
Math 1210: Exponential and Logarithmic Functions Winter 2012

The following is a summary of our investigations into exponential and logarithmic functions. Read
Sections 1.5 and 1.6 of your text for important review material.

• We tried to find the derivative of the general exponential function f(x) = ax by looking at
the usual limit definition of the derivative.

• We discovered that d
dxa

x was simply ax multiplied by the value of the fundamental limit

lim
h→0

ah − 1

h
.

• We fantasized about a world in which this limit evaluates to 1, and then made our fantasies
come true by defining the constant e to be the unique real number such that

lim
h→0

eh − 1

h
= 1.

• This definition resulted in the wonderfully simple (and monumentally important) rule

d

dx
ex = ex.

• We defined the natural logarithm to be the logarithm with respect to base e. We denote the
natural logarithm of a positive number x by the symbol “lnx” (pronounced “lawn x”). Thus

y = lnx is equivalent to ey = x.

In words: The natural logarithm of x is the exponent to which e must be raised in order to
obtain x. (So eln 3 = 3 and ln e−2 = −2, by definition.)

• By rewriting ax as ex ln a and using the chain rule, we found the general differentiation rule

d

dx
ax = ax ln a.

• To find the derivative of lnx, we began by writing the defining equation elnx = x. We then
took the derivative of both sides of this equation, making careful use of the chain rule on the
left-hand side. This gave

elnx
d

dx
lnx = 1.

But since elnx = x, this equation readily yielded the important rule

d

dx
lnx =

1

x
.

• Repeating the process above with loga x in place of lnx, we instead obtained the general rule

d

dx
loga x =

1

x ln a
.
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Problems:

1. Differentiate the following. Simplify first if it seems helpful (and afterward if it seems fruitful).

(a) y = 2 lnx4

(b) y =
ln 2x

e2x

(c) y = 34x53
√
x

(d) y = ln
x− 1

x+ 1

(e) y = ln
√
x2 + 1

(f) y =
3x + 1

3−x + 1

(g) y = log10

(
x3(2x5 + 1)4

)
(h) y = ln esinx 3

√
x+ 1

(i) y =
ln(ex + 1)

x
(j) y = log2(log3(log4 x))

2. Use logarithmic differentiation to compute y′, where:

(a) y = 3x3 4
√

1 + sinx(2x+ 1)10

(b) y =
2x3(1 +

√
x) tan2 x

(3x+ 1)5

(c) y =
2(sinx+ cosx)2

x5
√

1 + x5(1 + x)3

(d) y = (2x+ 1)x

(e) y = (sinx)
√
x.

3. Find all points at which the tangent to the following curves is horizontal:

(a) y = x3 − 2 ln(3x)

(b) y = ex sinx

(c) y = xex
2

(d) y = x2 lnx

(e) y = 4ex
2+3x+2
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Answers:

1. (a) Simplify to get y = 8 lnx. Then y′ =
8

x
.

(b) Quotient rule gives

y′ =
1
2x · 2 · e

2x − e2x · 2 · ln 2x

e4x
=

1− 2x lnx

e2x
.

Alternatively, since y = e−2x ln(2x), product rule gives

y′ = e−2x(−2) ln 2x+ e−2x · 1

2x
· 2 =

1

xe2x
(1− 2x ln 2x) .

Note: When using the chain rule to calculate the derivative of ln 2x, we get 1
2x · 2 = 1

x .
The cancellation of these 2’s can also be seen via log-rules. In particular, we have
ln 2x = ln 2 + lnx, and since ln 2 is a constant it follows that d

dx ln 2x = 0 + 1
x = 1

x .

(c) y′ = (34x ln 3 · 4)53
√
x + 34x

(
53
√
x ln 5 · 3

2
√
x

)
(d) Simplify to get y = ln(x− 1)− ln(x+ 1), so that y′ =

1

x− 1
− 1

x+ 1
=

2

x2 − 1
.

