Name: \mid A\#:

1. Consider the function $f(x)=\frac{2}{5 x}-1$.
(a) Use the limit definition to find the derivative $f^{\prime}(x)$.
(b) Find the equation of the tangent line to the curve $y=f(x)$ at $x=1$.
2. Find $\frac{d y}{d x}$. Do not simplify your answers.
(a) $y=3^{x}-2 x^{5}+\frac{3}{5 \sqrt[4]{x}}+\frac{1-x^{2}}{3}+\frac{5}{7 x^{3}}+5 \tan x+4 \sqrt{\pi}$
(b) $y=\sin ^{4}(3 x)+2 \sec ^{3}\left(x^{4}\right)$
(c) $y=e^{3 \sqrt{x}}\left(1+3 x^{3}\right)^{5}$
(d) $y=\sqrt[3]{\frac{\cos 2 x}{1+x e^{x^{2}}}}$
3. Point P lies somewhere on a straight line that runs east to west. A particle travels along this line, beginning at time $t=0$, such that its displacement from a fixed point P at time $t \geq 0$ is given by the formula

$$
d(t)=\frac{t^{2}-t+7}{t^{2}-2 t+9}
$$

(Positive values of $d(t)$ indicate positions to the east of P. Time is measured in seconds and distance in metres.)
(a) Find the average velocity of the particle in the first 2 seconds of travel.
(b) What is the instantaneous velocity of the particle at time $t=2$?
(c) At what time(s) t is the particle stationary (i.e. has velocity 0)?
(d) What is the total distance traveled by the particle in the first 5 seconds?

