that are nondeterministic
in general. When we consider the complementary notion of the equality set of
two transductions (or transducers)

ES,T = {w ∈ domS | S(w) = T (w)}, Es,t = {w ∈ doms | s(w) = t(w)},

then we have a generalization of the classic notion of the equality set of two
homomorphisms [28, 14], as well as the equality set of two deterministic gen-
eralized sequential machines or functional transducers1 [5, 6, 4]. We note that
any homomorphism h : Σ → Γ is total on Σ, that is, the domain of h is
Σ. Some authors exclude the empty word from the equality set Eg,h of two
homomorphisms h, g, as Eg,h is directly connected to the Post correspondence
problem. Here, however, we do allow the empty word to be in Eg,h (which is
also the approach taken in [28, 5]).

Our generalization from deterministic automata, or functional transductions,
to transductions comes with a high price: Membership to the difference (or
equality) set of two given transducers s, t can be a hard problem; so we are
interested in various ways to get as much information as possible about the
difference set in question, considering also cases where the transducers involved
are of a certain type. In particular, we consider the following questions.

(In all questions, the transductions/transducers involved in a difference set
are supposed to have the same domain.)

Deciding the word problem ∆: Given two transducers s, t and a word w,
decide whether s(w) ∕= t(w), that is, w ∈ ∆s,t. As stated, this is the unre-
stricted word problem. We are also interested in restricted versions of the
word problem when we have as a promise that the two given transducers
are of certain types. For example, the word problem for length-preserving
transducers is to decide whether s(w) ∕= t(w) when we know that for both
s, t, the length of any output word is equal to the length of the word that
was used as input. About the word problem, we want to know how hard
(or simple) it is: is it decidable in linear time, is it in the class NP, is it

1Reference [5] does consider the equality set of two transductions but their definition is
different from ours.

2

in the class PSPACE? The answer depends on the restrictions on the
transducers involved.

Chomsky-like type of the languages ∆S,T : For any fixed, but arbitrary,
transductions S, T , we want to know the type of the language ∆S,T : is it
regular, is it context-free and non-regular, is it non-context-free? The an-
swer depends on the two transductions involved. And if ∆S,T is a subset
of some class C, for all transductions S, T of certain types (e.g., when S, T
are functional), is every language L ∈ C equal to the difference set ∆S,T

of two transductions S, T of the said types?

Remark 1. The difference set of any two functional transductions is a one-
counter language [4], while their equality set is a context-sensitive language—
this follows from the result of [6] that the fixed point language {w ∈ domS : w ∈
S(w)} of any transduction S is context-sensitive and the observation that the
equality set of any two functional transductions F,G is equal to the fixed point of
the transduction G−1 ◦ F . We also note that there are functional transductions
F,G whose equality set is not context-free [4].

Structure of the paper and main results. The next section contains
basic terminology and notation. Section 3 shows a few examples of difference
sets and shows that the word problem can be hard (Theorem 1). Section 4 shows
that there is a PRAX algorithm for the word problem (Theorem 2), as well as
for the problem of NFA (in)equivalence. Our presentation of PRAX algorithms
improves the original presentation in [19]. Section 5 shows that the difference
set of two recognizable transduction is always regular and can be effectively
constructed (Theorem 3). Section 6 shows a Chomsky-like hierarchy of classes of
difference sets related to each other or to known ones (like the context-sensitive
languages) (Theorem 4). Finally Section 7 contains a few concluding remarks.

2. Basic Terms and Background

We assume the reader to be familiar with basics of formal languages, see
e.g., [15], [22], [24], [27]. Some notation: ε = empty word; Σ,Γ : arbitrary
alphabets; L̄ = the complement of the language L. We also assume the reader
to be familiar with basics of transductions and transducers, see e.g., [2], [25],
[36]. A (finite-state) transducer is a 6-tuple t = (Q,Σ,Γ, E, s, F) such that Q is
the set of states, s ∈ Q is the start (initial) state, F ⊆ Q is the set of final states,
Σ,Γ are the input and output alphabets, respectively, and E is the finite set
of transitions (edges). Without mention, we assume that all transducers are in
standard form: in each transition (p, x/y, q) ∈ E, we have that the input label
x is empty or a single symbol, and the same for the output label y. The set
of outputs of t on input w is denoted by t(w). The relation R(t) realized by
t is the set {(w, z) : z ∈ t(w)}. A transduction T is any relation realized by a
transducer. We write T (w) to denote the set of outputs of T on input w; hence,
T (w) = t(w) when T = R(t).

Some classes of transductions:

3

• FINOUT: transductions T having finite outputs: the set T (w) is finite for
all inputs w.

• FINVAL: finite valued transductions T : there is k ∈ N0 such that the set
T (w) has at most k elements for all inputs w.

• FUNC: functional transductions T : the set T (w) has at most one element
for all inputs w.

• We have that FUNC ⊊ FINVAL ⊊ FINOUT.

We use the same terms for transducer types as for transduction classes; e.g., a
transducer t has finite outputs if the transduction R(t) has finite outputs. We
note that the term “T has finite outputs” is not standard. It is referred to as “T
is simply finitely ambiguous” in [23] and “T is finitely ambiguous” in [29]. On
the other hand, it is rather standard to use the term “ambiguous” in connection
with the different paths followed by a transducer on a given input word w, as
opposed to the different outputs produced on w [12].

Many “natural” (types of) transducers have finite outputs: any transducer
for the set of prefixes (or suffixes) of a given input word; for all d ∈ N, any trans-
ducer td realizing the up-to-d Hamming, or Levenshtein, distance (z ∈ td(w)
iff the distance of w, z is ≤ d); any transducer realizing the strict radix order;
any length-preserving transducer; any exponentially ambiguous transducer = a
transducer whose input part (the NFA made if we drop the output labels of
the transducer) has O(2poly|w|) paths for each input word w. Observe that any
exponentially ambiguous transducer has finite outputs. (See, e.g., [13, 21] for
NFA ambiguity.)

A nondeterministic finite automaton (NFA), is a 5-tuple n = (Q,Σ, E, s, F),
where the components are as in the case of a transducer, except that a transition
of n is a tuple (p, x, q); that is, it has only an input label x ∈ Σ∪{ε}. As usual,
L(n) is the language accepted by n = the set of all words formed in the paths
of n from the start state s to a final state in F .

