SAINT MARY'S UNIVERSITY DEPARTMENT OF MATHEMATICS AND COMPUTING SCIENCE Name: _____

ID:_____

Math 2321: Linear Algebra II

Midterm Test #2 March 14, 2014

Instructor: J. Irving

Instructions:

- Calculators are permitted provided they don't dim the lights when you turn them on.
- There are 6 pages plus this cover page. Check that your test paper is complete.
- There are a total of 100 marks. The value of each question is indicated in the margin.
- Show all your work. Insufficient justification will result in a loss of marks.

Page	Maximum	Your Score
1	16	
2	26	
3	14	
4	14	
5	16	
6	14	
Total	100	

- [10] 1. Give precise definitions for the following terms and notation. Throughout, **u** and **v** are vectors in \mathbb{R}^n and *W* is a subspace of \mathbb{R}^n .
 - (a) An *orthogonal set* of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$.
 - (b) An orthogonal matrix Q.
 - (c) The *projection* of **u** onto **v**.
 - (d) The *orthogonal complement* W^{\perp} of the subspace $W \subseteq \mathbb{R}^{n}$.
 - (e) A *QR* factorization of the $m \times n$ matrix *A*.
 - 2. Give precise statements of the following theorems.
 - (a) The Orthogonal Decomposition Theorem.

(b) The *Spectral Theorem* for real symmetric matrices.

- [6]

[10] 3. Short answer. No justification is required.

(a) For a certain 2 × 2 matrix *A* and vector $\mathbf{v} \in \mathbb{R}^2$ we have

$$A\mathbf{v} = \begin{bmatrix} 3\\8 \end{bmatrix}, \qquad A^2\mathbf{v} = \begin{bmatrix} 17\\32 \end{bmatrix}, \qquad A^3\mathbf{v} = \begin{bmatrix} 83\\168 \end{bmatrix}, \qquad A^4\mathbf{v} = \begin{bmatrix} 417\\832 \end{bmatrix}, \qquad A^5\mathbf{v} = \begin{bmatrix} 2083\\4168 \end{bmatrix}$$

Find the dominant eigenvalue of A and a corresponding eigenvector.

(b) Let *Q* be an orthogonal matrix. What are the possible values of det *Q*?

- (c) Let *W* be a subspace of \mathbb{R}^5 spanned by three vectors. What are the possible dimensions of W^{\perp} ?
- (d) Suppose *A* and *B* are orthogonally diagonalizable $n \times n$ matrices. Which of the following matrices are also necessarily orthogonally diagonalizable? (Circle your choices.)

A+B A^3 5A AB A^2-I

[16] 4. Answer **true** or **false** to the following by circling your choice. You will receive 2 points for a correct response, 1 point for no response, and 0 for an incorrect response. *Throughout, A is an n × n real matrix and W is a subspace of* \mathbb{R}^n .

TRUE	FALSE	Every orthonormal set of vectors is linearly independent.
TRUE	FALSE	Every nonzero subspace of \mathbb{R}^n has an orthogonal basis.
TRUE	FALSE	If λ is an eigenvalue of an orthogonal matrix then $\lambda = \pm 1$.
TRUE	FALSE	Eigenvectors of A corresponding to distinct eigenvalues are orthogonal
TRUE	FALSE	$(\operatorname{row}(A))^{\perp} = \operatorname{null}(A).$
TRUE	FALSE	$(W^{\perp})^{\perp} = W$
TRUE	FALSE	For any $\mathbf{v} \in \mathbb{R}^n$, we have $\operatorname{proj}_W(\operatorname{proj}_W(\mathbf{v})) = \operatorname{proj}_W(\mathbf{v})$.
TRUE	FALSE	Every orthogonally diagonalizable matrix is invertible.

5. Consider the basis $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ of \mathbb{R}^3 , where

$$\mathbf{v}_1 = \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \qquad \mathbf{v}_2 = \begin{bmatrix} 3\\1\\1 \end{bmatrix}, \qquad \mathbf{v}_3 = \begin{bmatrix} 1\\1\\2 \end{bmatrix}.$$

[6]

(a) Apply the Gram-Schmidt procedure to $\{v_1, v_2, v_3\}$ to obtain an orthogonal basis $\{u_1, u_2, u_3\}$.

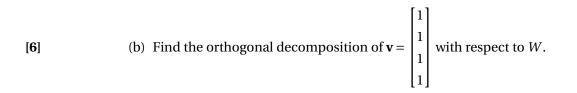
[4] (b) Find the coordinates of
$$\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 with respect to your orthogonal basis from (a).

[4] (c) Find a QR factorization of the matrix
$$\begin{bmatrix} 1 & 3 & 1 \\ 2 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$
 whose columns are \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 .

6. Let
$$\mathbf{w}_1 = \begin{bmatrix} 1\\ 2\\ 0\\ -1 \end{bmatrix}$$
 and $\mathbf{w}_2 = \begin{bmatrix} 3\\ -1\\ 1\\ 1\\ 1 \end{bmatrix}$, and consider the subspace $W = \operatorname{span}\{\mathbf{w}_1, \mathbf{w}_2\}$ of \mathbb{R}^4 .

(a) Find a basis for W^{\perp} .

[5]



(c) Find an orthogonal basis of \mathbb{R}^4 that contains \mathbf{w}_1 and \mathbf{w}_2 . [*Hint:* You can use your work from (a).]

7. Let $\mathbf{x} = (x_1, x_2, x_3)^T$ and consider the quadratic form

$$f(\mathbf{x}) = 3x_1^2 + 3x_2^2 + 3x_3^2 + 4x_1x_2 - 4x_1x_3 + 4x_2x_3.$$

[2] (a) State the matrix A such that $f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x}$.

[12]

(b) Find an orthogonal matrix *Q* such that the change of variables $\mathbf{x} = Q\mathbf{y}$ transforms $f(\mathbf{x})$ into a form $g(\mathbf{y})$ with no cross-product terms. State both *Q* and $g(\mathbf{y})$.

[6]

[4] 8. Let *Q* be an orthogonal 2×2 matrix and let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^2$. If θ is the angle between \mathbf{x} and \mathbf{y} , prove that θ is also the angle between $Q\mathbf{x}$ and $Q\mathbf{y}$.

9. Let *W* be a subspace of \mathbb{R}^n and suppose $W = \text{span}\{\mathbf{w}_1, \dots, \mathbf{w}_k\}$. Prove that $\mathbf{v} \in W^{\perp}$ if and only if $\mathbf{v} \cdot \mathbf{w}_i = 0$ for all $i = 1, \dots, k$.

[4] 10. Let *A* be a real symmetric matrix. Prove that if every eigenvalue of *A* is nonnegative then $A = B^2$ for some real symmetric matrix *B*.