1. Let
$$A = \begin{bmatrix} 1 & 3 & 3 & 2 & -9 \\ -2 & -2 & 2 & -8 & 2 \\ 2 & 3 & 0 & 7 & 1 \\ 3 & 4 & -1 & 11 & -8 \end{bmatrix}$$
 and determine the following:

(a) $\operatorname{rank}(A)$

- (b) $\operatorname{nullity}(A)$
- (c) a basis for the row space of A
- (d) a basis for the column space of A
- (e) a basis for the null space of A
- 2. Repeat Question #1 with A replaced by A^T . (Try to be lazy!)

3. Find a basis for span
$$\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix} \right\}$$
.

- 4. Let A be a 3×5 matrix.
 - (a) Explain why the columns of A must be linearly dependent.
 - (b) What are the possible values of nullity(A)?
- 5. (a) Let A and B be two $n \times n$ matrices. Prove that $rank(AB) \le rank(B)$ and $rank(AB) \le rank(A)$.
 - (b) Use part (a) to show that if A is invertible, then rank(AB) = rank(BA).
- 6. Show that an $n \times m$ matrix A has rank 1 if and only if $A = \mathbf{u}\mathbf{v}^T$, where $\mathbf{u} \in \mathbb{R}^n$ and $\mathbf{v} \in \mathbb{R}^m$.