Math 1210: Fun With Derivatives

At this point you know the derivatives of a handful of "basic" functions. Your calculus life will be much easier if you have this list memorized for instant recall:

$$
\begin{aligned}
\frac{d}{d x} x^{a} & =a x^{a-1} & \frac{d}{d x} a^{x} & =a^{x} \ln a \\
\frac{d}{d x} \sin x & =\cos x & \frac{d}{d x} \csc x & =-\csc x \cot x \\
\frac{d}{d x} \cos x & =-\sin x & \frac{d}{d x} \sec x & =\sec x \tan x \\
\frac{d}{d x} \tan x & =\sec ^{2} x & \frac{d}{d x} \cot x & =-\csc ^{2} x
\end{aligned}
$$

You also know how to differentiate functions that are "pasted together" through addition, subtraction, multiplication, division, and composition:

$$
\begin{array}{ll}
\text { Linearity: } & \frac{d}{d x}(A f(x)+B g(x))=A f^{\prime}(x)+B g^{\prime}(x) \quad \text { for constants } A, B \\
\text { Product Rule: } & \frac{d}{d x} f(x) g(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
\text { Quotient Rule: } & \frac{d}{d x} \frac{f(x)}{g(x)}=\frac{f^{\prime}(x) g(x)-g^{\prime}(x) f(x)}{(g(x))^{2}}
\end{array}
$$

Chain Rule: $\quad \frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)$
All the x 's in these rules may make them appear more complicated than they are. For instance, the product rule looks easier when written as $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$. In fact, this rule can be applied iteratively to a product of more than two functions, and the overall rule to remember is simply that each factor "gets its turn" at differentiation. For example, we have

$$
(f g h k)^{\prime}=f^{\prime} g h k+f g^{\prime} h k+f g h^{\prime} k+f g h k^{\prime} .
$$

Likewise, the chain rule is best remembered informally as

$$
\frac{d}{d x} f(\text { junk })=f^{\prime}(\text { junk }) \times[\text { derivative of junk }] .
$$

If the junk is itself a composition of functions, then we have to use the chain rule more than once. For example, to calculate the derivative of $f(x)=\cos ^{4}\left(2 e^{x}+1\right)$, we first observe that

$$
f(x)=(\text { junk })^{4}, \quad \text { where } \quad \text { junk }=\cos \left(2 e^{x}+1\right)
$$

The chain rule therefore gives

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}(\mathrm{junk})^{4} \\
& =4(\mathrm{junk})^{3} \cdot \frac{d}{d x}(\mathrm{junk}) \\
& =4 \cos ^{3}\left(2 e^{x}+1\right) \frac{d}{d x} \cos \left(2 e^{x}+1\right) .
\end{aligned}
$$

To compute $\frac{d}{d x} \cos \left(2 e^{x}+1\right)$, we replace $2 e^{x}+1$ with "crud" and apply the chain rule again:

$$
\begin{aligned}
\frac{d}{d x} \cos \left(2 e^{x}+1\right) & =\frac{d}{d x} \cos (\text { crud }) \\
& =-\sin (\text { crud }) \cdot \frac{d}{d x}(\text { crud }) \\
& =-\sin \left(2 e^{x}+1\right) \frac{d}{d x}\left(2 e^{x}+1\right) \\
& =-\sin \left(2 e^{x}+1\right) \cdot 2 e^{x}
\end{aligned}
$$

So altogether we have

$$
\begin{aligned}
f^{\prime}(x) & =4 \cos ^{3}\left(2 e^{x}+1\right)\left(-\sin \left(2 e^{x}+1\right) \cdot 2 e^{x}\right) \\
& =-8 e^{x} \cos ^{3}\left(2 e^{x}+1\right) \sin \left(2 e^{x}+1\right)
\end{aligned}
$$