A (nondeterministic) one counter automaton (or machine) is a pushdown
automaton where the pushdown alphabet has only one symbol plus a special
bottom symbol [2]. We denote by OCL the class of languages accepted by
one counter automata. As the pushdown can only store one symbol and can
be tested for emptiness via the special stack bottom, the pushdown is called
a counter. A (nondeterministic) counter machine with parameters (c, r) is an
automaton with c counters such that each counter can do at most r reversals [17].
We denote by NCM(c, r) the class of languages accepted by counter machines
with parameters (c, r), and by NCM the union of all NCM(c, r). We note that
OCL ∕= NCM: the language {anbn : n ≥ 1} is in OCL but not in NCM,
[16], and the language {anbncn : n ≥ 0} is in NCM(2, 1) but not in OCL.

Probability distributions. Let X be a countable nonempty set. A probability
distribution on X is a function D : X → [0, 1] such that

x∈X D(x) = 1. The

domain of D, denoted by domD, is the subset {x ∈ X : D(x) > 0} of X. If
X = {x1, . . . , xℓ}, for some ℓ ∈ N, then we write

D =

D(x1), . . . , D(xℓ)

.

4

If X ⊆ N0 then the distribution D is called a length distribution. Following [11],
we have the below definition.

Definition 1. Let D be a probability distribution on X. For any subset S of
X, we define the quantity

D(S) =

x∈S

D(x) (1)

and refer to it as the probability that a randomly selected element from D is in S.

The notation x
$←− D, borrowed from cryptography, means that x is randomly

selected from D.

The Dirichlet distibution on N0, [10]. For any t > 1, the Dirichlet distribu-
tion Dt is defined such that Dt(n) = (1/ζ(t))(n+1)−t for n ∈ N0, where ζ is the
Riemann zeta function. In [10] the author considers the Dirichlet distribution to
be the basis where “many heuristic probability arguments based on the fictitious
uniform distribution on the positive integers become rigorous statements.”

Augmented length distributions, [19]. Selecting from a length distribution
D could return a very large length ℓ, which can be intractable from an algorith-
mic point of view. For this reason we define the augmented length distribution
DM whose domain consists of all lengths ℓ ∈ domD with ℓ ≤ M plus a special
new symbol ‘⊥’, so the distribution could select the outcome ‘⊥’ instead of a
very large length. We have that

DM (ℓ) = D(ℓ), if ℓ ≤ M, DM (⊥) = D(N>M). (2)

Word distributions. A word distribution W is a probability distribution on
Σ, that is, W : Σ → [0, 1] such that

w∈Σ W (w) = 1. The domain of W is

domW = {w ∈ Σ : W (w) > 0}.

Definition 2. Let D be a length distribution. Then 〈D〉 is the word distribu-
tion such that

dom〈D〉 = {w ∈ Σ : |w| ∈ domD} and 〈D〉(w) = D(|w|)|Σ|−|w|.

Any such word distribution is called a length-based distribution.

For any length distribution D and for all ℓ ∈ N0, we have: 〈D〉(Σℓ) = D(ℓ) and
〈D〉(Σ>ℓ) = D

N>ℓ

.

Let W be a word distribution and let M ∈ N0. The augmented distribution
WM is defined in a natural way:

dom(WM) =

dom(W) ∩Σ≤M

∪ {⊥}, or

dom(W) ∩Σ≤M

if W (Σ>M) = 0;

WM (w) = W (w), for all w ∈ dom(W) ∩Σ≤M ;

WM (⊥) = W (Σ>M) = 1−W (Σ≤M).

5

3. Examples and Basic Results

In this section we first give a few examples that illustrate to some extent the
types of the languages ∆S,T . Then we turn to the main result of this section,
Theorem 1, where we show the upper bound PSPACE on the complexity of
the (unrestricted) word problem ∆ as well as the upper bound NP for ∆fin =
the version of the word problem where the first (at least) transducer has finite
outputs. In fact, not surprisingly, ∆ is PSPACE-hard, but ∆fin is NP-hard.

Example 1. Let PX, SX be the prefix and suffix transductions—thus, PX(w) =
the set of prefixes of w. Their difference set is equal to the set of all words
containing at least two distinct letters. This follows when we note that, if a
word w contains at least two distinct letters, then there is a prefix of w that is
not a suffix of w. Thus, ∆PX,SX is a regular language: ∆PX,SX ∈ REG.

Example 2. Consider the finite valued transductions S, T with domain abab

such that S(an1bm1am2bn2) = {an1 , bm1} and T (an1bm1am2bn2) = {an2 , bm2}.
We have that∆S,T = abab ∩ {anbmambn}m,n∈N0 and ES,T = {anbmambn}m,n∈N0 .
The language ES,T is context-free but not in OCL [35]. On the other hand, we
have that ∆S,T is in OCL, using the facts that

• ∆S,T is the union of four languages: one of them consists of all words
an1bm1am2bn2 with n1 > n2;

• the other three languages correspond to the three constraints n1 < n2,
m1 > m2, m1 < m2;

• all four languages are in OCL; and OCL is closed under union.

Example 3. Consider the functional transductions S, T with domain (a +
b)c(a+ b) such that S(w1cw2) = {w1} and T (w1cw2) = {w2}. Then we have
that ∆S,T = (a+b)c(a+b) ∩ {wcw}w∈(a+b) and ES,T = {wcw}w∈(a+b) . The
language ES,T is not context-free. On the other hand, we have that ∆S,T is in
OCL by Remark 1.

Example 4. Consider the finite valued transductions S, T with domain a+b+c+d+

such that S(an1bm1cn2dm2) = {an1 , am1} and T (an1bm1cn2dm2) = {an2 , am2}.
Then,

∆S,T = {an1bm1cn2dm2 | (n1 ∕= n2 ∧ n1 ∕= m2) ∨ (m1 ∕= n2 ∧m1 ∕= m2)

∨ (n2 ∕= n1 ∧ n2 ∕= m1) ∨ (m2 ∕= n1 ∧m2 ∕= m1)},

which is a NCM language (shown in Theorem 4). On the other hand, the
language is not context-free: this follows from the fact that the language is
bounded (being a subset of abcd) and that the Parikh map of the language
is not a finite union of stratified linear sets [8, pg 160].

Example 5. The languages ∆S,T are in OCL, in both of the following cases

• S(an1bm1cn2) = {an1 , am1} and T (an1bm1cn2) = {an2}.

6

• S(an1bm1cn2) = {an1 , am1} and T (an1bm1cn2) = {an1 , an2}.

In the first case, ∆S,T = {an1bm1cn2 | (n1 = m1 ∧ n1 ∕= n2) ∨ (n1 ∕= m1)} =

{anbncn | n ≥ 0} ∩ abc. The language is in OCL because one of the trans-
ductions is functional (see Theorem 4). In the second case, ∆S,T = {an1bm1cn2 |
m1 ∕= n2}.