(e) Simplify to y = 1
2 ln(x2 + 1), so that y′ =

1

2
· 1

x2 + 1
· 2x =

x

x2 + 1
.

(f) There’s a tricky simplification here that works wonders. Factor 3x out of the numerator
to rewrite y as

y = 3x
1 + 3−x

3−x + 1
= 3x.

Life is now very easy! We immediately get y′ = 3x ln 3.

If you didn’t see this simplification and used quotient rule instead, you should find that
your answer simplifies to 3x ln 3. (It’s good practice to work through the algebra and
confirm this.)

(g) Simplify to y = 3 log10 x+ 4 log10(2x
5 + 1). Then

y′ = 3 · 1

x ln 10
+ 4 · 1

(2x5 + 1) ln 10
· 10x4 =

46x5 + 3

x(2x5 + 1) ln 10
.

(h) Simplify to y = ln esinx + ln 3
√
x+ 1. But ln(ejunk) = junk, so this further simplifies to

y = sinx+
1

3
ln(x+ 1),

from which we get y′ = cosx+
1

3(x+ 1)
.

(i) Quotient rule gives

y′ =
1

ex+1 · e
x · x− 1 · ln(ex + 1)

x2
=
xex − (ex + 1) ln(ex + 1)

x2(ex + 1)
.

All we could do here in terms of simplification was to eliminate the fraction-within-
fraction situation. In particular, notice that ln(ex + 1) cannot be simplified!
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(j) Chain rule gives

y′ =
1

log3(log4 x) ln 2
· 1

(log4 x) ln 3
· 1

x ln 4
.

We can’t really do anything to simplify a product of logarithms, so we’ll just leave the
answer in this nasty form.

2. (a) First simplify matters by calculating the logarithm of y. Doing so gives:

ln y = ln 3 + lnx3 + ln 4
√

1 + sinx+ ln(2x+ 1)10

= ln 3 + 3 lnx+
1

4
ln(1 + sinx) + 10 ln(2x+ 1).

Now differentiate to get

1

y
· dy
dx

= 0 +
3

x
+

1

4(1 + sinx)
· cosx+

10

2x+ 1
· 2

=
3

x
+

cosx

4(1 + sinx)
+

20

2x+ 1
.

Now “solve for dy
dx” by moving y to the right-hand-side:

dy

dx
= y
(3

x
+

cosx

4(1 + sinx)
+

20

2x+ 1

)
= 3x3 4

√
1 + sinx(2x+ 1)10

(3

x
+

cosx

4(1 + sinx)
+

20

2x+ 1

)
.

(b) First calculate ln y to get:

ln y = ln 2 + 3 lnx+ ln(1 +
√
x) + 2 ln(tanx)− 5 ln(3x+ 1).

Differentiate to get

1

y
· y′ = 3

x
+

1

1 +
√
x
· 1

2
√
x

+ 2
1

tanx
sec2 x− 5

3x+ 1
· 3

=
3

x
+

1

2(
√
x+ x)

+ 2 cotx sec2 x− 15

3x+ 1
.

Finally, solve for y′ to arrive at

y =
2x3(1 +

√
x) tan2 x

(3x+ 1)5

(3

x
+

1

2(
√
x+ x)

+ 2 cotx sec2 x− 15

3x+ 1

)
.

Note: There is generally a handful of reasonable ways to express a product of trigonomet-
ric functions. For instance, you should check that the expression cotx sec2 x appearing
above could also have been written in any of the following forms:

cscx secx or
1

sinx cosx
or

2

sin 2x
.

All of these are simpler than the cotx sec2 x, but none of them will cause the final
answer here to look pleasant so I just left things in a raw form. If I were trying to do
something with this derivative, such as set it to 0, then I would think much harder about
simplification. (But in this case I would have no hope at a simple solution!)
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(c) Same as always. Start by calculating ln y:

ln y = ln 2 + 2 ln(sinx+ cosx)− 5 lnx− 1

2
ln(1 + x5)− 3 ln(1 + x).

