Name: \mid A\#:

1. Consider the function $f(x)=5 \sqrt{3 x}-2$.
(a) Use the limit definition to find the derivative $f^{\prime}(x)$.
(b) Find the equation of the tangent line to the curve $y=f(x)$ at $x=3$.
2. Find $\frac{d y}{d x}$. Do not simplify your answers.
(a) $y=3 x^{4}-\frac{2}{\sqrt[3]{x}}+2^{x}+\frac{7}{5 x^{2}}+5 \tan x+4 e^{3}+\frac{x^{2}+1}{2}$
(b) $y=\left(2+3 x^{2}\right)^{4} e^{\sqrt{x}+1}$
(c) $y=\cos ^{3}(5 x)+\sec ^{3}\left(x^{5}\right)$
(d) $y=\left(\frac{\sin 2 x}{1+\sqrt{1+e^{x^{2}}}}\right)^{6}$
3. Point P lies somewhere on a straight line that runs east to west. A particle travels along this line, beginning at time $t=0$, such that its displacement from a fixed point P at time $t \geq 0$ is given by the formula

$$
d(t)=\frac{t^{2}+t+7}{t^{2}+8}
$$

(Positive values of $d(t)$ indicate positions to the east of P. Time is measured in seconds and distance in metres.)
(a) Find the average velocity of the particle in the first 2 seconds of travel.
(b) What is the instantaneous velocity of the particle at time $t=2$?
(c) At what time(s) t is the particle stationary (i.e. has velocity 0)?
(d) What is the total distance traveled by the particle in the first 10 seconds?