Next we determine the complexity of the word problem in Theorem 1. In
case the two given transducers realize homomorphisms, the word problem can be
decided in deterministic logarithmic space (this is because our word problem is
the complement of the word problem for the equality set of two homomorphisms
which is in deterministic logarithmic space [14]). The proof of Theorem 1 uses
the below lemma which is rather folklore, but we include it here for completeness.

Lemma 1. The following statements hold true.

1. For any NFAs n1,n2, we have that L(n1) ⊆ L(n2) iff L(n1)∩Σ≤2s1+s2 ⊆
L(n2), where s1, s2 are the numbers of states of the two NFAs.

2. The problem of deciding whether L(n1) ⊆ L(n2), for given NFAs n1,n2,
is in PSPACE.

Proof. For the first statement, first note that there are DFAs d1,d2 having
at most 2s1 , 2s2 states, which are equivalent to n1,n2. Consider the product
DFA d1 ∩ d2, which has at most 2s1+s2 states and accepts L(n1) ∩ L(n2).

Suppose that L(n1) ∩ Σ≤2s1+s2 ⊆ L(n2), but there is a minimal length word
w ∈ L(n1) − L(n2). Then w has length > 2s1+s2 and the accepting path
of d1 ∩ d2 with label w has a cycle. If we remove the cycle, we get a shorter
accepting path with some label w′ ∈ L(n1)−L(n2), which is impossible. Hence,
L(n1) ⊆ L(n2). The second statement follows by combining the results of
[31, 30, 32, 18]. However, we can also show it directly using the first statement
and the following polynomial space nondeterministic algorithm that decides
whether L(n1) ∕⊆ L(n2): initialize the set variables V1 = {p0} and V2 = {q0},
where p0, q0 are the initial states of n1,n2. Guess up to 2s1+s2 alphabet symbols;
for each symbol σi guessed, compute the next values of V1 and V2, which are
the next sets of states of n1,n2 when the input σi is consumed. After the
last symbol σℓ is processed, return Yes iff V1 contains a final state of n1 and
V2 contains no final state of n2—thus, the algorithm decides whether a word
σ1 · · ·σℓ ∈ L(n1) − L(n2). The decidability of L(n1) ⊆ L(n2) in polynomial
space follows from the fact that PSPACE is closed under complementation.

Theorem 1. The following statements hold true.

1. The word problem ∆ is PSPACE-complete.

2. The word problem ∆fin (where the first, at least, transducer has finite
outputs) is NP-complete.

Proof. First statement: The word problem ∆ is to decide whether s(w) ∕=
t(w), given transducers s, t and word w. The problem is PSPACE-hard be-
cause we can reduce to it the NFA universality problem: given NFA n over

7

some alphabet Σ, decide whether L(n) = Σ. Indeed, we have that L(n) = Σ

iff s(w) ∕= t(w), where s, t, w are constructed in polynomial time as follows: s
realizes {(w, x) : x ∈ L(n)}, t realizes {w} × Σ, and w is any chosen word
over Σ. Now we show that the word problem is in the class PSPACE. First
compute NFAs accepting s(w) and t(w). These NFAs are of sizes O(|s||w|)
and O(|t||w|). Then decide within polynomial space whether these NFAs are
equivalent—see Lemma 1.

Second statement: The word problem ∆fin is NP-hard because we can re-
duce to it the complement of the following coNP-complete problem: given a
block NFA b, that is an NFA accepting fixed-length words of some length ℓ,
decide whether L(b) = Σℓ, [19]. Indeed, for any block NFA b, we have that
L(b) ∕= Σℓ iff s(w) ∕= t(w), where s, t, w are constructed in polynomial time as
follows: s realizes {(w, x) : x ∈ L(b)}, t realizes {w}×Σℓ, and w is any chosen
word in Σℓ. We now show that ∆fin is in NP. Given instance s, t, w, where we
know that s has finite outputs, we describe a nondeterministic polynomial time
algorithm deciding whether w ∈ ∆s,t.

1. construct NFAs m, n accepting s(w), t(w);
2. let n be the number of states of m; // any word in L(m) has length < n

3. construct DFA d accepting all words of length ≥ n;
4. construct NFA (n∩d) accepting all words in t(w) that are of length ≥ n;
5. if (n ∩ d) accepts at least one word return Yes;

// next test whether there is a word in s(w)△t(w) that is shorter than n

6. guess a word z of length < n;
7. if

z ∈ s(w) and z /∈ t(w)

or

z /∈ s(w) and z ∈ t(w)

return Yes;

8. return No

All operations in the above algorithm can be done in polynomial time. Any
word in s(w) cannot be longer than n− 1, so steps 1–5 decide deterministically
whether there is a word in t(w) that is too long to be in s(w). Steps 6–8 use
nondeterminism to decide whether s(w)△t(w) ∕= ∅, knowing that any word in
s(w)△t(w) must be of length < n.

Remark 2. In the proof of the claim that ∆fin is NP-hard, both transducers
s, t are length preserving, that is, |z| = |w| for all z ∈ s(w), and the same for
t. Hence, the restriction of ∆fin to length preserving transducers does not make
the word problem easier.

Remark 3. In [34], the author shows that there is a double exponential algo-
rithm that computes, for any given finite valued transducer s, a set f1, . . . ,fN

of functional transducers such that R(s) = ∪R(fi). The time complexity of
this problem is reduced to single exponential in [26]. This result can be used
to decide in exponential time the version of the word problem restricted to fi-
nite valued transducers. However, the nondeterministic algorithm in the proof
of Theorem 1 is applicable to the proper superclass of transducers with finite
outputs and entails an exponential time deterministic algorithm.

8

4. PRAX Algorithms & the PRAX Algorithm for ∆

As the word problem ∆ is hard, in Theorem 2 of this section we provide a
polynomial time randomized approximation (PRAX) algorithm for ∆. We adapt
the PRAX method introduced in [19] which applies to hard NFA universality
problems. In fact in Lemma 2, we make more clear the concept of PRAX algo-
rithms so that they also apply to the complements of the problems considered
in [19].

The PRAX method of [19]. Let v be a [0, 1]-valued function, that is a
function that maps each problem instance2 x to a value in [0, 1]. Define the
language

Lv = {x : v(x) = 1}.

For the NFA universality problem (whether L(n) = Σ for given NFA n), we
have v(n) = W (L(n)), where W is any word distribution with domain Σ.
Indeed we have that L(n) = Σ iff W (L(n)) = 1. Each real ε ∈ (0, 1) defines
the approximation language

Lv,ε = {x : v(x) ≥ 1− ε}.

