Math 2321: Recitation #9 Solutions

1. (a) Extend the set $\left\{ \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right\}$ to a basis for $\mathcal{M}_{2\times 2}$.

Solution: The given matrices have coordinates $[1, 0, -1, 0]^T$, $[1, 1, 1, 1]^T$, and $[1, 1, 0, 1]^T$ with respect to the standard basis $\{E_{11}, E_{12}, E_{21}, E_{22}\}$ of $\mathcal{M}_{2\times 2}$. Put these coordinates in a matrix and row reduce to get

1	0	-1	0]		Γ1	0	0	-1	
1	1	1	1	\longrightarrow	0	1	0	1	
1	1	-1 1 0	1		0	0	1	$\begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix}$	

Clearly (0, 0, 0, 1) is not in span of these rows. It follows that

$\int \left[1 \right]$	0	[1	1]	[1	1]	[0	0])
$\left\{ \begin{bmatrix} 1\\ -1 \end{bmatrix} \right.$	0,	[1	1,	0	1	, [0	$1 \int$

is linearly independent. Since $\mathcal{M}_{2\times 2}$ has dimension 4, this set must be a basis.

(b) Reduce the set $\{1 + x + x^3, 2 - x + 2x^3, x + x^3, x^2 - x, 1 - x + x^2, x^3\}$ to a basis for \mathcal{P}_3 .

Solution: Row reduce the matrix whose columns are the coordinate vectors of the given polynomials with respect to the standard basis $\{1, x, x^2, x^3\}$ of \mathcal{P}_3 . This gives

Γ1	2	0	0	1	0	[1	2	0	0	1	[0
1	-1	1	-1	-1	0	0	-3	1	-1	-2	0
0	0	0	1	1	0	\rightarrow 0	0	1	0	-1	1
L1	2	1	0	0	1	L0	$\begin{array}{c} 2 \\ -3 \\ 0 \\ 0 \end{array}$	0	1	1	0

The first 4 columns contain pivots, so the first four polynomials from the given set form a linearly independent set. That is,

$$\{1 + x + x^3, 2 - x + 2x^3, x + x^3, x^2 - x\}$$

is linearly independent in \mathcal{P}_3 . Since \mathcal{P}_4 has dimension 4, this must be a basis.

(c) Find a basis for span $\{1, \sin^2 x, \cos^2 x, \sin 2x, \cos 2x\}$ in \mathcal{F} .

Solution: Since $\cos^2 x = 1 - \sin^2 x$ and $\cos 2x = 1 - 2\sin^2 x$, we have

$$span\{1, \sin^2 x, \cos^2 x, \sin 2x, \cos 2x\} = span\{1, \sin^2 x, \sin 2x\}.$$

We claim that $\{1, \sin^2 x, \sin 2x\}$ is linearly independent in \mathcal{F} . To see this, suppose that

$$a + b\sin^2 x + c\sin 2x = 0.$$

This identity must hold for all x. In particular, setting x = 0 gives a = 0. Then setting $x = \frac{\pi}{2}$ in $b\sin^2 x + c\sin 2x = 0$ gives b = 0. Finally, setting $x = \frac{\pi}{4}$ in $c\sin 2x = 0$ gives c = 0. Therefore $\{1, \sin^2 x, \sin 2x\}$ is indeed linearly independent. It is therefore a basis for span $\{1, \sin^2 x, \cos^2 x, \sin 2x, \cos 2x\}$.

2. Find a basis for the subspace $\{p(x) : xp'(x) = p(x)\}$ of \mathcal{P}_3 .

Solution: Let $S = \{p(x) \in \mathcal{P}_3 : xp'(x) = p(x)\}$. Then

$$p(x) = a + bx + cx^{2} + dx^{3} \in \mathcal{S} \iff x(b + 2cx + 3dx^{2}) = a + bx + cx^{2} + dx^{3}$$
$$\iff bx + 2cx^{2} + 3dx^{3} = a + bx + cx^{2} + dx^{3}$$
$$\iff \{a = 0, b = b, c = 2c, d = 3d\}$$
$$\iff a = c = d = 0.$$

That is, $p(x) \in S$ if and only if p(x) = bx for some $b \in \mathbb{R}$. Therefore $S = \operatorname{span}\{x\}$, so that $\{x\}$ is a basis for S.

3. Find a formula for the dimension of the vector space of symmetric $n \times n$ matrices over \mathbb{R} .

Solution: The idea is that not all the entries in a symmetric matrix are independent of each other, since the entries in the lower half of the matrix must match those in the upper half. For example, every 3×3 matrix is of the form

$$\begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix} = aE_{11} + dE_{22} + fE_{33} + b(E_{12} + E_{21}) + c(E_{13} + E_{31}) + e(E_{23} + E_{32}).$$

So the space of 3×3 symmetric matrices has dimension 6, with basis

$$\{E_{11}, E_{22}, E_{33}, E_{12} + E_{21}, E_{13} + E_{31}, E_{23} + E_{32}\}$$

Notice that 6 = 3 + 2 + 1 is the number of matrix entries on or above the diagonal.

In general, the space of $n \times n$ symmetric matrices will have dimension $1+2+3+\cdots+n = \frac{1}{2}n(n+1)$, with basis

$$\{E_{ii} : 1 \le i \le n\} \cup \{E_{ij} + E_{ji} : 1 \le i < j \le n\}.$$

4. Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a basis of the vector space V. Prove that

{
$$\mathbf{v}_1, \ \mathbf{v}_1 + \mathbf{v}_2, \ \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3, \dots, \mathbf{v}_1 + \mathbf{v}_2 + \dots + \mathbf{v}_n$$
}

is a also a basis of V.

Solution: Let $\mathbf{u}_k = \mathbf{v}_1 + \mathbf{v}_2 + \cdots + \mathbf{v}_k$, for $k = 1, 2, \ldots, n$. Then the coordinates of the vectors $\mathbf{u}_1, \ldots, \mathbf{u}_k$ with respect to the basis $\mathcal{B} = {\mathbf{v}_1, \ldots, \mathbf{v}_n}$ are

$$[\mathbf{u}_{1}]_{\mathcal{B}} = \begin{bmatrix} 1\\0\\0\\0\\\vdots\\0 \end{bmatrix}, \quad [\mathbf{u}_{2}]_{\mathcal{B}} = \begin{bmatrix} 1\\1\\0\\0\\\vdots\\0 \end{bmatrix}, \quad [\mathbf{u}_{3}]_{\mathcal{B}} = \begin{bmatrix} 1\\1\\1\\0\\\vdots\\0 \end{bmatrix}, \quad \cdots \quad [\mathbf{u}_{n}]_{\mathcal{B}} = \begin{bmatrix} 1\\1\\1\\1\\\vdots\\1 \end{bmatrix}.$$

These coordinates are clearly linearly independent in \mathbb{R}^n , and therefore form a basis for \mathbb{R}^n . It follows that $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ is a basis for V.