
Math 1210: Fun With Derivatives Winter 2012

At this point you know the derivatives of a handful of “basic” functions. Your calculus life will be
much easier if you have this list memorized for instant recall:

d

dx
xa = axa−1

d

dx
ax = ax ln a

d

dx
sinx = cosx

d

dx
cscx = − cscx cotx

d

dx
cosx = − sinx

d

dx
secx = secx tanx

d

dx
tanx = sec2 x

d

dx
cotx = − csc2 x

You also know how to differentiate functions that are “pasted together” through addition, subtrac-
tion, multiplication, division, and composition:

Linearity:
d

dx
(Af(x) +Bg(x)) = Af ′(x) +Bg′(x) for constants A,B

Product Rule:
d

dx
f(x)g(x) = f ′(x)g(x) + f(x)g′(x)

Quotient Rule:
d

dx

f(x)

g(x)
=
f ′(x)g(x)− g′(x)f(x)

(g(x))2

Chain Rule:
d

dx
f(g(x)) = f ′(g(x))g′(x)

All the x’s in these rules may make them appear more complicated than they are. For instance,
the product rule looks easier when written as (fg)′ = f ′g + fg′. In fact, this rule can be applied
iteratively to a product of more than two functions, and the overall rule to remember is simply
that each factor “gets its turn” at differentiation. For example, we have

(fghk)′ = f ′ghk + fg′hk + fgh′k + fghk′.

Likewise, the chain rule is best remembered informally as

d

dx
f(junk) = f ′(junk)× [derivative of junk].

If the junk is itself a composition of functions, then we have to use the chain rule more than once.
For example, to calculate the derivative of f(x) = cos4(2ex + 1), we first observe that

f(x) = (junk)4, where junk = cos(2ex + 1).

The chain rule therefore gives

f ′(x) =
d

dx
(junk)4

= 4(junk)3 · d
dx

(junk)

= 4 cos3(2ex + 1)
d

dx
cos(2ex + 1).
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To compute d
dx cos(2ex + 1), we replace 2ex + 1 with “crud” and apply the chain rule again:

d

dx
cos(2ex + 1) =

d

dx
cos(crud)

= − sin(crud) · d
dx

(crud)

= − sin(2ex + 1)
d

dx
(2ex + 1)

= − sin(2ex + 1) · 2ex.

So altogether we have

f ′(x) = 4 cos3(2ex + 1)(− sin(2ex + 1) · 2ex)

= −8ex cos3(2ex + 1) sin(2ex + 1).

To differentiate a complicated function, we typically require multiple applications of the chain rule,
along with the other differentiation rules. For instance:

d

dx

√
32x+1 + 5 secx2 =

d

dx

√
junk [junk = 32x+1 + 5 secx2]

=
1

2
√

junk
· d
dx

(junk)

=
1

2
√

32x+1 + 5 secx2
d

dx
(32x+1 + 5 secx2)

=
1

2
√

32x+1 + 5 secx2

( d
dx

32x+1 + 5
d

dx
secx2

)
[by linearity]

=
1

2
√

32x+1 + 5 secx2

( d
dx

3crud + 5
d

dx
sec(blah)

)
[crud = 2x+ 1, blah = x2]

=
1

2
√

32x+1 + 5 secx2

(
3crud ln 3 · d

dx
(blah) + 5 sec(blah) tan(blah) · d

dx
(blah)

)
=

1

2
√

32x+1 + 5 secx2

(
32x+1 ln 3 · d

dx
(2x+ 1) + 5 secx2 tanx2 · d

dx
x2
)

=
1

2
√

32x+1 + 5 secx2

(
32x+1 ln 3 · 2 + 5 secx2 tanx2 · 2x

)
=

2 ln 3 · 32x+1 + 10x secx2 tanx2

2
√

32x+1 + 5 secx2

As another example, take a moment to convince yourself that

y = 3

√
1 + x3 sin2(πx)

has the following messy derivative:

dy

dx
=

1

3

(
1 + x3 sin2(πx)

)−2/3(
3x2 sin2(πx) + x3 · 2 sin(πx) · cos(πx) · π

)
.
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Problems:

1. Differentiate the following. Simplify first if it seems helpful (and afterward if it seems fruitful).

(a) y = 7(x+ 3)
√
x+ 1

(b) y =
2 sinx

1 + 3e5x

(c) y = 5x2ex
2√
x+ 1

(d) y = x2
√
x(3 + x4)