The idea here is that, as it is hard to tell whether v(x) = 1, we might be happy to
know that v(x) ≥ 1− ε, where ε is called the (approximation) tolerance. As Lv,ε

can be harder than Lv, [19] defines a PRAX algorithm for Lv to be a randomized
decision algorithm A(x, ε) satisfying the following conditions:

• if x ∈ Lv then A(x, ε) = True;
• if x /∈ Lv,ε then P[A(x, ε) = False] ≥ 3/4;
• A(x, ε) works within polynomial time w.r.t. 1/ε and the size of x.

When A(x, ε) gives the answer False, this answer is correct: x /∈ Lv. If A(x, ε)
returns True then probably x ∈ Lv,ε, in the sense that x /∈ Lv,ε would imply
P[A(x, ε) = False] ≥ 3/4. Thus, when the algorithm returns True, the answer is
correct within the tolerance ε (x ∈ Lv,ε) with probability ≥ 3/4. The algorithm
returns the wrong answer exactly when it returns True and x /∈ Lv,ε, but this
happens with probability ≤ 1/4.

The PRAX method for both 0-1 and non-0-1 problems. Let again
v be a [0, 1]-valued function. We denote by v̄ the [0, 1]-valued function with
v̄(x) = 1 − v(x). While the method of [19] seems to apply only to universality
problems, we see that the language Lv is also equal to {x : v̄(x) = 0}. Thus, we
call the language Lv a 0-1 problem. On the other hand, for given v, we define
the non-0-1 problem to be the language

Kv = {x : v(x) > 0},

2Following the presentation style of [9, pg 193] and [19], we refrain from cluttering the
notation with the use of a variable for the set of instances.

9

which is also equal to {x : v̄(x) < 1}. Our word problem ∆ can be written as

∆ = {s, t, w :

s(w)△t(w)

∕= ∅} = Kv = {s, t, w : W

s(w)△t(w)

> 0},

where we use the value function v(s, t, w) = W

s(w)△t(w)

. As before, each

tolerance ε ∈ (0, 1) defines an approximation language

Kv,ε = {x : v(x) > ε}.

Thus, ∆ε consists of instances for which the symmetric difference of s(w) and
t(w) is significant and should be detected by a randomized algorithm with high
probability.

Definition 3. Let v be a [0, 1]-valued function. A PRAX algorithm for Kv is a
randomized decision algorithm A(x, ε) such that

1. If x /∈ Kv then A(x, ε) = False.

2. If x ∈ Kv,ε then P[A(x, ε) = True] ≥ 3/4.

3. A(x, ε) works within polynomial time w.r.t. 1/ε and the size of x.

A PRAX algorithm is a randomized algorithm which is a PRAX for a 0-1 or a
non-0-1 problem.

Explanation. In the above definition, if A(x, ε) returns True then x ∈ Kv.
If A(x, ε) returns False then probably x /∈ Kv,ε, in the sense that x ∈ Kv,ε

would imply P[A(x, ε) = True] ≥ 3/4. Thus, whenever the algorithm returns
the answer True, this answer is correct: x ∈ Kv; when the algorithm returns
False, the answer is correct within the tolerance ε (x /∈ Kv,ε) with probability
≥ 3/4. The algorithm returns the wrong answer exactly when it returns False
and x ∈ Kv,ε, but this happens with probability < 1/4.

How are PRAX algorithms for 0-1 and for non-0-1 problems related to each
other? Their intuitive duality can be formalized in the following result whose
proof follows from the definitions without complications.

Lemma 2. [PRAX duality.] For any decision algorithm A(· · ·) we denote by
Ā(· · ·) the algorithm that results by simply negating all decisions (truth outputs)
made by A. Let v be a [0, 1]-valued function. We have that A(x, ε) is a PRAX
algorithm for Kv iff Ā(x, ε) is a PRAX algorithm for Lv̄.

We now turn to the PRAX algorithm for the word problem (Theorem 2).
The following lemma is analogous to Lemma 4 of [19]. However, we note that
the proof of the present lemma is simpler and the upper bound is smaller than
that of [19]. We also recall from [19] that the application of the Chebyshev
inequality to a binomial random variable B entails the following inequality for
a > 0.

P[|B − E(B)| ≥ a] ≤ n/(4a2). (3)

10

EstSetSize(x, n,M)

cnt := 0;
repeat n times:

z
$←− WM ;

if

z ∕= ⊥ and z ∈ S(x)

cnt := cnt+1;
return cnt / n;

Note: If the domain of the word
distribution W is finite and its
words are of length ≤ M , then we

can simply use z
$←− W instead of

z
$←− WM and we can omit the

condition z ∕= ⊥.

Figure 1: This random process refers to a particular word distribution W . It
is assumed that each input x describes a language S(x) that can be infinite—
e.g., x can be an NFA and S(x) would be the language accepted by x; or
x can be an instance (s, t, w) of our word problem ∆ and S(x) would be
s(w)△t(w). The returned value is an estimate of the “size” of S(x) w.r.t.
domW , or mathematically an estimate of the probability that a word selected
from W is in S(x)—see Lemma 3.

Lemma 3. Consider the random process in Fig. 1, and let Cnt be the random
variable for the value of cnt when the process returns. Let δ, q ∈ [0, 1]. If q < δ
and W (S(x)) > δ +W (Σ>M) then P[Cnt/n ≤ q] < 1

4n(δ−q)2 .

Proof. Assume q < δ and W (S(x)) > δ +W (Σ>M). Let SM = S(x) ∩Σ≤M .
First note that each selection z is either a word in domW of length ≤ M or ⊥.
Thus, Cnt is binomial: the number of successes = “selections in SM” in n trials.
Hence, E(Cnt) = nW (SM). Thus, we have

P[Cnt ≤ nq] = P[Cnt− E(Cnt) ≤ nq − nW (SM)]

≤ P[|Cnt− E(Cnt)| ≥ nW (SM)− nq]

≤ 1

4n

W (SM)− q

2 <
1

4n(δ − q)2
,

where we note that W (SM) = W (S(x)) − W

S(x) ∩ Σ>M

≥ W (S(x)) −

W (Σ>M) > δ.

Theorem 2. DiffSet

s, t, w, ε

in Fig. 2 is a PRAX algorithm, with respect to

the Dirichlet word distribution, for the word problem ∆.

