Math 1210: Exponential and Logarithmic Functions

The following is a summary of our investigations into exponential and logarithmic functions. Read Sections 1.5 and 1.6 of your text for important review material.

- We tried to find the derivative of the general exponential function $f(x)=a^{x}$ by looking at the usual limit definition of the derivative.
- We discovered that $\frac{d}{d x} a^{x}$ was simply a^{x} multiplied by the value of the fundamental limit

$$
\lim _{h \rightarrow 0} \frac{a^{h}-1}{h} .
$$

- We fantasized about a world in which this limit evaluates to 1 , and then made our fantasies come true by defining the constant e to be the unique real number such that

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

- This definition resulted in the wonderfully simple (and monumentally important) rule

$$
\frac{d}{d x} e^{x}=e^{x}
$$

- We defined the natural logarithm to be the logarithm with respect to base e. We denote the natural logarithm of a positive number x by the symbol "ln x " (pronounced "lawn x "). Thus

$$
y=\ln x \quad \text { is equivalent to } \quad e^{y}=x
$$

In words: The natural logarithm of x is the exponent to which e must be raised in order to obtain x. (So $e^{\ln 3}=3$ and $\ln e^{-2}=-2$, by definition.)

- By rewriting a^{x} as $e^{x \ln a}$ and using the chain rule, we found the general differentiation rule

$$
\frac{d}{d x} a^{x}=a^{x} \ln a .
$$

- To find the derivative of $\ln x$, we began by writing the defining equation $e^{\ln x}=x$. We then took the derivative of both sides of this equation, making careful use of the chain rule on the left-hand side. This gave

$$
e^{\ln x} \frac{d}{d x} \ln x=1 .
$$

But since $e^{\ln x}=x$, this equation readily yielded the important rule

$$
\frac{d}{d x} \ln x=\frac{1}{x} .
$$

- Repeating the process above with $\log _{a} x$ in place of $\ln x$, we instead obtained the general rule

$$
\frac{d}{d x} \log _{a} x=\frac{1}{x \ln a} .
$$

Problems:

1. Differentiate the following. Simplify first if it seems helpful (and afterward if it seems fruitful).
(a) $y=2 \ln x^{4}$
(b) $y=\frac{\ln 2 x}{e^{2 x}}$
(c) $y=3^{4 x} 5^{3 \sqrt{x}}$
(d) $y=\ln \frac{x-1}{x+1}$
(e) $y=\ln \sqrt{x^{2}+1}$
(f) $y=\frac{3^{x}+1}{3^{-x}+1}$
(g) $y=\log _{10}\left(x^{3}\left(2 x^{5}+1\right)^{4}\right)$
(h) $y=\ln e^{\sin x} \sqrt[3]{x+1}$
(i) $y=\frac{\ln \left(e^{x}+1\right)}{x}$
(j) $y=\log _{2}\left(\log _{3}\left(\log _{4} x\right)\right)$
2. Use logarithmic differentiation to compute y^{\prime}, where:
(a) $y=3 x^{3} \sqrt[4]{1+\sin x}(2 x+1)^{10}$
(b) $y=\frac{2 x^{3}(1+\sqrt{x}) \tan ^{2} x}{(3 x+1)^{5}}$
(c) $y=\frac{2(\sin x+\cos x)^{2}}{x^{5} \sqrt{1+x^{5}}(1+x)^{3}}$
(d) $y=(2 x+1)^{x}$
(e) $y=(\sin x)^{\sqrt{x}}$.
3. Find all points at which the tangent to the following curves is horizontal:
(a) $y=x^{3}-2 \ln (3 x)$
(b) $y=e^{x} \sin x$
(c) $y=x e^{x^{2}}$
(d) $y=x^{2} \ln x$
(e) $y=4 e^{x^{2}+3 x+2}$

Answers:

1. (a) Simplify to get $y=8 \ln x$. Then $y^{\prime}=\frac{8}{x}$.
(b) Quotient rule gives

$$
y^{\prime}=\frac{\frac{1}{2 x} \cdot 2 \cdot e^{2 x}-e^{2 x} \cdot 2 \cdot \ln 2 x}{e^{4 x}}=\frac{1-2 x \ln x}{e^{2 x}}
$$