To differentiate a complicated function, we typically require multiple applications of the chain rule, along with the other differentiation rules. For instance:

$$
\begin{aligned}
\frac{d}{d x} \sqrt{3^{2 x+1}+5 \sec x^{2}} & =\frac{d}{d x} \sqrt{\mathrm{junk}} \quad\left[\mathrm{junk}=3^{2 x+1}+5 \sec x^{2}\right] \\
& =\frac{1}{2 \sqrt{\mathrm{junk}}} \cdot \frac{d}{d x}(\mathrm{junk}) \\
& =\frac{1}{2 \sqrt{3^{2 x+1}+5 \sec x^{2}}} \frac{d}{d x}\left(3^{2 x+1}+5 \sec x^{2}\right) \\
& =\frac{1}{2 \sqrt{3^{2 x+1}+5 \sec x^{2}}}\left(\frac{d}{d x} 3^{2 x+1}+5 \frac{d}{d x} \sec x^{2}\right) \quad[\text { by linearity }] \\
& =\frac{1}{2 \sqrt{3^{2 x+1}+5 \sec x^{2}}}\left(\frac{d}{d x} 3^{\text {crud }}+5 \frac{d}{d x} \sec (\text { blah })\right) \quad\left[\text { crud }=2 x+1, \quad \text { blah }=x^{2}\right] \\
& =\frac{1}{2 \sqrt{3^{2 x+1}+5 \sec x^{2}}}\left(3^{\text {crud }} \ln 3 \cdot \frac{d}{d x}(\text { blah })+5 \sec (\text { blah }) \tan (\text { blah }) \cdot \frac{d}{d x}(\text { blah })\right) \\
& =\frac{1}{2 \sqrt{3^{2 x+1}+5 \sec x^{2}}}\left(3^{2 x+1} \ln 3 \cdot \frac{d}{d x}(2 x+1)+5 \sec x^{2} \tan x^{2} \cdot \frac{d}{d x} x^{2}\right) \\
& =\frac{1}{2 \sqrt{3^{2 x+1}+5 \sec x^{2}}}\left(3^{2 x+1} \ln 3 \cdot 2+5 \sec x^{2} \tan x^{2} \cdot 2 x\right) \\
& =\frac{2 \ln 3 \cdot 3^{2 x+1}+10 x \sec x^{2} \tan x^{2}}{2 \sqrt{3^{2 x+1}+5 \sec x^{2}}}
\end{aligned}
$$

As another example, take a moment to convince yourself that

$$
y=\sqrt[3]{1+x^{3} \sin ^{2}(\pi x)}
$$

has the following messy derivative:

$$
\frac{d y}{d x}=\frac{1}{3}\left(1+x^{3} \sin ^{2}(\pi x)\right)^{-2 / 3}\left(3 x^{2} \sin ^{2}(\pi x)+x^{3} \cdot 2 \sin (\pi x) \cdot \cos (\pi x) \cdot \pi\right) .
$$

Problems:

1. Differentiate the following. Simplify first if it seems helpful (and afterward if it seems fruitful).
(a) $y=7(x+3) \sqrt{x+1}$
(b) $y=\frac{2 \sin x}{1+3 e^{5 x}}$
(c) $y=5 x^{2} e^{x^{2}} \sqrt{x+1}$
(d) $y=x^{2} \sqrt{x}\left(3+x^{4}\right)$
(e) $y=\sec x \tan x$
(f) $y=\frac{2 x^{3}+1}{7 x^{2}-3 x+2}$
(g) $y=\frac{x^{2} \sin x+x}{2 x \sqrt{x}+1}$
(h) $y=\frac{3}{2 x^{3}+3 \cos x}$
(i) $y=3 \cos x \sin x$
(j) $y=\frac{\csc x}{\cot x-1}$
(k) $y=\frac{1+x^{2}}{\sqrt[4]{x-1}}$
(l) $y=\left(3 x^{3}+2 x+1\right)^{10}$
(m) $y=3^{2 x} \sqrt{2^{3 x}+7}$
(n) $y=5 \sin ^{2} 3 x$
(o) $y=\frac{3}{\sqrt[3]{x+\sin x}}$
(p) $y=\frac{1}{\left(2-e^{\cos x}\right)^{3}}$
(q) $y=\left(2 x+\cos ^{2} x\right)^{2 / 3}$
(r) $y=\tan ^{3}(2 x)$
(s) $y=\sin \left(x^{2}\right)\left(1+x^{3}\right)^{4}$
(t) $y=\sqrt{\frac{1+x}{1-x}}$
(u) $y=\sec ^{3}\left(\sqrt[3]{1+x^{2}}\right)$
2. Find all points at which the tangent to the following curves is horizontal:
(a) $y=x \sqrt{x+1}$
(b) $y=\frac{x}{1+2 x^{3}}$
(c) $y=e^{x}\left(e^{x}-1\right)$.
(d) $y=\sin ^{3}(2 x)$

Answers:

Warning! I have looked over these answers quickly, but I assume there are still typos lurking about. So don't be too alarmed if you see something that baffles you - it may just be my mistake! Please let me know if you find any errors.

