SAINT MARY'S UNIVERSITY DEPARTMENT OF MATHEMATICS AND COMPUTING SCIENCE Name: _____

ID:_____

Math 2321: Linear Algebra II

Midterm Test #1 February 10, 2014

Instructor: J. Irving

Instructions:

- Calculators are permitted provided they don't dim the lights when you turn them on.
- There are 5 pages plus this cover page. Check that your test paper is complete.
- There are a total of 80 marks. The value of each question is indicated in the margin.
- Show all your work. Insufficient justification will result in a loss of marks.

Page	Maximum	Your Score
1	14	
2	26	
3	14	
4	14	
5	12	
Total	80	

- Page 1 of 5
- [14] 1. Give precise definitions for the following terms and notation. Throughout, A is an $n \times n$ matrix.
 - (a) The *column space* of *A*

(b) The *nullity* of *A*.

(c) The *coordinates* of $\mathbf{x} \in \mathbb{R}^n$ with respect to the basis $\mathscr{B} = {\mathbf{v}_1, \dots, \mathbf{v}_n}$.

(d) An *eigenvector* of *A*.

(e) The *characteristic polynomial* of *A*.

(f) The *eigenspace* corresponding to eigenvalue λ of A

(g) The *geometric multiplicity* of the eigenvalue λ of A.

TRUE	FALSE	UNSURE	The rank and nullity of <i>A</i> sum to <i>n</i> .
TRUE	FALSE	UNSURE	If A has column rank n then det $A \neq 0$.
TRUE	FALSE	UNSURE	$\det(A^2 - I) = \det(A)^2 - 1.$
TRUE	FALSE	UNSURE	A is invertible if and only if 0 is not an eigenvalue of A.
TRUE	FALSE	UNSURE	Similar matrices have the same eigenvectors.
TRUE	FALSE	UNSURE	The eigenvectors of A are linearly independent.
TRUE	FALSE	UNSURE	If λ is an eigenvalue of A then λ^2 is an eigenvalue of A^2 .
TRUE	FALSE	UNSURE	If <i>A</i> is triangular and invertible then <i>A</i> is diagonalizable.

[10] 3. Short answer. No justification is required.

- (a) If *A* is a 4×7 matrix, what are the possible values for the nullity of *A*?
- (b) Suppose *A* and *B* are 3×3 matrices with det A = -1 and det B = 2. Determine det $(3A^5B^{-1})$.
- (c) Suppose the eigenvalues of a matrix A are -1, 1, and 2. Find the eigenvalues of $2A^3 I$.

(d) Let $A = \begin{bmatrix} 3 & 1 \\ 2 & 2 \end{bmatrix}$. Find the eigenvalues and eigenspaces of *A* over \mathbb{Z}_5 , and use this information to find the eigenvalues and eigenspaces of 2A + I over \mathbb{Z}_5 .

		Evaluate		0	1	2	3	4	
				1	2	3	4	0	
[8]	4.	Evaluate	det	1	1	1	1	1	
				0	1	0	-1	0	
				-1	0	1	0	-1	

		$\begin{bmatrix} k \end{bmatrix}$	k+1	1	
[6]	5. Find all values of <i>k</i> such that the matrix	0	2k	k-1	is invertible.
		k	3 <i>k</i>	k-2	

[14] 6. For each of the following matrices *A*, determine whether *A* is diagonalizable. If so, find an invertible matrix *P* and a diagonal matrix *D* such that $D = P^{-1}AP$.

(a)
$$A = \begin{bmatrix} 0 & -1 & -1 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$$

	2	0	0]
(b) <i>A</i> =	1	2	0
	2	1	3

[8]

- 7. Let *A* and *B* be $n \times n$ matrices with eigenvalues λ and μ , respectively.
 - (a) Give an example to show that $\lambda \mu$ need not be an eigenvalue of *AB*.

(b) Suppose λ and μ correspond to the *same* eigenvector **x**. Show that, in this case, $\lambda \mu$ is an eigenvalue of *AB*.

[4] 8. Let *A* and *B* be invertible matrices of the same dimensions. Show that *AB* and *BA* are similar.