Saint Mary's University

DEPARTMENT OF MATHEMATICS AND COMPUTING SCIENCE

Name:	 	
Signature:	 	
ID:		

Math 1211: Winter 2014 Midterm Test #2 — Version A

March 12, 2014

Recitation Section:

- \Box Section A: 10:00–11:15F (J. Irving)
- $\hfill\square$ Section B: 2:30–3:45W (J. Irving)
- $\hfill\square$ Section C: 1:00–2:15F (A. Ellis)
- $\hfill\square$ Section D: 1:00–2:15
F (S. Sikka)
- $\hfill\square$ Section E: 10:00–11:15
F (S. Sikka)

Instructions:

- No electronic devices or aids of any kind are to be in your immediate possession during the test. Possession of such items will be construed as an act of academic dishonesty.
- There are 5 pages plus this cover page. Check that your test paper is complete.
- There are a total of 70 marks. The value of each question is indicated in the margin.
- Answer in the spaces provided, using backs of pages for additional space if necessary.
- Show all your work. Insufficient justification will result in a loss of marks.

Page	Maximum	Your Score
1	15	
2	13	
3	12	
4	18	
5	12	
Total	70	

1. Evaluate the following integrals.

$$[5] \qquad (a) \quad \int \tan^5 x \sec^4 x \, dx$$

[10] (b)
$$\int \frac{dx}{x^3\sqrt{x^2-4}} dx$$

[13] (c)
$$\int \frac{12x+2}{(x+1)^2(x^2+9)} dx$$

[12]

(a)
$$\int_{e}^{\infty} \frac{dx}{x(\ln x)^2}$$

(b)
$$\int_{-1}^{2} \frac{3}{(2-t)^2} dt$$

(c)
$$\int_0^1 \frac{e^x}{1-x} dx$$
 [*Hint:* This is a challenge. Leave it until the end.]

[6]

- 3. Let \mathcal{C} be the segment of the curve $y = \sin x$ between x = 0 and $x = \pi$.
 - (a) Give an expression, in terms of a definite integral, for the **length** of \mathcal{C} .

(b) Give an expression, in terms of a definite integral, for the surface area of the solid obtained by revolving C around the x-axis.

[12] 4. (a) Find the third degree Taylor polynomial $T_3(x)$ of the function $f(x) = x^{3/2}$ centred at x = 1.

(b) Give an estimate of the error $|(1.1)^{3/2} - T_3(1.1)|$. Justify your answer.

[2] 5. (a) Define the *N*-th partial sum of the series $\sum_{n=1}^{\infty} a_n$.

(b) Define precisely what it means to write
$$\sum_{n=1}^{\infty} a_n = S$$
.

[8]

[2]

(c) Do the following series converge or diverge? If a series converges, determine its value. i. $\sum_{n=1}^{\infty} \frac{n}{n+2}$

i.
$$\sum_{n=1}^{\infty} \frac{1}{n+2}$$

ii.
$$\sum_{n=1}^{\infty} \frac{2}{n(n+2)}$$
 [*Hint*: $\frac{2}{n(n+2)} = \frac{1}{n} - \frac{1}{n+2}$]