Alternatively, since $y=e^{-2 x} \ln (2 x)$, product rule gives

$$
y^{\prime}=e^{-2 x}(-2) \ln 2 x+e^{-2 x} \cdot \frac{1}{2 x} \cdot 2=\frac{1}{x e^{2 x}}(1-2 x \ln 2 x) .
$$

Note: When using the chain rule to calculate the derivative of $\ln 2 x$, we get $\frac{1}{2 x} \cdot 2=\frac{1}{x}$. The cancellation of these 2 's can also be seen via log-rules. In particular, we have $\ln 2 x=\ln 2+\ln x$, and since $\ln 2$ is a constant it follows that $\frac{d}{d x} \ln 2 x=0+\frac{1}{x}=\frac{1}{x}$.
(c) $y^{\prime}=\left(3^{4 x} \ln 3 \cdot 4\right) 5^{3 \sqrt{x}}+3^{4 x}\left(5^{3 \sqrt{x}} \ln 5 \cdot \frac{3}{2 \sqrt{x}}\right)$
(d) Simplify to get $y=\ln (x-1)-\ln (x+1)$, so that $y^{\prime}=\frac{1}{x-1}-\frac{1}{x+1}=\frac{2}{x^{2}-1}$.
(e) Simplify to $y=\frac{1}{2} \ln \left(x^{2}+1\right)$, so that $y^{\prime}=\frac{1}{2} \cdot \frac{1}{x^{2}+1} \cdot 2 x=\frac{x}{x^{2}+1}$.
(f) There's a tricky simplification here that works wonders. Factor 3^{x} out of the numerator to rewrite y as

$$
y=3^{x} \frac{1+3^{-x}}{3^{-x}+1}=3^{x}
$$

Life is now very easy! We immediately get $y^{\prime}=3^{x} \ln 3$.
If you didn't see this simplification and used quotient rule instead, you should find that your answer simplifies to $3^{x} \ln 3$. (It's good practice to work through the algebra and confirm this.)
(g) Simplify to $y=3 \log _{10} x+4 \log _{10}\left(2 x^{5}+1\right)$. Then

$$
y^{\prime}=3 \cdot \frac{1}{x \ln 10}+4 \cdot \frac{1}{\left(2 x^{5}+1\right) \ln 10} \cdot 10 x^{4}=\frac{46 x^{5}+3}{x\left(2 x^{5}+1\right) \ln 10} .
$$

(h) Simplify to $y=\ln e^{\sin x}+\ln \sqrt[3]{x+1}$. But $\ln \left(e^{\mathrm{junk}}\right)=$ junk, so this further simplifies to

$$
y=\sin x+\frac{1}{3} \ln (x+1)
$$

from which we get $y^{\prime}=\cos x+\frac{1}{3(x+1)}$.
(i) Quotient rule gives

$$
y^{\prime}=\frac{\frac{1}{e^{x}+1} \cdot e^{x} \cdot x-1 \cdot \ln \left(e^{x}+1\right)}{x^{2}}=\frac{x e^{x}-\left(e^{x}+1\right) \ln \left(e^{x}+1\right)}{x^{2}\left(e^{x}+1\right)}
$$

All we could do here in terms of simplification was to eliminate the fraction-withinfraction situation. In particular, notice that $\ln \left(e^{x}+1\right)$ cannot be simplified!
(j) Chain rule gives

$$
y^{\prime}=\frac{1}{\log _{3}\left(\log _{4} x\right) \ln 2} \cdot \frac{1}{\left(\log _{4} x\right) \ln 3} \cdot \frac{1}{x \ln 4} .
$$

We can't really do anything to simplify a product of logarithms, so we'll just leave the answer in this nasty form.
2. (a) First simplify matters by calculating the logarithm of y. Doing so gives:

$$
\begin{aligned}
\ln y & =\ln 3+\ln x^{3}+\ln \sqrt[4]{1+\sin x}+\ln (2 x+1)^{10} \\
& =\ln 3+3 \ln x+\frac{1}{4} \ln (1+\sin x)+10 \ln (2 x+1)
\end{aligned}
$$

