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In first-year calculus, constrained-optimization and related-rates word prob-

lems are two of the biggest stumbling blocks. In this note I contrast the methods

suggested in calculus textbooks for the solution of these two types of problems,

and conclude that a different approach to constrained-optimization problems,

similar to that widely used for related-rates problems, would be advantageous.

Let us first consider related-rates problems. Traditional textbooks (see, for

instance, Adams [1, p.235]; Edwards and Penney [3, p.193]; Finney, Weir, and

Giordano [5, p.209]; Johnston and Mathews [6, p.316]; Stewart [8, p.258], and

Strauss et al. [9, p 158]) introduce these shortly after implicit differentiation. All

these texts suggest that the implicit differentiation of the equation that relates

the rates should be an early step in the solution of such a problem. Nonetheless,

many students, faced with a related-rates problem, persistently avoid implicit

differentiation by eliminating a variable. For instance:

Problem 1: A ladder of length 5m is sliding with one end on the ground

and the other on a vertical wall. The end on the ground is sliding away from

the wall at a constant rate of 1m/sec. How fast is the end on the wall moving

when it is 4m off the ground?

Solution 1 (standard) By Pythagoras’ theorem, the distances x and y are

linked by the relation

x2 + y2 = 25 ; (1)

differentiating implicitly with respect to t, we obtain

x dx/dt + y dy/dt = 0 . (2)
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We can now substitute the instantaneous value y = 4 into (1) to obtain x = 3;

substituting these values and dx/dt = 1 into (2) we obtain 3 + 4dy/dt = 0, so

that dy/dt = −3/4 m/sec.

Solution 2 (avoiding implicit differentiation): Solving (1) for y, we

obtain

y =
√

25− x2 . (3)

Differentiating with respect to x we obtain

dy

dx
=

−2x

2
√

25 − x2

and by the Chain Rule we have

dy

dt
=

dy

dx

dx

dt
=

−x√
25 − x2

dx

dt
. (4)

We can now, as above, determine the instantaneous value x = 3, and plug that

and dx/dt = 1 into (4) to obtain the answer.

The second approach is more difficult! Moreover, it admits two sources of

error that are avoided by the first. The most common mistake on such a prob-

lem involves “freezing” one or more instances of a variable by substituting an

instantaneous value before differentiation; the earlier the student differentiates,

the less likely this is to happen. The other standard mistake, of course, involves

incorrect differentiation of the comparatively complicated RHS of (3).

All this suggests that the traditional approach to related-rates problems is

valid, and that students should be strongly encouraged to follow it. Like many

other instructors, I usually take the view that if a student prefers to use a certain

technique, and gets the right answer, he or she should be permitted to do so.
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However, in this case, I feel that a student who insists from the beginning on

avoiding implicit differentiation is not making an informed decision, even though

he or she will probably be able to grind out the solutions to many problems.

A few weeks after related rates (depending on the textbook and course plan),

students will usually encounter constrained-optimization problems. These re-

semble related-rates problems not only in being presented as “word problems”

but also in involving two variables on an equal footing. The usual approach in

most textbooks (see, for instance, [1, p. 264], [4, p.292], [5, p.288], [8, pp 331-2],

and [9, p.238]) - and that favored by many instructors - is to use the constraint

equation to eliminate one variable from the objective function, differentiate the

resulting one-variable function, and find the extremum.

Problem Find the dimensions of the largest rectangle that can be inscribed

in a semicircle of radius R.

Figure 1: Maximize the area!

Solution 1 (traditional):

From the constraint x2 + y2 = R2 we get
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y =
√

R2 − x2 .

Substituting this into the area A = 2xy of the rectangle, we obtain

A = 2x
√

R2 − x2

and differentiating this yields

dA

dx
= 2

√
R2 − x2 − 2x2

√
R2 − x2

which simplifies to

dA

dx
=

2(R2 − x2) − 2x2

√
R2 − x2

(5)

Setting the numerator of (5) to 0 and solving, we get 2x2 = R2 or x = R/
√

2.

This problem, like some others, can be simplified somewhat by maximizing

the square of the area rather than the area itself. This trick, mentioned in some

books, has limited application, though it is certainly worth knowing. A much

more generally applicable technique is found in a few books. Implicit differenti-

ation is used at the outset, on both the constraint and objective functions; the

derivative is then eliminated to obtain the solution.

Solution 2 (early differentiation):

Implicitly differentiating both the constraint function

x2 + y2 = R2 (6)

and the objective function A = 2xy, and setting the latter equal to 0, we obtain:
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2x + 2yy′ = 0 (7)

dA/dx = 2y + 2xy′ = 0 (8)

Solving (7) gives us y′ = −x/y; substituting into (8) gives 0 = 2(x2 − y2),

whence

x = ±y . (9)

Substituting this into (6) gives us x = R/
√

2 as before.

This is faster for two reasons. It is usually easier to differentiate a relation

than to differentiate the function obtained by solving it for one variable; and the

resulting equation is always linear in the derivative, so the step of eliminating

the derivative is straightforward. Moreover, differentiation lowers the degree of

a polynomial function, often simplifying the algebra. It is still possible that the

resulting system of equations in x and y cannot be solved, but the odds are

improved.

The functions in textbook constrained optimization problems rarely go much

beyond quadratics. As the complexity of the functions rises, so do the difficulties

of eliminating a variable, or finding the zeros of the derivative finally obtained.

(Fortunately, quadratic relations are common in real-world applications!) With

the early-differentiation method, it is possible to go somewhat further. The

reader may like to compare the two methods on the following problem:
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Exercise: Find the point at which the curve

2x3 + 3xy2 + y3 = 6

comes closest to the origin. (The above-mentioned trick of minimizing x2 + y2

rather than the distance itself will help here.)

Early differentiation is given as an alternative method for one problem in

Adams [1, pp.266-7], and one in Stewart [8, p. 334]; but neither author suggests

it as a method of first choice. Most textbooks examined do not mention it at

all. Interestingly, Schaum’s Outline of Calculus, while characteristically sparing

of explanation, gives three examples of this technique [2, pp.50-53] among ten

worked constrained optimization problems (cf. [7, pp.237-242].)

It is also worth noting that (9) gives not only a solution to the entire family

of equations with different values of R, but also the general solution to the dual

family of problems in which a rectangle of specified area must be inscribed in

a semicircle with the smallest possible radius (this is mentioned in Adams, loc.

cit.). These are general features of this approach whenever the objective and

constraint are both specified as values of functions; this duality will be familiar

to the student who has studied linear programming, but is often not introduced

in introductory calculus. With early differentiation, little extra effort is needed

to do so.

Implicit differentiation is, of course, an important technique in its own right,

and is used heavily in subjects such as thermodynamics, mechanics, and eco-

nomics. It is usually only “in the spotlight” for a comparatively short period
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during the first year calculus course, and students may consider it as an unim-

portant diversion from the main thrust of the course. Stressing it as a technique

for both related rates and constrained optimization problems should emphasize

its true importance.

Finally, the student who continues into multivariate calculus will learn to

solve more advanced optimization problems using the method of Lagrange mul-

tipliers. Here, too, an important part of the technique is to do the differentia-

tion first, rather than eliminating of the variables; the student who is already

confident with operating in this order should find Lagrange multipliers less in-

timidating.

The author thanks the anonymous referee for various helpful suggestions.
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