(e) y = secx tanx

(f) y =
2x3 + 1

7x2 − 3x+ 2

(g) y =
x2 sinx+ x

2x
√
x+ 1

(h) y =
3

2x3 + 3 cosx

(i) y = 3 cosx sinx

(j) y =
cscx

cotx− 1

(k) y =
1 + x2

4
√
x− 1

(l) y = (3x3 + 2x+ 1)10

(m) y = 32x
√

23x + 7

(n) y = 5 sin2 3x

(o) y =
3

3
√
x+ sinx

(p) y =
1

(2− ecosx)3

(q) y = (2x+ cos2 x)2/3

(r) y = tan3(2x)

(s) y = sin(x2)(1 + x3)4

(t) y =

√
1 + x

1− x

(u) y = sec3
(

3
√

1 + x2
)

2. Find all points at which the tangent to the following curves is horizontal:

(a) y = x
√
x+ 1

(b) y =
x

1 + 2x3

(c) y = ex(ex − 1).

(d) y = sin3(2x)
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Answers:

Warning! I have looked over these answers quickly, but I assume there are still typos lurking
about. So don’t be too alarmed if you see something that baffles you — it may just be my mistake!
Please let me know if you find any errors.

1. (a) Product rule yields y′ = 7
√
x+ 1 +

7(x+ 3)

2
√
x+ 1

.

(b) Quotient rule gives y′ =
2 cosx(1 + 3e5x)− (3e5x · 5)(2 sinx)

(1 + 3e5x)2
=

2 cosx+ 6e5x(cosx− 5 sinx)

(1 + 3e5x)2
.

The simplification step I have taken here is somewhat arbitrary. The important thing
at this point is to get the correct derivative, written in any form.

(c) Product rule gives y′ = 10xex
2√
x+ 1 + 5x2ex

2
(2x) ·

√
x+ 1 + 5x2ex

2 1

2
√
x+ 1

.

(d) The simplest approach is to write y = 3x5/2 + x13/2 so that y′ = 15
2 x

3/2 + 13
2 x

11/2.

The same result is obtained by applying the product rule to y = x5/2(3 + x4), or by
applying the “3-fold” product rule to y = x2 ·

√
x · (3 + x4).

(e) The product rule gives y′ = (secx tanx)(tanx) + secx(sec2 x) = secx(tan2 x+ sec2 x).

It smells like this should simplify, but about the best we can do is apply the identity
1 + tan2 x = sec2 x to write y′ = secx (2 sec2 x− 1).

(f) This is a messy but straightforward application of quotient rule:

y′ =
6x2(7x2 − 3x+ 2)− (14x− 3)(2x3 + 1)

(7x2 − 3x+ 2)2
=

14x4 − 12x3 + 12x2 − 14x+ 3

(7x2 − 3x+ 2)2
.

(g) Apply quotient rule, noting along the way that d
dxx

2 sinx = 2x sinx + x2 cosx and
d
dxx
√
x = d

dxx
3/2 = 3

2

√
x. Arrive at

y′ =
(2x sinx+ x2 cosx+ 1)(2x

√
x+ 1)− 3

√
x(x2 sinx+ x)

(2x
√
x+ 1)2

.

(h) Applying the quotient rule gives

y′ =
0 · (2x3 + 3 cosx)− 3(6x2 − 3 sinx)

(2x3 + 3 cosx)2
=
−3(6x2 − 3 sinx)

(2x3 + 3 cosx)2
.

This is correct, but it is a little silly to use the quotient rule when the numerator is a
constant. Instead, recognize that the given function is simply y = 3(2x3 + 3 cosx)−1.
Then y′ = −3(2x3 + 3 cosx)−2(6x2 − 3 sinx) by chain rule.

(i) Applying the product rule gives y′ = 3((− sinx) sinx + cosx (cosx)), which can be
simplified to y′ = 3 cos 2x through the identity cos2 x− sin2 x = cos 2x.

A cleaner approach is simplify before differentiating. Use sin 2x = 2 sinx cosx to write
y = 3

2 sin 2x. Then the chain rule gives y′ = 3
2(cos 2x)(2).

(j) The product and quotient rules give

y′ =
cscx cotx(cotx− 1)− (− csc2 x) cscx

(cotx− 1)2
.
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This expression is correct, and we could now try to simplify. However, it is always good
to be on the lookout for basic simplifications before differentiating.

In this case, you will quickly find that y = (cosx − sinx)−1 upon expressing cscx and
cotx in terms of sinx and cosx. So the chain rule (or quotient rule) immediately gives

y′ =
−(− sinx− cosx)

(cosx− sinx)2
,

If you take the time to convert everything to sinx and cosx, you will see that our first
expression for y′ does match this one.

