Math 2321: Recitation #6 Solutions

1. Read about the QR factorization in Section 5.3 of your text.

Solution: Done!
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2. Find the QR factorization of 1 -1 0
0 1 1

Solution: We can assume from the statement of the problem that the QR-factorization of A exists.
However, we should generally verify this before we start by checking that the columns of A are
linearly independent. This is readily done by performing a couple row or column operations.

We now run he Gram-Schmidt orthogonalization process on the columns of A. Let
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Normalize uy, uz and us to get vectors qi, qo, and qs, and create a matrix = [q1 Q2 q3] with

these columns:
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3. Let A be a square matrix with QR factorization A = QR. Prove that A is similar to RQ.

Solution: We must show that there exists an invertible matrix P such that RQ = P 'AP. Let
P = @, noting that P is invertible because @ is orthogonal (and hence invertible). Then we have

PTIAP =Q 1 (QR)Q = (Q'Q)RQ = RQ,

as desired.



