
Math 1210: Fun With Derivatives Winter 2012

At this point you know the derivatives of a handful of “basic” functions. Your calculus life will be
much easier if you have this list memorized for instant recall:

d

dx
xa = axa−1

d

dx
ax = ax ln a

d

dx
sinx = cosx

d

dx
cscx = − cscx cotx

d

dx
cosx = − sinx

d

dx
secx = secx tanx

d

dx
tanx = sec2 x

d

dx
cotx = − csc2 x

You also know how to differentiate functions that are “pasted together” through addition, subtrac-
tion, multiplication, division, and composition:

Linearity:
d

dx
(Af(x) +Bg(x)) = Af ′(x) +Bg′(x) for constants A,B

Product Rule:
d

dx
f(x)g(x) = f ′(x)g(x) + f(x)g′(x)

Quotient Rule:
d

dx

f(x)

g(x)
=
f ′(x)g(x)− g′(x)f(x)

(g(x))2

Chain Rule:
d

dx
f(g(x)) = f ′(g(x))g′(x)

All the x’s in these rules may make them appear more complicated than they are. For instance,
the product rule looks easier when written as (fg)′ = f ′g + fg′. In fact, this rule can be applied
iteratively to a product of more than two functions, and the overall rule to remember is simply
that each factor “gets its turn” at differentiation. For example, we have

(fghk)′ = f ′ghk + fg′hk + fgh′k + fghk′.

Likewise, the chain rule is best remembered informally as

d

dx
f(junk) = f ′(junk)× [derivative of junk].

If the junk is itself a composition of functions, then we have to use the chain rule more than once.
For example, to calculate the derivative of f(x) = cos4(2ex + 1), we first observe that

f(x) = (junk)4, where junk = cos(2ex + 1).

The chain rule therefore gives

f ′(x) =
d

dx
(junk)4

= 4(junk)3 · d
dx

(junk)

= 4 cos3(2ex + 1)
d

dx
cos(2ex + 1).
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To compute d
dx cos(2ex + 1), we replace 2ex + 1 with “crud” and apply the chain rule again:

d

dx
cos(2ex + 1) =

d

dx
cos(crud)

= − sin(crud) · d
dx

(crud)

= − sin(2ex + 1)
d

dx
(2ex + 1)

= − sin(2ex + 1) · 2ex.

So altogether we have

f ′(x) = 4 cos3(2ex + 1)(− sin(2ex + 1) · 2ex)

= −8ex cos3(2ex + 1) sin(2ex + 1).

To differentiate a complicated function, we typically require multiple applications of the chain rule,
along with the other differentiation rules. For instance:

d

dx

√
32x+1 + 5 secx2 =

d

dx

√
junk [junk = 32x+1 + 5 secx2]

=
1

2
√

junk
· d
dx

(junk)

=
1

2
√

32x+1 + 5 secx2
d

dx
(32x+1 + 5 secx2)

=
1

2
√

32x+1 + 5 secx2

( d
dx

32x+1 + 5
d

dx
secx2

)
[by linearity]

=
1

2
√

32x+1 + 5 secx2

( d
dx

3crud + 5
d

dx
sec(blah)

)
[crud = 2x+ 1, blah = x2]

=
1

2
√

32x+1 + 5 secx2

(
3crud ln 3 · d

dx
(blah) + 5 sec(blah) tan(blah) · d

dx
(blah)

)
=

1

2
√

32x+1 + 5 secx2

(
32x+1 ln 3 · d

dx
(2x+ 1) + 5 secx2 tanx2 · d

dx
x2
)

=
1

2
√

32x+1 + 5 secx2

(
32x+1 ln 3 · 2 + 5 secx2 tanx2 · 2x

)
=

2 ln 3 · 32x+1 + 10x secx2 tanx2

2
√

32x+1 + 5 secx2

As another example, take a moment to convince yourself that

y = 3

√
1 + x3 sin2(πx)

has the following messy derivative:

dy

dx
=

1

3

(
1 + x3 sin2(πx)

)−2/3(
3x2 sin2(πx) + x3 · 2 sin(πx) · cos(πx) · π

)
.
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Problems:

1. Differentiate the following. Simplify first if it seems helpful (and afterward if it seems fruitful).

(a) y = 7(x+ 3)
√
x+ 1

(b) y =
2 sinx

1 + 3e5x

(c) y = 5x2ex
2√
x+ 1

(d) y = x2
√
x(3 + x4)