Then
y′

y
=

2

sinx+ cosx
(cosx− sinx)− 5

x
− 5x4

2(1 + x5)
− 3

1 + x
.

So we have

y′ =
2(sinx+ cosx)2

x5
√

1 + x5(1 + x)3

(2(cosx− sinx)

sinx+ cosx
− 5

x
− 5x4

2(1 + x5)
− 3

1 + x

)
.

Note: This is a fine answer, but it’s good practice to simplify the trig fraction. For
instance, notice that

cosx− sinx

sinx+ cosx
=

(cosx− sinx)(sinx+ cosx)

(sinx+ cosx)2

=
cos2 x− sin2 x

sin2 x+ cos2 x+ 2 sinx cosx

=
cos 2x

1 + sin 2x
.

That’s lovely, and I feel very proud of myself... until I notice that I should have simplified
before differentiating. In this case, the factor (sinx+ cosx)2 found in the numerator of
y could have been replaced by 1 + sin 2x right from the start. (Why?)

(d) This is one of the few instances where logarithmic differentiation isn’t just a convenience,
it’s essentially a necessity.

Take the logarithm as usual to get ln y = x ln(2x+ 1). Then differentiate, using product
rule, to get

1

y
· y′ = ln(2x+ 1) + x · 1

2x+ 1
· 2.

It follows that

y′ = (2x+ 1)x
(

ln(2x+ 1) +
2x

2x+ 1

)
.

Note: It is a very (very!) common mistake to claim the derivative of (2x+ 1)x is either
x(2x + 1)x−1 or (2x + 1)x ln(2x + 1). But both of these are attempts to use a known
differentiation rule in a case where it does not apply. Make sure you can explain why
these answers are not valid.

(e) Take the logarithm to get ln y =
√
x ln(sinx). Then

1

y
· y′ = 1

2
√
x

ln(sinx) +
√
x

1

sinx
cosx =

1

2
√
x

(
ln(sinx) + 2x cotx

)
,

so that

y′ =
(sinx)

√
x

2
√
x

(
ln(sinx) + 2 cotx

)
,
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3. (a) Differentiate to get y′ = 3x2 − 2
x . Then set y′ = 0 as follows:

0 = 3x2 − 2

x
=

3x3 − 2

x
.

Hence

y′ = 0 ⇐⇒ 3x3 − 2 = 0 ⇐⇒ x =
3

√
2

3
.

So the tangent is horizontal only at x = 3
√

2/3.

(b) Differentiate to get y′ = ex sinx+ ex cosx = ex(cosx+ sinx). Hence y′ = 0 if and only
if ex = 0 or cosx+ sinx = 0. But ex = 0 is impossible (exponentials never equal 0), so
we have cosx+ sinx = 0. Rearrange to get cosx = − sinx, and divide by cosx to arrive
at tanx = −1. This occurs when x = 3π

4 + kπ for any integer k. It is at these values of
x that the tangent is horizontal.

(c) Differentiate to get y′ = ex
2

+ xex
2 · 2x = ex

2
(1 + 2x2). Since neither ex

2
nor 1 + 2x2

can equal 0 (why?), we conclude that y′ = 0 is impossible. Therefore the tangent line to
this curve is never horizontal.

(d) First compute y′ = 2x lnx + x2 · 1
x = x(2 lnx + 1). Thus y′ = 0 when x = 0 or

2 lnx+ 1 = 0. But x = 0 is not in the domain of the original function (since ln 0 is not
defined), so we exclude it from consideration and focus on 2 lnx+ 1 = 0. From here we
get lnx = −1

2 , so that x = e−1/2 = 1/
√
e. Thus the tangent to this curve is horizontal

only at x = 1/
√
e.

(e) Calculate y′ = 4ex
2+3x+2(2x+ 3), so that y′ = 0 if and only if 2x+ 3 = 0. (Again, ejunk

is never zero.) So the tangent is horizontal precisely when x = −3
2 .
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