With a little more trig trickery we notice that

(cosx− sinx)2 = (cos2 x+ sin2 x)− 2 cosx sinx

= 1− sin 2x.

Therefore

y′ =
sinx+ cosx

1− 2 sinx
.

Again, the important thing right now is to get a correct derivative. However, we will
later need to be able to simply expressions as above.

(k) Applying the quotient rule gives

y′ =
2x 4
√
x− 1− 1

4(x− 1)−3/4(1 + x2)

( 4
√
x− 1)2

.

Alternatively, write y = (1 + x2)(x− 1)−1/4 and use the product rule to get

y′ = 2x(x− 1)−1/4 + (1 + x2)(−1
4(x− 1)−5/4).

Take a moment to convince yourself that these expressions for y′ are equivalent.

(l) Chain rule gives y′ = 10(x3 + 2x+ 1)9 · (3x2 + 2).

(m) Product and chain rules give y′ = 32x ln 3 · 2 ·
√

23x + 7 + 32x · 12(23x + 7)−1/2 · 23x ln 2 · 3
(n) Chain rule gives y′ = 5 · 2 sin(3x) · cos(3x) · 3 = 30 sin 3x cos 3x = 15 sin 6x.

(o) Write y = 3(x+ sinx)−1/3 and use chain rule to get

y′ = 3 · (−1
3)(x+ sinx)−4/3 · (1 + cosx) = − 1 + cosx

(x+ sinx)4/3
.

(p) Write y = (2− ecosx)−3. Chain rule gives

y′ = −3(2− ecosx)−4 · (−ecosx)(− sinx) =
−3ecosx sinx

(2− ecosx)4
.

(q) Chain rule gives y′ = 2
3(2x+ cos2 x)−1/3 · (2 + 2 cosx(− sinx)) =

2(2− sin 2x)

3 3
√

2x+ cos2 x
.

(r) Chain rule gives y′ = 3 tan2(2x) · sec2(2x) · 2 = 6(sec 2x tan 2x)2.

(s) Chain and product rules give y′ = cos(x2) · 2x · (1 + x3)4 + sin(x2) · 4(1 + x3)3 · 3x2. Not
a lot can be done to simplify here, though we can common factor to write

y′ = 2x(1 + x3)3
(

(1 + x3) cosx2 + 6x sinx2
)
.
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(t) Chain and quotient rules give

y′ =
1

2

(
1 + x

1− x

)−1/2
· 1(1− x)− (−1)(1 + x)

(1− x)2

=
1

2

√
1− x
1 + x

· 2

(1− x)2

=
1

(1− x)
√

1− x2
,

where the last line follows from (1− x)(1 + x) = 1− x2.
(u) A few applications of the chain rule are needed here:

y′ = 3 sec2
( 3
√

1 + x2
)
· (sec

3
√

1 + x2 tan
3
√

1 + x2) · 13(1 + x2)−2/3 · 2x

=
2x sec3

(
3
√

1 + x2
)

tan
(

3
√

1 + x2
)

(1 + x2)2/3
.

2. (a) The derivative is

y′ =
√
x+ 1 +

1

2
√
x+ 1

=
3x+ 2

2
√
x+ 1

,

so we have y′ = 0 if and only if 3x+ 2 = 0. Hence the tangent line is horizontal only at
x = −2

3 .

(b) The derivative is

y′ =
1 · (1 + 2x3)− 6x2 · x

(1 + 2x3)2
=

1− 4x3

(1 + 2x3)2
.

Therefore y′ = 0 only when 1− 4x3 = 0, which occurs when x = 3

√
1
4 . So the tangent is

horizontal only at x = 1/ 3
√

4.

(c) The derivative works out to y′ = 2e2x−ex = ex(2ex−1). This is zero when either ex = 0
or 2ex − 1 = 0. Note that ex = 0 is impossible. On the other hand, 2ex − 1 = 0 ⇐⇒
ex = 1

2 ⇐⇒ x = ln 1
2 . So the tangent is horizontal only at x = ln 1

2 = − ln 2.

(d) The derivative is

y′ = 3 sin2(2x) · cos(2x) · 2 = 6 sin2(2x) cos(2x).

Thus y′ = 0 if and only if sin 2x = 0 or cos 2x = 0. The first condition occurs when 2x
is a multiple of π, and the second occurs when 2x is an odd multiple of π

2 . Thus y′ = 0
precisely when x = kπ/2 for some integer k.
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