Name: $\quad \mid$ A\#:

1. Consider the function $f(x)=\frac{1}{\sqrt{2 x}}+1$.
(a) Use the limit definition to find the derivative $f^{\prime}(x)$.
(b) Find the equation of the tangent line to the curve $y=f(x)$ at $x=2$.
2. Find $\frac{d y}{d x}$. Do not simplify your answers.
(a) $y=3 x^{7}+4^{x}+\tan x+\frac{2}{5 \sqrt[4]{x}}+7 e^{4}-\frac{2}{3 x^{5}}+\frac{x^{2}+3}{3}$
(b) $y=e^{x^{2}}\left(1+5 x^{4}\right)^{3}$
(c) $y=\frac{\sin 3 x}{1+x^{2} e^{2 x}}$
(d) $y=\sqrt{\sec ^{4}(2 x)+3 \cos ^{2}\left(x^{4}\right)}$
3. Point P lies somewhere on a straight line that runs east to west. A particle travels along this line, beginning at time $t=0$, such that its displacement from a fixed point P at time $t \geq 0$ is given by the formula

$$
d(t)=\frac{t^{2}+5 t+13}{t^{2}+4 t+12}
$$

(Positive values of $d(t)$ indicate positions to the east of P. Time is measured in seconds and distance in metres.)
(a) Find the average velocity of the particle in the first 2 seconds of travel.
(b) What is the instantaneous velocity of the particle at time $t=2$?
(c) At what time(s) t is the particle stationary (i.e. has velocity 0)?
(d) What is the total distance traveled by the particle in the first 6 seconds?