Now differentiate to get

$$
\begin{aligned}
\frac{1}{y} \cdot \frac{d y}{d x} & =0+\frac{3}{x}+\frac{1}{4(1+\sin x)} \cdot \cos x+\frac{10}{2 x+1} \cdot 2 \\
& =\frac{3}{x}+\frac{\cos x}{4(1+\sin x)}+\frac{20}{2 x+1} .
\end{aligned}
$$

Now "solve for $\frac{d y}{d x}$ " by moving y to the right-hand-side:

$$
\begin{aligned}
\frac{d y}{d x} & =y\left(\frac{3}{x}+\frac{\cos x}{4(1+\sin x)}+\frac{20}{2 x+1}\right) \\
& =3 x^{3} \sqrt[4]{1+\sin x}(2 x+1)^{10}\left(\frac{3}{x}+\frac{\cos x}{4(1+\sin x)}+\frac{20}{2 x+1}\right) .
\end{aligned}
$$

(b) First calculate $\ln y$ to get:

$$
\ln y=\ln 2+3 \ln x+\ln (1+\sqrt{x})+2 \ln (\tan x)-5 \ln (3 x+1) .
$$

Differentiate to get

$$
\begin{aligned}
\frac{1}{y} \cdot y^{\prime} & =\frac{3}{x}+\frac{1}{1+\sqrt{x}} \cdot \frac{1}{2 \sqrt{x}}+2 \frac{1}{\tan x} \sec ^{2} x-\frac{5}{3 x+1} \cdot 3 \\
& =\frac{3}{x}+\frac{1}{2(\sqrt{x}+x)}+2 \cot x \sec ^{2} x-\frac{15}{3 x+1}
\end{aligned}
$$

Finally, solve for y^{\prime} to arrive at

$$
y=\frac{2 x^{3}(1+\sqrt{x}) \tan ^{2} x}{(3 x+1)^{5}}\left(\frac{3}{x}+\frac{1}{2(\sqrt{x}+x)}+2 \cot x \sec ^{2} x-\frac{15}{3 x+1}\right) .
$$

Note: There is generally a handful of reasonable ways to express a product of trigonometric functions. For instance, you should check that the expression $\cot x \sec ^{2} x$ appearing above could also have been written in any of the following forms:

$$
\csc x \sec x \quad \text { or } \quad \frac{1}{\sin x \cos x} \quad \text { or } \quad \frac{2}{\sin 2 x} .
$$

All of these are simpler than the $\cot x \sec ^{2} x$, but none of them will cause the final answer here to look pleasant so I just left things in a raw form. If I were trying to do something with this derivative, such as set it to 0 , then I would think much harder about simplification. (But in this case I would have no hope at a simple solution!)
(c) Same as always. Start by calculating $\ln y$:

$$
\ln y=\ln 2+2 \ln (\sin x+\cos x)-5 \ln x-\frac{1}{2} \ln \left(1+x^{5}\right)-3 \ln (1+x) .
$$

Then

$$
\frac{y^{\prime}}{y}=\frac{2}{\sin x+\cos x}(\cos x-\sin x)-\frac{5}{x}-\frac{5 x^{4}}{2\left(1+x^{5}\right)}-\frac{3}{1+x} .
$$

So we have

$$
y^{\prime}=\frac{2(\sin x+\cos x)^{2}}{x^{5} \sqrt{1+x^{5}}(1+x)^{3}}\left(\frac{2(\cos x-\sin x)}{\sin x+\cos x}-\frac{5}{x}-\frac{5 x^{4}}{2\left(1+x^{5}\right)}-\frac{3}{1+x}\right) .
$$

Note: This is a fine answer, but it's good practice to simplify the trig fraction. For instance, notice that

$$
\begin{aligned}
\frac{\cos x-\sin x}{\sin x+\cos x} & =\frac{(\cos x-\sin x)(\sin x+\cos x)}{(\sin x+\cos x)^{2}} \\
& =\frac{\cos ^{2} x-\sin ^{2} x}{\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x} \\
& =\frac{\cos 2 x}{1+\sin 2 x} .
\end{aligned}
$$