(e) y = secx tanx

(f) y =
2x3 + 1

7x2 − 3x+ 2

(g) y =
x2 sinx+ x

2x
√
x+ 1

(h) y =
3

2x3 + 3 cosx

(i) y = 3 cosx sinx

(j) y =
cscx

cotx− 1

(k) y =
1 + x2

4
√
x− 1

(l) y = (3x3 + 2x+ 1)10

(m) y = 32x
√

23x + 7

(n) y = 5 sin2 3x

(o) y =
3

3
√
x+ sinx

(p) y =
1

(2− ecosx)3

(q) y = (2x+ cos2 x)2/3

(r) y = tan3(2x)

(s) y = sin(x2)(1 + x3)4

(t) y =

√
1 + x

1− x

(u) y = sec3
(

3
√

1 + x2
)

2. Find all points at which the tangent to the following curves is horizontal:

(a) y = x
√
x+ 1

(b) y =
x

1 + 2x3

(c) y = ex(ex − 1).

(d) y = sin3(2x)
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Answers:

Warning! I have looked over these answers quickly, but I assume there are still typos lurking
about. So don’t be too alarmed if you see something that baffles you — it may just be my mistake!
Please let me know if you find any errors.

1. (a) Product rule yields y′ = 7
√
x+ 1 +

7(x+ 3)

2
√
x+ 1

.

(b) Quotient rule gives y′ =
2 cosx(1 + 3e5x)− (3e5x · 5)(2 sinx)

(1 + 3e5x)2
=

2 cosx+ 6e5x(cosx− 5 sinx)

(1 + 3e5x)2
.

The simplification step I have taken here is somewhat arbitrary. The important thing
at this point is to get the correct derivative, written in any form.

(c) Product rule gives y′ = 10xex
2√
x+ 1 + 5x2ex

2
(2x) ·

√
x+ 1 + 5x2ex

2 1

2
√
x+ 1

.

(d) The simplest approach is to write y = 3x5/2 + x13/2 so that y′ = 15
2 x

3/2 + 13
2 x

11/2.

The same result is obtained by applying the product rule to y = x5/2(3 + x4), or by
applying the “3-fold” product rule to y = x2 ·

√
x · (3 + x4).

(e) The product rule gives y′ = (secx tanx)(tanx) + secx(sec2 x) = secx(tan2 x+ sec2 x).

It smells like this should simplify, but about the best we can do is apply the identity
1 + tan2 x = sec2 x to write y′ = secx (2 sec2 x− 1).

(f) This is a messy but straightforward application of quotient rule:

y′ =
6x2(7x2 − 3x+ 2)− (14x− 3)(2x3 + 1)

(7x2 − 3x+ 2)2
=

14x4 − 12x3 + 12x2 − 14x+ 3

(7x2 − 3x+ 2)2
.

(g) Apply quotient rule, noting along the way that d
dxx

2 sinx = 2x sinx + x2 cosx and
d
dxx
√
x = d

dxx
3/2 = 3

2

√
x. Arrive at

y′ =
(2x sinx+ x2 cosx+ 1)(2x

√
x+ 1)− 3

√
x(x2 sinx+ x)

(2x
√
x+ 1)2

.

(h) Applying the quotient rule gives

y′ =
0 · (2x3 + 3 cosx)− 3(6x2 − 3 sinx)

(2x3 + 3 cosx)2
=
−3(6x2 − 3 sinx)

(2x3 + 3 cosx)2
.

This is correct, but it is a little silly to use the quotient rule when the numerator is a
constant. Instead, recognize that the given function is simply y = 3(2x3 + 3 cosx)−1.
Then y′ = −3(2x3 + 3 cosx)−2(6x2 − 3 sinx) by chain rule.

(i) Applying the product rule gives y′ = 3((− sinx) sinx + cosx (cosx)), which can be
simplified to y′ = 3 cos 2x through the identity cos2 x− sin2 x = cos 2x.

A cleaner approach is simplify before differentiating. Use sin 2x = 2 sinx cosx to write
y = 3

2 sin 2x. Then the chain rule gives y′ = 3
2(cos 2x)(2).

(j) The product and quotient rules give

y′ =
− cscx cotx(cotx− 1)− (− csc2 x) cscx

(cotx− 1)2
.
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This expression is correct and can be simplified by common factoring −cscx in the
numerator and applying the identity 1 + cot2 x = csc2 x.

However, it is always good to be on the lookout for basic simplifications before differen-
tiating. In this case, upon expressing cscx and cotx in terms of sinx and cosx, we find
that the given expression for y simplifies to y = (cosx− sinx)−1. So the chain rule (or
quotient rule) immediately gives

y′ =
−(− sinx− cosx)

(cosx− sinx)2
,

If you take the time to convert everything to sinx and cosx, you will see that our first
expression for y′ does match this one.

