Name: \mid A\#:

1. Consider the function $f(x)= \begin{cases}x^{2} & \text { if } x<0 \\ \sqrt{x+1} & \text { if } 0 \leq x<3 \\ 5-x & \text { if } x \geq 3 .\end{cases}$
[8] (a) Determine all points x at which $f(x)$ is discontinuous. Justify your answer fully.
[3] (b) Decide whether f is continuous from the left or from the right at each of the points of discontinuity found in (a).
[4] (c) Sketch the graph of $y=f(x)$.
[17] 2. Evaluate the following limits, if they exist. If a limit does not exist, decide whether it tends to $\pm \infty$. Justify your answers fully.
(a) $\lim _{x \rightarrow 9} \frac{x-9}{\sqrt{x}-3}$
(b) $\lim _{x \rightarrow 2} \frac{|x-2|}{x^{2}-2 x}$
(c) $\lim _{t \rightarrow \pi / 2} \frac{1-\cos t}{1-\sin t}$
(d) $\lim _{z \rightarrow 1} \frac{e^{z}}{\sqrt[3]{1-z}}$
[4] 3. State the Mean Value Theorem as precisely as you can, and draw a picture that illustrates its meaning.
[6] 4. (a) Find all critical numbers of the function $f(x)=\sqrt[3]{x^{2}-2 x-3}$.
[18] 5. For the the function $g(x)=2 x^{3}-3 x^{2}-12 x$, do the following:

- Determine where the function is increasing and decreasing, and find all local maxima and minima.
- Determine where the function is concave up and concave down, and find all inflection points.
- Find all x - and y - intercepts.
- Use this information to sketch the curve $y=g(x)$.