That's lovely, and I feel very proud of myself... until I notice that I should have simplified before differentiating. In this case, the factor $(\sin x+\cos x)^{2}$ found in the numerator of y could have been replaced by $1+\sin 2 x$ right from the start. (Why?)
(d) This is one of the few instances where logarithmic differentiation isn't just a convenience, it's essentially a necessity.
Take the logarithm as usual to get $\ln y=x \ln (2 x+1)$. Then differentiate, using product rule, to get

$$
\frac{1}{y} \cdot y^{\prime}=\ln (2 x+1)+x \cdot \frac{1}{2 x+1} \cdot 2
$$

It follows that

$$
y^{\prime}=(2 x+1)^{x}\left(\ln (2 x+1)+\frac{2 x}{2 x+1}\right) .
$$

Note: It is a very (very!) common mistake to claim the derivative of $(2 x+1)^{x}$ is either $x(2 x+1)^{x-1}$ or $(2 x+1)^{x} \ln (2 x+1)$. But both of these are attempts to use a known differentiation rule in a case where it does not apply. Make sure you can explain why these answers are not valid.
(e) Take the logarithm to get $\ln y=\sqrt{x} \ln (\sin x)$. Then

$$
\frac{1}{y} \cdot y^{\prime}=\frac{1}{2 \sqrt{x}} \ln (\sin x)+\sqrt{x} \frac{1}{\sin x} \cos x=\frac{1}{2 \sqrt{x}}(\ln (\sin x)+2 x \cot x)
$$

so that

$$
y^{\prime}=\frac{(\sin x)^{\sqrt{x}}}{2 \sqrt{x}}(\ln (\sin x)+2 \cot x)
$$

3. (a) Differentiate to get $y^{\prime}=3 x^{2}-\frac{2}{x}$. Then set $y^{\prime}=0$ as follows:

$$
0=3 x^{2}-\frac{2}{x}=\frac{3 x^{3}-2}{x}
$$

Hence

$$
y^{\prime}=0 \quad \Longleftrightarrow \quad 3 x^{3}-2=0 \quad \Longleftrightarrow \quad x=\sqrt[3]{\frac{2}{3}}
$$

So the tangent is horizontal only at $x=\sqrt[3]{2 / 3}$.
(b) Differentiate to get $y^{\prime}=e^{x} \sin x+e^{x} \cos x=e^{x}(\cos x+\sin x)$. Hence $y^{\prime}=0$ if and only if $e^{x}=0$ or $\cos x+\sin x=0$. But $e^{x}=0$ is impossible (exponentials never equal 0), so we have $\cos x+\sin x=0$. Rearrange to get $\cos x=-\sin x$, and divide by $\cos x$ to arrive at $\tan x=-1$. This occurs when $x=\frac{3 \pi}{4}+k \pi$ for any integer k. It is at these values of x that the tangent is horizontal.
(c) Differentiate to get $y^{\prime}=e^{x^{2}}+x e^{x^{2}} \cdot 2 x=e^{x^{2}}\left(1+2 x^{2}\right)$. Since neither $e^{x^{2}}$ nor $1+2 x^{2}$ can equal 0 (why?), we conclude that $y^{\prime}=0$ is impossible. Therefore the tangent line to this curve is never horizontal.
(d) First compute $y^{\prime}=2 x \ln x+x^{2} \cdot \frac{1}{x}=x(2 \ln x+1)$. Thus $y^{\prime}=0$ when $x=0$ or $2 \ln x+1=0$. But $x=0$ is not in the domain of the original function (since $\ln 0$ is not defined), so we exclude it from consideration and focus on $2 \ln x+1=0$. From here we get $\ln x=-\frac{1}{2}$, so that $x=e^{-1 / 2}=1 / \sqrt{e}$. Thus the tangent to this curve is horizontal only at $x=1 / \sqrt{e}$.
(e) Calculate $y^{\prime}=4 e^{x^{2}+3 x+2}(2 x+3)$, so that $y^{\prime}=0$ if and only if $2 x+3=0$. (Again, $e^{\text {junk }}$ is never zero.) So the tangent is horizontal precisely when $x=-\frac{3}{2}$.