1. (a) Product rule yields $y^{\prime}=7 \sqrt{x+1}+\frac{7(x+3)}{2 \sqrt{x+1}}$.
(b) Quotient rule gives $y^{\prime}=\frac{2 \cos x\left(1+3 e^{5 x}\right)-\left(3 e^{5 x} \cdot 5\right)(2 \sin x)}{\left(1+3 e^{5 x}\right)^{2}}=\frac{2 \cos x+6 e^{5 x}(\cos x-5 \sin x)}{\left(1+3 e^{5 x}\right)^{2}}$.

The simplification step I have taken here is somewhat arbitrary. The important thing at this point is to get the correct derivative, written in any form.
(c) Product rule gives $y^{\prime}=10 x e^{x^{2}} \sqrt{x+1}+5 x^{2} e^{x^{2}}(2 x) \cdot \sqrt{x+1}+5 x^{2} e^{x^{2}} \frac{1}{2 \sqrt{x+1}}$.
(d) The simplest approach is to write $y=3 x^{5 / 2}+x^{13 / 2}$ so that $y^{\prime}=\frac{15}{2} x^{3 / 2}+\frac{13}{2} x^{11 / 2}$.

The same result is obtained by applying the product rule to $y=x^{5 / 2}\left(3+x^{4}\right)$, or by applying the " 3 -fold" product rule to $y=x^{2} \cdot \sqrt{x} \cdot\left(3+x^{4}\right)$.
(e) The product rule gives $y^{\prime}=(\sec x \tan x)(\tan x)+\sec x\left(\sec ^{2} x\right)=\sec x\left(\tan ^{2} x+\sec ^{2} x\right)$.

It smells like this should simplify, but about the best we can do is apply the identity $1+\tan ^{2} x=\sec ^{2} x$ to write $y^{\prime}=\sec x\left(2 \sec ^{2} x-1\right)$.
(f) This is a messy but straightforward application of quotient rule:

$$
y^{\prime}=\frac{6 x^{2}\left(7 x^{2}-3 x+2\right)-(14 x-3)\left(2 x^{3}+1\right)}{\left(7 x^{2}-3 x+2\right)^{2}}=\frac{14 x^{4}-12 x^{3}+12 x^{2}-14 x+3}{\left(7 x^{2}-3 x+2\right)^{2}} .
$$

(g) Apply quotient rule, noting along the way that $\frac{d}{d x} x^{2} \sin x=2 x \sin x+x^{2} \cos x$ and $\frac{d}{d x} x \sqrt{x}=\frac{d}{d x} x^{3 / 2}=\frac{3}{2} \sqrt{x}$. Arrive at

$$
y^{\prime}=\frac{\left(2 x \sin x+x^{2} \cos x+1\right)(2 x \sqrt{x}+1)-3 \sqrt{x}\left(x^{2} \sin x+x\right)}{(2 x \sqrt{x}+1)^{2}} .
$$

(h) Applying the quotient rule gives

$$
y^{\prime}=\frac{0 \cdot\left(2 x^{3}+3 \cos x\right)-3\left(6 x^{2}-3 \sin x\right)}{\left(2 x^{3}+3 \cos x\right)^{2}}=\frac{-3\left(6 x^{2}-3 \sin x\right)}{\left(2 x^{3}+3 \cos x\right)^{2}} .
$$