Proof. For brevity, we use A(α, ε) to refer to DiffSet

s, t, w, ε

. The algorithm

constructs NFAs m,n accepting s(w), t(w) and selects n elements from DM
t ,

where M is such that Dt(Σ
>M) ≤ ε/2—Lemma 6 of [19] says that Dt(Σ

>M) ≤
δ, if M ≥ t−1

1/δ. Each selection ℓ is either ⊥ (corresponding to a word length

that would be too large), or a word length ℓ ≤ M . In the latter case, a word
of length ℓ is selected uniformly at random. Next we need to verify the three
conditions about A(α, ε) in Definition 3. If α /∈ ∆ then s(w)△t(w) = ∅, so

11

DiffSet

s, t, w, ε

compute m := NFA accepting s(w);
compute n := NFA accepting t(w);
n :=

4/ε2⌉;

M := ⌈ t−1

2/ε⌉;

D :=

Dt(0), . . . ,Dt(M), 1−

M
ℓ=0 Dt(ℓ)

;

repeat n times:
ℓ := selectFin(D);
if (ℓ ∕= ⊥) z := selectUnif(Σ, ℓ);
if

ℓ ∕= ⊥ and z ∈ L(m)△L(n)

return True;
return False;

Figure 2: This is the PRAX algorithm for the word problem ∆—see The-
orem 2. The word distribution used is 〈Dt〉, that is the distribution based
on the Dirichlet length distribution Dt, for some t > 1. The function
selectFin(D) selects an element from the finite distribution D = DM

t . The
function selectUnif(Σ, ℓ) selects uniformly a word of length ℓ over Σ.

the algorithm will return False. For the second condition, assume α ∈ ∆ε; then
〈Dt〉

s(w)△t(w)

> ε. Consider the random process in Fig. 1 and assume that

it selects exactly the same words z as A(α, ε) does. Using Lemma 3 for δ = ε/2
and q = 0, we have

P[A(α, ε) = False] = P[Cnt = 0] = P[Cnt/n ≤ 0] <
1

4nδ2
≤ 1

4
.

Hence, P[A(α, ε) = True] > 3/4, as required. The third condition requires
that A(α, ε) works in polynomial time. This follows from standard automata
constructions and the fact that selectFin(D) and selectUnif(Σ, ℓ) can also be
done in polynomial time, [19].

The NFA inequivalence problem is to decide, for given NFAs m,n, whether
L(m) ∕= L(n), which is equivalent to

L(m)△L(n)

∕= ∅, and also equivalent

to 〈Dt〉

L(m)△L(n)

> 0. This problem is PSPACE-complete. Clearly, if

we omit the first two lines from the PRAX algorithm DiffSet

s, t, w, ε

we get a

PRAX algorithm IneqNFA(m,n) for the NFA inequivalence problem. Moreover,
by Lemma 2 (PRAX duality) we have that IneqNFA(m,n) is a PRAX algorithm
for the NFA equivalence problem.

Corollary 1. There are PRAX algorithms, with respect to the Dirichlet word
distribution, for both, the NFA inequivalence and the NFA equivalence problems.

12

5. Difference Sets of Recognizable transductions

A nonempty transduction T is called recognizable, if it is a finite union of
cross products of regular languages, that is,

T =

n

i=1

Ai ×Bi, (4)

where n ≥ 1 and all Ai’s and Bi’s are regular languages. We assume that, unless
T is empty and unless stated otherwise, all Ai’s and all Bj’s are nonempty. A
natural representation of recognizable transductions is as follows. An NFA pair
set is a set

A = {(a1, b1), . . . , (an, bn)}, (5)

where the ai’s and bi’s are NFAs. If Ai = L(ai) and Bi = L(bi), for all i, then
we write R(A) = T and we say that A describes (or represents) T . If for all i,
the languages Ai = L(ai) are nonempty and mutually disjoint and the languages
Bi = L(bi) are nonempty and distinct then the expression in (4) is said to be
in disjoint canonical form, in which case any NFA pair set A that describes T is
also said to be in disjoint canonical form. It turns out that every recognizable
transduction T can be written as in (4) in disjoint canonical form: [25, Exercise
IV.1.22], [20]. Below in Lemma 4, we provide an explicit construction of this
fact which shows that the disjoint canonical form of T is unique and how large
it can be. The main result here is that the difference set of two recognizable
transductions is a regular language and can be effectively constructed:

Theorem 3. Let S =
n

i=1 Ai × Bi and T =
m

j=1 Cj × Dj be recognizable
transductions with the same domains. The following statements hold true.

1. The difference set ∆S,T is a regular language.

2. If S, T are given via NFA pair sets then an NFA accepting ∆S,T can be
effectively constructed.

3. If S, T are given via NFA pair sets A = {(a1, b1), . . . , (an, bn)} and C =
{(c1,d1), . . . , (cm,dm)} in disjoint canonical form then there is an NFA
of size O

|ai| ·

|cj |

accepting ∆S,T . Moreover, there are NFA pair

sets A and C as above such that the constructed NFA for ∆S,T is of size
Θ

|ai| ·

|cj |

.

The proof is shown further below and uses the fact that it is always possible
to express a recognizable T as in (4) in disjoint canonical form.

Lemma 4. Let T =
n

i=1 Ai×Bi be a recognizable transduction such that none
of the languages Ai, Bi is empty. The following statements hold true.

1. There is a recognizable transduction R =
m

j=1 Ej×Fj in disjoint canonical
form such that m ≤ 2n − 1.

2. If T is given by an NFA pair set then we can construct an NFA pair set
describing R.

13

3. The disjoint canonical form is unique: if R =
h

ℓ=1 Gℓ × Hℓ in disjoint
canonical form then we have that ℓ = m and the set of pairs (Ej , Fj) is
equal to the set of pairs (Gℓ, Hℓ).

Proof. We prove each statement in turn.

1. Let N = {1, . . . , n}. For any word w ∈ ∪Ai, we have the following mutu-
ally exclusive cases:

• w belongs to all n of the Ai’s
• w belongs to exactly n− 1 of the Ai’s:

n

n−1

cases

• · · · · · ·
• w belongs to exactly k of the Ai’s:

n
k

cases

• · · · · · ·
• w belongs to exactly 1 of the Ai’s:

n
1

cases.

Based on the above n mutually exclusive cases for a w ∈ ∪Ai, we can
now define the required Ej ’s and Fj ’s in n steps as follows: In step
1, if ∩i∈NAi ∕= ∅ then E1 = ∩i∈NAi and F1 = ∪i∈NBi. In the gen-
eral step k, the next group of Ej ’s are the nonempty sets of the form
(∩i∈IAi) − (∪ℓ∈N−IAℓ), for each choice of an I ⊆ N with |I| = k,
and the corresponding Fj ’s are the languages ∪i∈IBi. For example, if
n = 4 then step 3 would define the next nonempty sets Ej from the list:
(A1 ∩ A2) − (A3 ∪ A4), (A1 ∩ A3) − (A2 ∪ A4), (A1 ∩ A4) − (A2 ∪ A3),
(A2 ∩A3)− (A1 ∪A4), (A2 ∩A4)− (A1 ∪A3), (A3 ∩A4)− (A1 ∪A2).

2. If T is given by an NFA pair set then also R can be described by an
NFA pair set, as the above definition of the sets Ej , Fj involves regularity
preserving operations and the efficient test for emptiness on NFAs.

