Math 1210: Introductory Problems

Imagine a particle travelling on straight line that passes through a point P and extends a long way (infinitely!) to the east and west. Let $d(t)$ be the displacement of the particle from a fixed point P at time t, where time is measured in seconds and distance in metres.

Assume that a positive value of $d(t)$ indicates that the particle is to the east of P at time t, and a negative sign indicates that it is to the west. Notice that the time " $t=0$ " is arbitrary; so we allow negative values of t and interpret such a time like $t=-3$ to mean 3 seconds before the $t=0$ mark.

1. Suppose the particle's motion is governed by the rule $d(t)=t^{3}$. Answer the following questions:
(i) Where is the particle at time $t=1$?
(ii) What is the average velocity between $t=1$ and $t=4$?
(iii) What is the instantaneous velocity at time $t=1$?
(iv) What is the instantaneous velocity $v(t)$ at time t ?
(v) At what times t is the particle stationary (i.e. has velocity 0)?
(vi) At what times t is the particle moving westward?
2. Repeat Question \#1 for the following displacement functions:
(a) $d(t)=\frac{5}{t^{2}}$
(b) $d(t)=\frac{1}{t+2}$
(c) $d(t)=-\sqrt{2 t}$
(d) $d(t)=3 t^{2}+4$
(e) $d(t)=\frac{3}{\sqrt{t+5}}$
(f) $d(t)=t^{2}-4 t$
(g) $d(t)=\frac{2}{t}-t^{2}$
(h) $d(t)=t^{3}+6 t^{2}+5$

Answers

1. (i) At $t=3$ we have $d(t)=d(3)=3^{3}=27$. So the particle is 27 metres east of P after 3 seconds.
(ii) The average velocity between $t=1$ and $t=4$ is

$$
v_{\mathrm{avg}}=\frac{d(4)-d(1)}{4-1}=\frac{4^{3}-1^{3}}{3}=\frac{63}{3}=21 \mathrm{~m} / \mathrm{s} .
$$

(iii) The instantaneous velocity at $t=1$ is given by

$$
\begin{aligned}
v(1) & =\lim _{t \rightarrow 1} \frac{d(t)-d(1)}{t-1} \\
& =\lim _{t \rightarrow 1} \frac{t^{3}-1}{t-1} \\
& =\lim _{t \rightarrow 1} \frac{(t-1)\left(t^{2}+t+1\right)}{t-1} \\
& =\lim _{t \rightarrow 1}\left(t^{2}+t+1\right) \\
& =3
\end{aligned}
$$

So the particle is moving at $1 \mathrm{~m} / \mathrm{s}$ in the eastward direction at the instant when $t=1$.
Note: Alternatively, we could have used

$$
v(1)=\lim _{h \rightarrow 0} \frac{d(1+h)-d(1)}{h}
$$

to obtain the same result. See (iv), below, for a more general calculation along these lines.
(iv) The instantaneous velocity at time t is given by

$$
\begin{aligned}
v(t) & =\lim _{h \rightarrow 0} \frac{d(t+h)-d(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(t+h)^{3}-t^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{t^{3}+3 t^{2} h+3 t h^{2}+h^{3}-t^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 t^{2} h+3 t h^{2}+h^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 t^{2}+3 t h+h^{2}}{h} \\
& =3 t^{2} .
\end{aligned}
$$

Note: Since we now know $v(t)=3 t^{2}$, we can simply set $t=1$ to get $v(1)=3$, which of course agrees with what we found in part (iii).
(v) The particle is stationary when $v(t)=0$. Using part (iv), we have

$$
v(t)=0 \quad \Longleftrightarrow \quad 3 t^{2}=0 \quad \Longleftrightarrow \quad t=0
$$

So the particle is stationary only at time $t=0$.
(vi) The particle is moving westward when $v(t)$ is negative. But we know $v(t)=3 t^{2}$, and this quantity cannot be negative. So the particle is never moving westward.
2. (a) (i) 5 m east of P (ii) $-\frac{25}{16} \mathrm{~m} / \mathrm{s}$ (iii) $-10 \mathrm{~m} / \mathrm{s}$ (iv) $v(t)=-10 / t^{3}$ (v) no stationary points (vi) at all times $t>0$
(b) (i) $\frac{1}{3} \mathrm{~m}$ east of P (ii) $-\frac{1}{18} \mathrm{~m} / \mathrm{s}$ (iii) $-\frac{1}{9} \mathrm{~m} / \mathrm{s}$ (iv) $v(t)=-1 /(2+t)^{2}$ (v) no stationary points (vi) at all times $t \neq-2$
(c) (i) $\sqrt{2} \mathrm{~m}$ west of P (ii) $-\frac{\sqrt{2}}{3} \mathrm{~m} / \mathrm{s}$ (iii) $-\frac{1}{\sqrt{2}} \mathrm{~m} / \mathrm{s}$ (iv) $v(t)=-1 / \sqrt{2 t}$ (v) no stationary points (vi) at all times $t>0$
(d) (i) 7 m east of P (ii) $15 \mathrm{~m} / \mathrm{s}$ (iii) $6 \mathrm{~m} / \mathrm{s}$ (iv) $v(t)=6 t(\mathrm{v}) t=0$ (vi) at all times $t<0$
(e) (i) $\frac{\sqrt{6}}{2} \mathrm{~m}$ east of P (ii) $\frac{2-\sqrt{6}}{6} \mathrm{~m} / \mathrm{s}$ (iii) $-\frac{\sqrt{6}}{24} \mathrm{~m} / \mathrm{s}$ (iv) $v(t)=-\frac{3}{2}(t+5)^{3 / 2}$ (v) no stationary points (vi) at all times t
(f) (i) 3 m west of P (ii) $1 \mathrm{~m} / \mathrm{s}$ (iii) $-2 \mathrm{~m} / \mathrm{s}$ (iv) $v(t)=2 t-4$ (v) $t=2$ (vi) at all times $t<2$
(g) (i) 1 m east of P (ii) $-\frac{11}{2} \mathrm{~m} / \mathrm{s}$ (iii) $-4 \mathrm{~m} / \mathrm{s}$ (iv) $v(t)=-\frac{2\left(1+t^{3}\right)}{t^{2}}$ (v) $t=-1$ (vi) all times $t>-1$ except $t=0$
(h) (i) 12 m east of P (ii) $51 \mathrm{~m} / \mathrm{s}$ (iii) $15 \mathrm{~m} / \mathrm{s}$ (iv) $v(t)=3 t^{2}+12 t$ (v) $t=0$ and $t=-4(\mathrm{vi})-4<t<0$

