
Math 1211: Series Comparison Tests Winter 2014

In the past couple lectures, we have considered two very special types of series, namely
geometric series and p-series. Here’s a recap of what we know.

• In the case of geometric series, we have perfect information: We know precisely
when they converge, and if they do converge then their sum is given by a very simple
formula:

∞∑
n=1

crn−1 = c+ cr + cr2 + cr3 + · · ·

{
converges to c

1−r if |r| < 1

diverges if |r| ≥ 1.

For example, the series∑
n≥1
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+
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is geometric with initial term c = 10
9

and common ratio r = 2
3
. Since 2

3
< 1, this series

converges, and its value is∑
n≥1
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On the other hand, the series∑
n≥1

22n
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4

3
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9
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+ · · ·

does not converge, since it is geometric with common ratio r = 4
3
> 1.

• In the case of p-series, we don’t have perfect information: The integral test tells us
precisely when such series converge, but it does not tell us to what number! Recall
that we have the following rule:

∞∑
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{
converges if p > 1

diverges if p ≤ 1

For example, the series

∞∑
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1
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4
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+ · · ·

converges, because it is a p-series with p = 2 > 1. But it takes some very clever
analysis to prove that the sum of this series is actually π2/6. Sometimes no amount of
cleverness will do. The series

∞∑
n=1

1
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+ · · ·

also must converge (p-series, p = 3 > 1), but in this case we know amazingly little
about the value of the sum. This mysterious number, known as Apéry’s constant, pops
up occasionally in various branches of math and physics. We know its approximate
value (1.20205...), but we have no idea if it can be expressed as a combination of
“known” numbers such as

√
2 or π or e.

Over the next couple of lectures we’re going to develop some tools to determine when series
converge. But none of these tools will tell us anything about the actual numerical value of
a convergent series. This may seem strange, but it turns out to be very worthwhile. It is
exactly this type of analysis that will permit us to express functions as Taylor series, which
are essentially “infinite degree” Taylor polynomials.

We have emphasized geometric series and p-series at the outset partly because they are easy
to analyse, but mostly because they serve as important “measuring sticks” against which we
will compare various other series.



Comparison Theorem: Suppose
∑
an and

∑
bn are two series with positive terms. Fur-

ther, suppose that an ≤ bn for all n. Then

• if
∑
bn converges then

∑
an converges, and

• if
∑
an diverges then

∑
bn diverges.

This theorem should remind you of comparison of improper integrals. If the terms of a given
series are smaller than those of a convergent series, then the given series must also converge.
If the terms of a given series are bigger than those of a divergent series, then the given series
must diverge.

Examples:

•
∞∑
n=1

1

2n + 1
•
∞∑
n=1

1

n−
√
n

•
∞∑
n=1

2n

3n + 4n
•
∞∑
n=1

n√
n6 + 1

•
∞∑
n=1

5

n2n
•
∞∑
k=1

sin2 k

k2

The comparison test is very important, but sometimes it isn’t quite the right tool. For
example, the series

∞∑
n=2

1

n2 − n

should converge, because when n is very large we have 1
n2−n ≈

1
n2 and we know

∑
1
n2

converges. But it is not straightforward to use direct comparison, because

1

n2 − n
>

1

n2
.

The above inequality shows that our series is actually bigger than the convergent series
∑

1
n2 ,

and this doesn’t tell us anything. So we turn to a more powerful tool.

Limit Comparison Theorem: Suppose
∑
an and

∑
bn are two series with positive terms,

and let
L = lim

n→∞

an
bn
.

Then

• if L > 0, then
∑
an converges if and only if

∑
bn converges,

• if L = 0 and
∑
bn converges, then

∑
an converges, and

• if L =∞ and
∑
an converges, then

∑
bn converges.

Don’t try to memorize this theorem. Instead, ponder what it says until it makes sense.

For instance, imagine that an
bn
→ 5 as n → ∞. This just means that the terms of

∑
an

eventually become approximately 5 times those of
∑
bn. Multiplying the terms of a series

by 5 can’t possibly affect convergence. Therefore if one series converges, so must the other;
and if one diverges then so must the other.

If instead the ratio an
bn

approaches 0, then the terms of
∑
an are eventually tiny in comparison

to those of
∑
bn. So if

∑
bn converges, then the smaller series

∑
an must also converge.

Similar logic applies when an
bn

approaches ∞.

Examples:

•
∞∑
n=2

1

n2 − n
•
∞∑
n=1

n2 + 1

3n5 + 2n+ 1
•
∞∑
n=1

n√
4n3 + 1

•
∞∑
n=1

2n+ 2n

3n+ 3n
•
∞∑
n=1

√
2n+ 1

n2