With a little more trig trickery we notice that

(cosx− sinx)2 = (cos2 x+ sin2 x)− 2 cosx sinx

= 1− sin 2x.

Therefore

y′ =
sinx+ cosx

1− 2 sinx
.

Again, the important thing right now is to get a correct derivative. However, we will
later need to be able to simply expressions as above.

(k) Applying the quotient rule gives

y′ =
2x 4
√
x− 1− 1

4(x− 1)−3/4(1 + x2)

( 4
√
x− 1)2

.

Alternatively, write y = (1 + x2)(x− 1)−1/4 and use the product rule to get

y′ = 2x(x− 1)−1/4 + (1 + x2)(−1
4(x− 1)−5/4).

Take a moment to convince yourself that these expressions for y′ are equivalent.

(l) Chain rule gives y′ = 10(3x3 + 2x+ 1)9 · (9x2 + 2).

(m) Product and chain rules give y′ = 32x ln 3 · 2 ·
√

23x + 7 + 32x · 12(23x + 7)−1/2 · 23x ln 2 · 3
(n) Chain rule gives y′ = 5 · 2 sin(3x) · cos(3x) · 3 = 30 sin 3x cos 3x = 15 sin 6x.

(o) Write y = 3(x+ sinx)−1/3 and use chain rule to get

y′ = 3 · (−1
3)(x+ sinx)−4/3 · (1 + cosx) = − 1 + cosx

(x+ sinx)4/3
.

(p) Write y = (2− ecosx)−3. Chain rule gives

y′ = −3(2− ecosx)−4 · (−ecosx)(− sinx) =
−3ecosx sinx

(2− ecosx)4
.

(q) Chain rule gives y′ = 2
3(2x+ cos2 x)−1/3 · (2 + 2 cosx(− sinx)) =

2(2− sin 2x)

3 3
√

2x+ cos2 x
.

(r) Chain rule gives y′ = 3 tan2(2x) · sec2(2x) · 2 = 6(sec 2x tan 2x)2.
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(s) Chain and product rules give y′ = cos(x2) · 2x · (1 + x3)4 + sin(x2) · 4(1 + x3)3 · 3x2. Not
a lot can be done to simplify here, though we can common factor to write

y′ = 2x(1 + x3)3
(

(1 + x3) cosx2 + 6x sinx2
)
.

(t) Chain and quotient rules give

y′ =
1

2

(
1 + x

1− x

)−1/2
· 1(1− x)− (−1)(1 + x)

(1− x)2

=
1

2

√
1− x
1 + x

· 2

(1− x)2

=
1

(1− x)
√

1− x2
,

where the last line follows from (1− x)(1 + x) = 1− x2.
(u) A few applications of the chain rule are needed here:

y′ = 3 sec2
( 3
√

1 + x2
)
· (sec

3
√

1 + x2 tan
3
√

1 + x2) · 13(1 + x2)−2/3 · 2x

=
2x sec3

(
3
√

1 + x2
)

tan
(

3
√

1 + x2
)

(1 + x2)2/3
.

2. (a) The derivative is

y′ =
√
x+ 1 +

1

2
√
x+ 1

=
3x+ 2

2
√
x+ 1

,

so we have y′ = 0 if and only if 3x+ 2 = 0. Hence the tangent line is horizontal only at
x = −2

3 .

(b) The derivative is

y′ =
1 · (1 + 2x3)− 6x2 · x

(1 + 2x3)2
=

1− 4x3

(1 + 2x3)2
.

Therefore y′ = 0 only when 1− 4x3 = 0, which occurs when x = 3

√
1
4 . So the tangent is

horizontal only at x = 1/ 3
√

4.

(c) The derivative works out to y′ = 2e2x−ex = ex(2ex−1). This is zero when either ex = 0
or 2ex − 1 = 0. Note that ex = 0 is impossible. On the other hand, 2ex − 1 = 0 ⇐⇒
ex = 1

2 ⇐⇒ x = ln 1
2 . So the tangent is horizontal only at x = ln 1

2 = − ln 2.

(d) The derivative is

y′ = 3 sin2(2x) · cos(2x) · 2 = 6 sin2(2x) cos(2x).

Thus y′ = 0 if and only if sin 2x = 0 or cos 2x = 0. The first condition occurs when 2x
is a multiple of π, and the second occurs when 2x is an odd multiple of π

2 . Thus y′ = 0
precisely when x = kπ/2 for some integer k.
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