3. Now suppose that R can also be written in disjoint canonical form as
R =

h
ℓ=1 Gℓ × Hℓ such that ℓ ≤ m. If ℓ < m then there are disjoint

languages Ej1 and Ej2 and two elements w1 ∈ Ej1 , w2 ∈ Ej2 that must
belong to the same language Gℓ. This is impossible, however, as the
languages Fj1 and Fj2 are distinct and they cannot both be equal to Hℓ.
Hence, ℓ = m. Now consider any pair (Ej , Fj). Each w ∈ Ej belongs to
exactly one Gℓ and this forces Fj = Hℓ = R(w), and also that all elements
of Ej must belong to Gℓ. Moreover, Gℓ cannot contain an element u
outside of Ej , as otherwise R(u) ∕= Fj while also R(u) = R(w).

Remark 4. Here we show an example of a transduction T =
n

i=1 Ai × Bi

for which the disjoint canonical form has a number m of cross products that
meets the upper bound 2n − 1. Let p1, . . . , pn be any distinct primes, let each
Ai = (api), and let each Bi be any nonempty language. One verifies that, for
each nonempty subset I of {1, . . . , n}, the language (∩i∈IAi) − (∪ℓ∈N−IAℓ) is
nonempty, as it contains the word anI with nI = Πi∈Ipi

Proof. (Of Theorem 3.) We prove each statement in turn.

1. By Lemma 4, we can assume that all Ai’s are mutually disjoint, and the
same for all Cj ’s. First we have the following observation: Any word w

14

in the common domain of S and T belongs to a unique Ai and a unique
Cj , so we have that S(w) ∕= T (w) iff Bi ∕= Dj . Based on this observation,
the language ∆S,T is equal to the finite union of the nonempty regular
languages (Ai ∩ Cj), where i = 1, . . . , n and j = 1, . . . ,m with Bi ∕= Dj .
Hence, ∆S,T is regular.

2. This statement is simply a constructive version of the previous one: using
Lemma 4, we can construct NFA pair sets for S and T in disjoint normal
form, and then construct an NFA for ∆S,T using the regular operations
in the above paragraph.

3. The construction of the desired NFA f mimics the definition of ∆S,T

in the proof of the first statement: f is the union of NFAs fi,j accepting
nonempty languages (Ai∩Cj) with Bi ∕= Dj . An example of two NFA pair
setsA andC describing S, T , respectively, such that the constructed f has
the desired size is as follows: Let p1, . . . , pn, q1, . . . , qm be distinct primes,
let each ai accept (a

pi) and each cj accept (a
qj). Then (api)∩ (aqj) ∕=

∅. Moreover, set Bi = api and Dj = aqj which implies Bi ∕= Cj for all i, j.

6. Chomsky-like Hierarchy of Difference Sets

For any transductions S, T of certain types, the languages ∆S,T form a lan-
guage class. In this section, we investigate how these classes are related to each
other and to known classes (like the classes of context-sensitive languages CSL
and one counter languages OCL). We use a notation similar to that of [5]: if
Y is a type of transductions then E(Y) is the class of all equality sets between
transductions of type Y. For example, E(HOM) is the class of languages of
the form Eg,h, for some homomorphisms g, h. Similarly here we write ∆(Y) for
the class of all difference sets between transductions of type Y. We also write
∆(Y1, Y2) for the class of all difference sets between a transduction of type Y1
and one of type Y2. For example, ∆(FUNC,TR) is the class of languages of the
form ∆S,T , for some functional transduction S and some transduction T .

Below we state the main theorem of this section, and further below we
present a few lemmata that lead to the proof of the main theorem.

Theorem 4. The subset relations shown in Fig. 3 are correct.

Unlike the case of recognizable transductions, the difference sets of homo-
morphic transductions do not include all the regular languages.

Proposition 1. The difference set of any two homomorphisms is either ∅ or
an infinite language. Moreover, the languages abR are not in ∆(HOM), for any
regular R and for any two distinct alphabet letters a, b.

Proof. Let g, h be homomorphisms such that ∆g,h is nonempty. If Eg,h is finite
then ∆g,h must be infinite. If Eg,h is infinite then also ∆g,h must be infinite as
Eg,h∆g,h ⊆ ∆g,h.

15

REG = ∆(REC) ∆(HOM)

∆(FUNC)

∆(FINVAL) ∆(FUNC,TR)

∆(FINOUT,TR)

∆(TR)

NCM OCL

CSL

NP

⊊ ⊊

⊆

⊆⊊

⊆⊆⊆

⊆

⊆ ⊆

∕⊆

∕⊇

Figure 3: Subset relations between various classes of difference sets.

For the second statement, we use the fact that Eg,h is a star language [5].
We argue by contradiction: Assume that abR = ∆g,h, for some homomorphisms
h, g; then Σ−abR = Eg,h and Σ−abR = X, for some language X. But then
a, bx ∈ X, for any x ∈ R, which implies that abx ∈ X ∩ abR; a contradiction.

Lemma 5. For all functional transductions F0, G1, . . . , Gk, for k ≥ 1, we have
that

1≤j≤k

∆F0,Gj
∈ NCM(2k, 1).

Proof. We use the same notation F0, G1, . . . , Gk to denote transducers real-
izing the transductions. We adapt the proofs of [12, Theorem 2] and [4]. We
construct a (2k, 1)-counter machine M accepting all words w ∈ domF0 such that
F0(w) is different from all Gj(w). M has 2k counters and simulates the compu-
tations of F0 on w and of Gj on w, using k counters bj for F0 and one counter
cj for each Gj , for j = 1, . . . , k. Each pair bj , cj records the length of the output
words during the computation. Each state of M records the current states of
F0, G1, . . . , Gk. Nondeterministically, M stops incrementing the counters and
stores in the finite control the last symbols of the outputs σj and τj . At the end
of the input, M checks, for each j, whether the proposition bj = cj ∧ σj ∕= τj is

16

true—for the part bj = cj the counters are decremented and tested if they are
both zero. M accepts if and only if the propositions are true for all j.

Proof. (Of Theorem 4.) To avoid cluttering in Fig. 3, we do not show the
previously known class inclusions

OCL ⊆ CSL and NCM ⊆ NP,CSL

where the last inclusion follows from [1, Theorem 5]. The following inclusions

∆(HOM) ⊆ ∆(FUNC) ⊆ ∆(FUNC,TR),∆(FINVAL) ⊆ ∆(FINOUT,TR) ⊆ ∆(TR)

follow immediately from the fact that some transduction types are special cases
of others, for example HOM is a special type of FUNC, FINVAL is a special type
of FINOUT, and all are special types of TR. Next, we consider the rest of the
inclusions in turn.