This is correct, but it is a little silly to use the quotient rule when the numerator is a constant. Instead, recognize that the given function is simply $y=3\left(2 x^{3}+3 \cos x\right)^{-1}$. Then $y^{\prime}=-3\left(2 x^{3}+3 \cos x\right)^{-2}\left(6 x^{2}-3 \sin x\right)$ by chain rule.
(i) Applying the product rule gives $y^{\prime}=3((-\sin x) \sin x+\cos x(\cos x))$, which can be simplified to $y^{\prime}=3 \cos 2 x$ through the identity $\cos ^{2} x-\sin ^{2} x=\cos 2 x$.
A cleaner approach is simplify before differentiating. Use $\sin 2 x=2 \sin x \cos x$ to write $y=\frac{3}{2} \sin 2 x$. Then the chain rule gives $y^{\prime}=\frac{3}{2}(\cos 2 x)(2)$.
(j) The product and quotient rules give

$$
y^{\prime}=\frac{-\csc x \cot x(\cot x-1)-\left(-\csc ^{2} x\right) \csc x}{(\cot x-1)^{2}} .
$$

This expression is correct and can be simplified by common factoring -cscx in the numerator and applying the identity $1+\cot ^{2} x=\csc ^{2} x$.
However, it is always good to be on the lookout for basic simplifications before differentiating. In this case, upon expressing $\csc x$ and $\cot x$ in terms of $\sin x$ and $\cos x$, we find that the given expression for y simplifies to $y=(\cos x-\sin x)^{-1}$. So the chain rule (or quotient rule) immediately gives

$$
y^{\prime}=\frac{-(-\sin x-\cos x)}{(\cos x-\sin x)^{2}}
$$

If you take the time to convert everything to $\sin x$ and $\cos x$, you will see that our first expression for y^{\prime} does match this one.
With a little more trig trickery we notice that

$$
\begin{aligned}
(\cos x-\sin x)^{2} & =\left(\cos ^{2} x+\sin ^{2} x\right)-2 \cos x \sin x \\
& =1-\sin 2 x
\end{aligned}
$$

Therefore

$$
y^{\prime}=\frac{\sin x+\cos x}{1-2 \sin x} .
$$

Again, the important thing right now is to get a correct derivative. However, we will later need to be able to simply expressions as above.
(k) Applying the quotient rule gives

$$
y^{\prime}=\frac{2 x \sqrt[4]{x-1}-\frac{1}{4}(x-1)^{-3 / 4}\left(1+x^{2}\right)}{(\sqrt[4]{x-1})^{2}}
$$

Alternatively, write $y=\left(1+x^{2}\right)(x-1)^{-1 / 4}$ and use the product rule to get

$$
y^{\prime}=2 x(x-1)^{-1 / 4}+\left(1+x^{2}\right)\left(-\frac{1}{4}(x-1)^{-5 / 4}\right) .
$$

Take a moment to convince yourself that these expressions for y^{\prime} are equivalent.
(l) Chain rule gives $y^{\prime}=10\left(3 x^{3}+2 x+1\right)^{9} \cdot\left(9 x^{2}+2\right)$.
(m) Product and chain rules give $y^{\prime}=3^{2 x} \ln 3 \cdot 2 \cdot \sqrt{2^{3 x}+7}+3^{2 x} \cdot \frac{1}{2}\left(2^{3 x}+7\right)^{-1 / 2} \cdot 2^{3 x} \ln 2 \cdot 3$
(n) Chain rule gives $y^{\prime}=5 \cdot 2 \sin (3 x) \cdot \cos (3 x) \cdot 3=30 \sin 3 x \cos 3 x=15 \sin 6 x$.
(o) Write $y=3(x+\sin x)^{-1 / 3}$ and use chain rule to get

$$
y^{\prime}=3 \cdot\left(-\frac{1}{3}\right)(x+\sin x)^{-4 / 3} \cdot(1+\cos x)=-\frac{1+\cos x}{(x+\sin x)^{4 / 3}}
$$

(p) Write $y=\left(2-e^{\cos x}\right)^{-3}$. Chain rule gives

$$
y^{\prime}=-3\left(2-e^{\cos x}\right)^{-4} \cdot\left(-e^{\cos x}\right)(-\sin x)=\frac{-3 e^{\cos x} \sin x}{\left(2-e^{\cos x}\right)^{4}} .
$$

