1. Find the 4th degree Taylor polynomials at $x=0$ for the following functions:
(a) $f(x)=x^{3}-3 x^{2}+x-1$
(b) $f(x)=x^{5}+2 x+1$
(c) $f(x)=\ln (1+3 x)$
(d) $f(x)=\sqrt{1-4 x}$
(e) $f(x)=\cos 2 x$
(f) $f(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$
2. Find the n-th degree Taylor polynomial at $x=0$ for the following functions:
(a) $f(x)=\frac{1}{1-2 x}$
(b) $f(x)=\frac{1}{(1-x)^{2}}$
(c) $f(x)=\ln (1-x)$
3. Use 4rd degree Taylor polynomials to approximate the following integrals, and then find the exact value of the integrals (through antidifferentiation) to compare the results.
(a) $\int_{0}^{1 / 2} \ln (1-x) d x$
(b) $\int_{0}^{\pi / 4} x \sin x d x$
4. Use a 3rd degree Taylor polynomial to approximate $\int_{0}^{1} e^{-x^{2}} d x$. (The true value to 4 decimal places is 0.7468 .)
5. Use a 2nd degree Taylor polynomial to approximate $\int_{0}^{1} \sqrt{\cos x} d x$. (The true value to 4 decimal places is 0.9140 .)
6. For each of the following, use the n-th degree Taylor polynomial of $f(x)$ to approximate the value of $f(a)$, and give a bound on the error of your estimate. Then use your calculator to evaluate $f(a)$ exactly and find the true error of your approximation.
(a) $n=4, \quad f(x)=\sin x, \quad a=\frac{\pi}{12}$
(b) $n=2, \quad f(x)=\frac{1}{\sqrt{1+x}}, \quad a=\frac{1}{10}$
(c) $n=3, \quad f(x)=\ln (1-x), \quad a=\frac{1}{4}$

Answers

1. (a) $p_{4}(x)=x^{3}-3 x^{2}+x-1$
(b) $p_{4}(x)=2 x+1$
(c) $p_{4}(x)=3 x-\frac{9}{2} x^{2}+9 x^{3}-\frac{81}{4} x^{4}$
(d) $p_{4}(x)=1-2 x-2 x^{2}-4 x^{3}-10 x^{4}$
(e) $p_{4}(x)=1-2 x^{2}+\frac{2}{3} x^{4}$
(f) $p_{4}(x)=1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}$
2. (a) $p_{n}(x)=1+2 x+4 x^{2}+8 x^{3}+\cdots+2^{n} x^{n}$
(b) $p_{n}(x)=1+2 x+3 x^{2}+4 x^{3}+\cdots+(n+1) x^{n}$
(c) $p_{n}(x)=-x-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\cdots-\frac{1}{n} x^{n}$
3. (a) Approximation: $\int_{0}^{1 / 2} \ln (1-x) d x \approx \int_{0}^{1 / 2}\left(-x-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\frac{1}{4} x^{4}\right) d x \approx-.15260417$ Real: $\int_{0}^{1 / 2} \ln (1-x) d x=-\int_{1}^{1 / 2} \ln u d u=-\left.(u \ln u-u)\right|_{1} ^{1 / 2} \approx-0.15342641$
(b) Approximation: $\int_{0}^{\pi / 4} x \sin x d x \approx \int_{0}^{\pi / 4}\left(x^{2}-\frac{1}{6} x^{4}\right) d x \approx 0.15152945$

Real: $\int_{0}^{\pi / 4} x \sin x d x=\left.(\sin (x)-x * \cos (x))\right|_{0} ^{\pi / 4} \approx 0.15174641$.
4. $\int_{0}^{1} e^{-x^{2}} d x \approx \int_{0}^{1}\left(1-x^{2}\right) d x=\frac{2}{3} \approx 0.6667$.
5. $\int_{0}^{1} \sqrt{\cos x} d x \approx \int_{0}^{1}\left(1-\frac{1}{4} x^{2}\right) d x=\frac{11}{12} \approx 0.9167$.
6. (a) Taylor polynomial $p_{4}(x)=x-\frac{1}{6} x^{3}$ gives approximation $p_{4}\left(\frac{\pi}{12}\right)=0.25880881$.

Since $\left|f^{(5)}(c)\right|=|\cos c|$ is at most 1 for all c between 0 and $\frac{\pi}{12}$, the error is at most $\frac{1}{5!}\left(\frac{\pi}{12}\right)^{5} \approx 1.025 \times 10^{-5}$.
The true value to 8 decimal places is $\sin \left(\frac{\pi}{12}\right)=0.25881905$, so the true error is roughly 1.024×10^{-5}.
(b) Taylor polynomial $p_{2}(x)=1-\frac{1}{2} x+\frac{3}{8} x^{2}$ gives approximation $p_{2}\left(\frac{1}{10}=\frac{763}{800}=\right.$ 0.95375 .

Since $\left|f^{(3)}(c)\right|=\left|\frac{15}{8}(1+c)^{-7 / 2}\right|$ is at most $\frac{15}{8}$ between $x=0$ and $x=\frac{1}{10}$, the error is at most $\frac{15 / 8}{3!}\left(\frac{1}{10}\right)^{3} \approx 3.125 \times 10^{-4}$.
The true value to 8 decimal places is $\frac{11^{-1 / 2}}{10}=0.95346259$, so the true error is roughly 2.874×10^{-4}.
(c) Taylor polynomial $p_{3}(x)=-x-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}$ gives approximation $p_{3}\left(\frac{1}{4}\right)=-\frac{55}{192}=$ -0.28645833 .
Since $\left|f^{(4)}(c)\right|=\left|6(1-c)^{-4}\right|$ is at most $6\left(1-\frac{1}{4}\right)^{-4}=\frac{512}{27}$ between $x=0$ and $x=\frac{1}{4}$, the error is at most $\frac{512 / 27}{4!}\left(\frac{1}{4}\right)^{4} \approx 3.086 \times 10^{-3}$.
The true value to 8 decimal places is $\ln \frac{3}{4}=-0.28768208$, so the true error is roughly 1.224×10^{-3}.

