- 1. Find the 4th degree Taylor polynomials at x = 0 for the following functions:
 - (a) $f(x) = x^3 3x^2 + x 1$ (b) $f(x) = x^5 + 2x + 1$ (c) $f(x) = \ln(1 + 3x)$ (d) $f(x) = \sqrt{1 - 4x}$ (e) $f(x) = \cos 2x$ (f) $f(x) = \frac{1}{2}(e^x + e^{-x})$
- 2. Find the *n*-th degree Taylor polynomial at x = 0 for the following functions:

(a)
$$f(x) = \frac{1}{1 - 2x}$$

(b) $f(x) = \frac{1}{(1 - x)^2}$
(c) $f(x) = \ln(1 - x)$

3. Use 4rd degree Taylor polynomials to approximate the following integrals, and then find the exact value of the integrals (through antidifferentiation) to compare the results.

(a)
$$\int_{0}^{1/2} \ln(1-x) dx$$

(b) $\int_{0}^{\pi/4} x \sin x \, dx$

- 4. Use a 3rd degree Taylor polynomial to approximate $\int_0^1 e^{-x^2} dx$. (The true value to 4 decimal places is 0.7468.)
- 5. Use a 2nd degree Taylor polynomial to approximate $\int_0^1 \sqrt{\cos x} \, dx$. (The true value to 4 decimal places is 0.9140.)
- 6. For each of the following, use the *n*-th degree Taylor polynomial of f(x) to approximate the value of f(a), and give a bound on the error of your estimate. Then use your calculator to evaluate f(a) exactly and find the true error of your approximation.

(a)
$$n = 4$$
, $f(x) = \sin x$, $a = \frac{\pi}{12}$
(b) $n = 2$, $f(x) = \frac{1}{\sqrt{1+x}}$, $a = \frac{1}{10}$
(c) $n = 3$, $f(x) = \ln(1-x)$, $a = \frac{1}{4}$

Answers

Since $|f^{(5)}(c)| = |\cos c|$ is at most 1 for all c between 0 and $\frac{\pi}{12}$, the error is at most $\frac{1}{5!}(\frac{\pi}{12})^5 \approx 1.025 \times 10^{-5}$. The true value to 8 decimal places is $\sin(\frac{\pi}{12}) = 0.25881905$, so the true error is roughly 1.024×10^{-5} .

(b) Taylor polynomial $p_2(x) = 1 - \frac{1}{2}x + \frac{3}{8}x^2$ gives approximation $p_2(\frac{1}{10} = \frac{763}{800} = 0.95375$. Since $|f^{(3)}(c)| = |\frac{15}{8}(1+c)^{-7/2}|$ is at most $\frac{15}{8}$ between x = 0 and $x = \frac{1}{10}$, the error is at most $\frac{15/8}{3!}(\frac{1}{10})^3 \approx 3.125 \times 10^{-4}$.

The true value to 8 decimal places is $\frac{11}{10}^{-1/2} = 0.95346259$, so the true error is roughly 2.874×10^{-4} .

(c) Taylor polynomial $p_3(x) = -x - \frac{1}{2}x^2 - \frac{1}{3}x^3$ gives approximation $p_3(\frac{1}{4}) = -\frac{55}{192} = -0.28645833$.

Since $|f^{(4)}(c)| = |6(1-c)^{-4}|$ is at most $6(1-\frac{1}{4})^{-4} = \frac{512}{27}$ between x = 0 and $x = \frac{1}{4}$, the error is at most $\frac{512/27}{4!}(\frac{1}{4})^4 \approx 3.086 \times 10^{-3}$.

The true value to 8 decimal places is $\ln \frac{3}{4} = -0.28768208$, so the true error is roughly 1.224×10^{-3} .