(q) Chain rule gives $y^{\prime}=\frac{2}{3}\left(2 x+\cos ^{2} x\right)^{-1 / 3} \cdot(2+2 \cos x(-\sin x))=\frac{2(2-\sin 2 x)}{3 \sqrt[3]{2 x+\cos ^{2} x}}$.
(r) Chain rule gives $y^{\prime}=3 \tan ^{2}(2 x) \cdot \sec ^{2}(2 x) \cdot 2=6(\sec 2 x \tan 2 x)^{2}$.
(s) Chain and product rules give $y^{\prime}=\cos \left(x^{2}\right) \cdot 2 x \cdot\left(1+x^{3}\right)^{4}+\sin \left(x^{2}\right) \cdot 4\left(1+x^{3}\right)^{3} \cdot 3 x^{2}$. Not a lot can be done to simplify here, though we can common factor to write

$$
y^{\prime}=2 x\left(1+x^{3}\right)^{3}\left(\left(1+x^{3}\right) \cos x^{2}+6 x \sin x^{2}\right) .
$$

(t$)$ Chain and quotient rules give

$$
\begin{aligned}
y^{\prime} & =\frac{1}{2}\left(\frac{1+x}{1-x}\right)^{-1 / 2} \cdot \frac{1(1-x)-(-1)(1+x)}{(1-x)^{2}} \\
& =\frac{1}{2} \sqrt{\frac{1-x}{1+x}} \cdot \frac{2}{(1-x)^{2}} \\
& =\frac{1}{(1-x) \sqrt{1-x^{2}}},
\end{aligned}
$$

where the last line follows from $(1-x)(1+x)=1-x^{2}$.
(u) A few applications of the chain rule are needed here:

$$
\begin{aligned}
y^{\prime} & =3 \sec ^{2}\left(\sqrt[3]{1+x^{2}}\right) \cdot\left(\sec \sqrt[3]{1+x^{2}} \tan \sqrt[3]{1+x^{2}}\right) \cdot \frac{1}{3}\left(1+x^{2}\right)^{-2 / 3} \cdot 2 x \\
& =\frac{2 x \sec ^{3}\left(\sqrt[3]{1+x^{2}}\right) \tan \left(\sqrt[3]{1+x^{2}}\right)}{\left(1+x^{2}\right)^{2 / 3}}
\end{aligned}
$$

2. (a) The derivative is

$$
y^{\prime}=\sqrt{x+1}+\frac{1}{2 \sqrt{x+1}}=\frac{3 x+2}{2 \sqrt{x+1}},
$$

so we have $y^{\prime}=0$ if and only if $3 x+2=0$. Hence the tangent line is horizontal only at $x=-\frac{2}{3}$.
(b) The derivative is

$$
y^{\prime}=\frac{1 \cdot\left(1+2 x^{3}\right)-6 x^{2} \cdot x}{\left(1+2 x^{3}\right)^{2}}=\frac{1-4 x^{3}}{\left(1+2 x^{3}\right)^{2}} .
$$

Therefore $y^{\prime}=0$ only when $1-4 x^{3}=0$, which occurs when $x=\sqrt[3]{\frac{1}{4}}$. So the tangent is horizontal only at $x=1 / \sqrt[3]{4}$.
(c) The derivative works out to $y^{\prime}=2 e^{2 x}-e^{x}=e^{x}\left(2 e^{x}-1\right)$. This is zero when either $e^{x}=0$ or $2 e^{x}-1=0$. Note that $e^{x}=0$ is impossible. On the other hand, $2 e^{x}-1=0 \Longleftrightarrow$ $e^{x}=\frac{1}{2} \Longleftrightarrow x=\ln \frac{1}{2}$. So the tangent is horizontal only at $x=\ln \frac{1}{2}=-\ln 2$.
(d) The derivative is

$$
y^{\prime}=3 \sin ^{2}(2 x) \cdot \cos (2 x) \cdot 2=6 \sin ^{2}(2 x) \cos (2 x) .
$$

Thus $y^{\prime}=0$ if and only if $\sin 2 x=0$ or $\cos 2 x=0$. The first condition occurs when $2 x$ is a multiple of π, and the second occurs when $2 x$ is an odd multiple of $\frac{\pi}{2}$. Thus $y^{\prime}=0$ precisely when $x=k \pi / 2$ for some integer k.