∆(REC) = REG: Follows from Theorem 3 and the fact that every regular
language R is the difference set of the recognizable transductions R × {0} and
R× {1}.

REG ⊊ ∆(FUNC): The subset relation follows from the fact that every
regular language R is the difference set of the functional transductions R× {0}
and R×{1}. The transductions S(ambn) = cm and T (ambn) = cn, form,n ∈ N0

and alphabet symbols a, b, c, are functional and ∆S,T = {ambn : m ∕= n}, which
is a non-regular language.

REG ∕⊆ ∆(HOM): Follows from Proposition 1.

∆(HOM) ∕⊆ REG: Follows from Example 2 of [5] stating that Eg,h = {w ∈
{a, b} : |w|a = |w|b}, for homomorphisms g, h such that g(a) = 0, g(b) =
ε, h(a) = ε, h(b) = 0.

∆(HOM) ⊊ ∆(FUNC): We already know that ∆(HOM) ⊆ ∆(FUNC). Ex-
ample 4 of [5] shows two functional transductions F,G such that domF =
domG = (a+b+) and EF,G = {anbn | n ≥ 1} but EF,G /∈ E(HOM). We
can extend F,G such that domF = domG = {a, b} and F (w) = 0, G(w) = 1,
for all w /∈ (a+b+). Then, the extended F,G are still functional and again
EF,G = {anbn | n ≥ 1}. Moreover, we have that ∆F,G = EF,G and we can
verify that ∆F,G cannot be equal to ∆g,h for any homomorphisms g, h (else Eg,h
would be equal to EF,G).

∆(FUNC,TR) ⊆ OCL: First we note the fact that ∆(FUNC) ⊆ OCL, which
is essentially a rephrasing of the Corollary of [4] stating that the complement
of the equality set of two functional transductions is a one-counter language.
Next we note that, for any two functional transductions F,G, the Theorem of
[4] constructs a one counter automaton that accepts w iff F (w) is not a prefix
of G(w) and G(w) is not a prefix of F (w). For a functional transduction S and
a transduction T , one can mimic the proof of the Theorem of [4] to construct a

17

one-counter automaton accepting ∆S,T in view of the simple fact that, for any
word w, S(w) ∕= T (w) iff T (w) contains a word z ∕= S(w).

∆(FINVAL) ⊆ NCM: Consider any finite-valued transductions F,G. As
stated in Remark 3, references [33, 26] imply that F = F1 ∪ · · · ∪ Fk and
G = G1 ∪ · · ·∪Gℓ, for some functional transductions Fi, Gj . Then we have that

∆F,G =

i

j

∆Fi,Gj
∪

j

i

∆Fi,Gj

The claim follows when we note that each set

j ∆Fi,Gj (and also each set
i ∆Fi,Gj) is in NCM, by Lemma 5, and the fact that the class NCM is

closed under intersection and union [17].

∆(TR) ⊆ CSL: First note that CSL = NPSPACE[n] (see e.g., [15]).
For any fixed, but arbitrary, transductions S, T we show that deciding whether
a given word w is in ∆S,T can be done nondeterministically in space O(|w|).
Consider any transducers s, t realizing S, T . We construct NFAs c,d accepting
the languages s(w) and t(w). These NFAs are of size O(|w|), as s, t are fixed.
Using the nondeterministic algorithm in the proof of Lemma 1, we can decide
whether L(c) ∕⊆ L(d) or L(d) ∕⊆ L(c) using space O(|c|+ |d|) = O(|w|). Hence,
we can also decide whether L(c) = L(d) in nondeterministic space O(|w|).

∆(FINOUT,TR) ⊆ NP: For any fixed, but arbitrary, transductions S, T with
S ∈ FINOUT, there are transducers s and t realizing S, T . These transducers
can be used to decide whether w ∈ ∆s,t, for any given word w, exactly as in
the proof of Theorem 1, where now the time complexity is only in terms of |w|,
as s, t are fixed.

∆(FUNC) ⊊ ∆(FINVAL): As mentioned already, ∆(FUNC) ⊆ ∆(FINVAL).
The proper inclusion follows from Example 4 and the fact that the class OCL
is a subset of the context-free languages.

Remark 5. Due to the closure of the class CSL under complementation, the
above result ∆(TR) ⊆ CSL implies that E(TR) ⊆ CSL, which strengthens the
earlier known fact E(FUNC) ⊆ CSL mentioned in Remark 1.

7. Concluding Remarks

We introduced the concept of difference set of two transductions, which is
complementary to the concept of equality set of transductions. While the word
problems of the two concepts are essentially the same, the language classes
resulting from the two concepts are different. We have also expressed in clear
terms the concept of a PRAX algorithm that is now applicable to a language
and its complement. Hence, there are PRAX algorithms for the word problem
pertaining to either of the difference and equality sets.

The class hierarchy in Fig. 3 is incomplete. As future research we propose
to investigate whether some of the inclusions are proper. For example, is there
a one counter language that is not in ∆(FUNC)?

18

The PRAX algorithm in Theorem 2 is a “tail-cutting” algorithm, that is, for
the given approximation tolerance ε, the algorithm determines via the length M
the tail of the probability distribution that can be safely ignored when testing
the amount of difference of the output sets of the two transducers. However, if
we know that transducer s (at least) has finite outputs then the algorithm can
be modified to sample words from the uniform distribution on the finite set s(w).
Details of this and possibly other similar improvements can be investigated in
future research.

Acknowledgement. We thank Professors Tero Harju (Turku University, Fin-
land) and Ian McQuillan (University of Saskatchewan, Canada) for suggesting
some key references used in this paper.

References

[1] Baker, B.S., Book, R.V., 1974. Reversal-bounded multipushdown ma-
chines. J. Comput. Syst. Sci. 8, 315–332. URL: https://doi.org/10.
1016/S0022-0000(74)80027-9.

[2] Berstel, J., 1979. Transductions and Context-Free Languages. B.G. Teub-
ner, Stuttgart.

[3] Câmpeanu, C., Moreira, N., Reis, R., 2016. Distinguishability opera-
tions and closures. Fundam. Informaticae 148, 243–266. doi:10.3233/
FI-2016-1434.

[4] Engelfriet, J., Hoogeboom, H.J., 1988. Prefix and equality languages of
rational functions are co-context-free. Inf. Process. Lett. 28, 77–79. URL:
https://doi.org/10.1016/0020-0190(88)90167-6.

[5] Engelfriet, J., Rozenberg, G., 1980. Fixed point languages, equality lan-
guages, and representation of recursively enumerable languages. J. ACM
27, 499–518. URL: https://doi.org/10.1145/322203.322211.

[6] Foryś, W., 1986. Fixed point languages of rational transductions. Semi-
group Forum 34, 177–183.

[7] Ginsburg, S., 1958. On the length of the smallest uniform experiment
which distinguishes the terminal states of a machine. Journal of the ACM
5, 266–280.

[8] Ginsburg, S., 1966. The Mathematical Theory of Context-free Languages.
McGraw-Hill, Inc.

[9] Goldreich, O., 2008. Computational complexity - a conceptual perspective.
Cambridge University Press. doi:10.1017/CBO9780511804106.

[10] Golomb, S.W., 1970. A class of probability distributions on the integers.
Journal of Number Theory 2, 189–192.

19

https://doi.org/10.1016/S0022-0000(74)80027-9
http://dx.doi.org/10.3233/FI-2016-1434
https://doi.org/10.1016/0020-0190(88)90167-6
https://doi.org/10.1145/322203.322211
http://dx.doi.org/10.1017/CBO9780511804106

[11] Golomb, S.W., 1992. Probability, information theory, and prime number
theory. Discrete Mathematics 106/107, 219–229.

[12] Gurari, E.M., Ibarra, O.H., 1983. A note on finitely-valued and finitely
ambiguous transducers. Math. Syst. Theory 16, 61–66. URL: https://
doi.org/10.1007/BF01744569.

[13] Han, Y., Salomaa, A., Salomaa, K., 2017. Ambiguity, nondeterminism and
state complexity of finite automata. Acta Cybern. 23, 141–157. doi:10.
14232/actacyb.23.1.2017.9.

[14] Harju, T., Karhumäki, J., 1997. Morphisms, in: [24]. pp. 439–510.

[15] Hopcroft, J.E., Ullman, J.D., 1979. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley.

[16] Hromkovic, J., 1987. Reversal-bounded nondeterministic multicounter ma-
chines and complementation. Theor. Comput. Sci. 51, 325–330. URL:
https://doi.org/10.1016/0304-3975(87)90040-5.

[17] Ibarra, O.H., 1978. Reversal-bounded multicounter machines and their
decision problems. J. ACM 25, 116–133. URL: https://doi.org/10.
1145/322047.322058.

[18] Immerman, N., 1988. Nondeterministic space is closed under complemen-
tation. SIAM J. Comput. 17, 935–938. URL: https://doi.org/10.1137/
0217058.

[19] Konstantinidis, S., Mastnak, M., Moreira, N., Reis, R., 2023. Approximate
NFA universality and related problems motivated by information theory.
Theor. Comput. Sci. 972, 114076. URL: https://doi.org/10.1016/j.
tcs.2023.114076.

[20] Konstantinidis, S., Santean, N., Yu, S., 2010. On implementing recogniz-
able transductions. Int. J. Comput. Math. 87, 260–277. URL: https:
//doi.org/10.1080/00207160801968754. journal version of “Recogniz-
able Transductions, Saturated Transducers and Edit Languages,” Technical
Report 2005-02, Department of Mathematics and Computing Science, Saint
Mary’s University, May 2005.

[21] Leung, H., 1998. Separating exponentially ambiguous finite automata from
polynomially ambiguous finite automata. SIAM J. Comput. 27, 1073–1082.
doi:10.1137/S0097539793252092.

[22] Mateescu, A., Salomaa, A., 1997. Formal languages: an introduction and
a synopsis, in: [24]. pp. 1–39.

[23] Roche, E., Schabes, Y., 1996. Introduction to Finite-State Devices in Nat-
ural Language Processing. Report TR-96-13. Mitsubishi Electric Research
Laboratories.

20

https://doi.org/10.1007/BF01744569
http://dx.doi.org/10.14232/actacyb.23.1.2017.9
https://doi.org/10.1016/0304-3975(87)90040-5
https://doi.org/10.1145/322047.322058
https://doi.org/10.1137/0217058
https://doi.org/10.1016/j.tcs.2023.114076
https://doi.org/10.1080/00207160801968754
http://dx.doi.org/10.1137/S0097539793252092

[24] Rozenberg, G., Salomaa, A. (Eds.), 1997. Handbook of Formal Languages,
Vol. I. Springer-Verlag, Berlin.

[25] Sakarovitch, J., 2009. Elements of Automata Theory. Cambridge University
Press, Berlin.

[26] Sakarovitch, J., de Souza, R., 2008. On the decomposition of k-valued
rational relations, in: Albers, S., Weil, P. (Eds.), STACS 2008, 25th
Annual Symposium on Theoretical Aspects of Computer Science, Bor-
deaux, France, February 21-23, 2008, Proceedings, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, Germany. pp. 621–632. URL: https:

//doi.org/10.4230/LIPIcs.STACS.2008.1324.

[27] Salomaa, A., 1973. Formal languages. Academic Press, New York.

[28] Salomaa, A., 1978. Equality sets for homomorphisms of free monoids. Acta
Cybern. 4, 127–139. URL: https://cyber.bibl.u-szeged.hu/index.

php/actcybern/article/view/3172.

[29] Santean, N., Yu, S., 2006. On weakly ambiguous finite transducers, in:
Ibarra, O.H., Dang, Z. (Eds.), Developments in Language Theory, 10th
International Conference, DLT 2006, Santa Barbara, CA, USA, June 26-
29, 2006, Proceedings, Springer. pp. 156–167. URL: https://doi.org/
10.1007/11779148_15.

[30] Savitch, W.J., 1970. Relationships between nondeterministic and deter-
ministic tape complexities. J. Comput. Syst. Sci. 4, 177–192. URL:
https://doi.org/10.1016/S0022-0000(70)80006-X.

[31] Stockmeyer, L., Meyer, A., 1973. Word problems requiring exponential time
(preliminary report), in: Proceedings of the 5th annual ACM symposium
on Theory of computing, ACM. pp. 1–9.

[32] Szelepcsényi, R., 1987. The method of forcing for nondeterministic au-
tomata. Bull. EATCS 33, 96–99.

[33] Weber, A., 1990. On the valuedness of finite transducers. Acta Informatica
27, 749–780. URL: https://doi.org/10.1007/BF00264285.

[34] Weber, A., 1993. Decomposing finite-valued transducers and deciding their
equivalence. SIAM J. Comput. 22, 175–202. URL: https://doi.org/10.
1137/0222014.

[35] Wood, D., 1987. Theory of Computation. Harper & Row, New York.

[36] Yu, S., 1997. Regular languages, in: [24]. pp. 41–110.

21

https://doi.org/10.4230/LIPIcs.STACS.2008.1324
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3172
https://doi.org/10.1007/11779148_15
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1007/BF00264285
https://doi.org/10.1137/0222014

