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Question: How do we compute

∫
x+ 5

x2 + x− 2
dx?

Answer: The key is to factor the denominator to get

2x+ 7

x2 + x− 2
=

2x+ 7

(x+ 2)(x− 1)
,

and then cleverly observe that

2x+ 7

(x+ 2)(x− 1)
=

3

x− 1
− 1

x+ 2
.

Notice that each of the terms on the right-hand-side is easy to integrate! So we can quickly
deduce that ∫

2x+ 7

x2 + x− 2
dx =

∫ (
3

x− 1
− 1

x+ 2

)
dx

= 3 ln |x− 1| − ln |x+ 2|+ constant.

This is a nice trick, but it’s not nearly as clever as it looks. Once we know that our goal is to
split up the fraction into “simple fractions”, finding the way in which it splits up is a fairly
routine computation.

As above, we start by factoring the denominator of the given fraction:

2x+ 7

x2 + x− 2
=

2x+ 7

(x+ 2)(x− 1)
,

Now we assume that this fraction can indeed be split in the form

2x+ 7

(x+ 2)(x− 1)
=

A

x− 1
+

B

x+ 2
,

where A and B are constants to be determined.

1



Note: Since we already know that A = 3 and B = −1 will work (see above), it may seem
silly to say we’re “assuming” that the fraction can split in this way. But if we hadn’t already
seen the answer, then the existence of A and B would indeed be only a fanciful wish at this
point. The fact that this dream can always be made to come true is the mathematical heart
of “partial fractions”.

Multiply both sides of the previous equation by (x+ 2)(x− 1) to clear fractions, giving1

2x+ 7 = A(x+ 2) +B(x− 1).

Collect like terms to get

2x+ 7 = (A+B)x+ (2A−B)

and “compare coefficients” to deduce that

2 = A+B

7 = 2A−B.

Solving for A and B now gives A = 3 and B = −1. So we have again arrived at the
suddenly-not-so-clever decomposition

2x+ 7

(x+ 2)(x− 1)
=

3

x− 1
− 1

x+ 2
.

Example: Find

∫
x+ 1

2x2 + 5x− 3
dx.

Solution: Factor the denominator as (2x− 1)(x+ 3) and assume the decomposition

x+ 1

(2x− 1)(x+ 3)
=

A

2x− 1
+

B

x+ 3
.

Multiply through by (2x− 1)(x+ 3) to get

x+ 1 = A(x+ 3) +B(2x− 1)

= (A+ 2B)x+ (3A−B).

Comparing coefficients gives {A+2B = 1, 3A−B = 1}, and solving this system yields A = 3
7

and B = 2
7 . Therefore:∫

x+ 1

2x2 + 5x− 3
dx =

∫ (
3/7

2x− 1
+

2/7

x+ 3

)
dx

=
3

14
ln |2x− 1|+ 2

7
ln |x+ 3|+ constant.

1This is equivalent to adding A
x−1

and B
x+2

over the common denominator (x − 1)(x + 2) to get
A(x+2)+B(x−1)

(x+2)(x−1)
= 2x+7

(x+2)(x−1)
, and then equating the numerators on both sides of this equation.
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A Convenient Trick: In this example we first obtained x+ 1 = A(x+ 3) +B(2x− 1), and
from here we collected like terms and compared coefficients to get a system of equations for
A and B. There is another way of finding A and B from this equation that is often quite
convenient. Since

x+ 1 = A(x+ 3) +B(2x− 1),

is supposed to hold true for all values of x, we can substitute any values of x that we like.
Notice that every value of x will produce an equation involving A and B. For instance,
substituting x = 0 gives

1 = 3A−B,

whereas setting x = 1 gives
2 = 4A+B.

Solving these two equations gives A = 3
7 and B = 2

7 , as before.

Even better, setting x = −3 and x = 1
2 yields −2 = −7B and 3

2 = 7
2A, so we instantly get

A = 3
7 and B = 2

7 . I’m sure you can see that I didn’t choose the values x = −3 and x = 1
2

out of thin air. Where do they come from?

Example: Find

∫
x3 − 3

x2 − 2x− 3
dx

Solution: Proceeding as before, let’s factor the denominator as (x − 3)(x + 1) and assume
the partial fractions decomposition

x3 − 3

(x− 3)(x+ 1)
=

A

x− 3
+

B

x+ 1
.

Multiplying by (x− 3)(x+ 1) gives

x3 − 3 = A(x+ 1) +B(x− 3),

and upon setting x = −1 and x = 3 this gives −4 = −4B and 24 = 4A. So we happily
conclude that A = 6 and B = 1.

However, notice that if we instead decided to set x = 0 and x = 1, we would be led to
{−3 = A+B, −2 = 2A− 2B} and therefore A = −2 and B = −1. These values are different
don’t agree with our first attempt... and this makes my mathematical BS sensor start to
tingle.

In fact, both attempts are incorrect. A quick check shows that A
x−3 + B

x+1 does not equal
x3−3

(x−3)(x+1) for either of our values of A and B. Looking back, we see why: The identity

x3 − 3 = A(x+ 1) +B(x− 3)

can’t possibly hold true for any constants A and B. Why? Because the left-hand side is cubic
and the right-hand side is linear! So our error can be traced back to our original assumption
that the fraction could be split as A

x−3 + B
x+1 . The assumption is simply false in this case.
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Take a moment to think about this, and you’ll see that we’ll run into exactly the same trouble
whenever the numerator of the original fraction has degree bigger than or equal to that of
the denominator.

Fortunately, this problem is easy to overcome. We simply reduce the size of the numerator
by first performing long division.

In the present example, long division gives

x3 − 3

x2 − 2x− 3
= x+ 2 +

7x+ 3

x2 − 2x− 3
.

Thus we have ∫
x3 − 3

x2 − 2x− 3
dx =

1

2
x2 + 2x+

∫
7x+ 3

x2 − 2x− 3
dx.

Now we can focus on the right-hand integral, and this time our method will work because the
numerator is smaller than the denominator. Try this for yourself. You should end up with∫

7x+ 3

x2 − 2x− 3
dx =

∫ (
6

x− 3
+

1

x+ 1

)
dx

= 6 ln |x− 3|+ ln |x+ 1|+ constant.

Example: Find

∫
x2 + x− 3

x3 − 3x− 2
dx

Solution: First we factor the denominator as x3 − 3x − 2 = (x + 1)2(x − 2). If we were to
blindly follow the previous examples, we might be tempted to start with

x2 + x− 3

(x+ 1)2(x− 2)
=

A

x+ 1
+

B

x− 2
.

But this is doomed to failure, since adding the fractions on the right-hand side will always
result in a denominator of (x+ 1)(x− 2), and not (x+ 1)2(x− 2). The fact that x = −1 is a
“double root” has thrown a wrench into our plan.

Again, it’s a situation that’s easy to deal with. We just assume the more general decompo-
sition

x2 + x− 3

(x+ 1)2(x− 2)
=

A

x+ 1
+

B

(x+ 1)2
+

C

x− 2
,

for some constants A,B, and C. You may rightly be a little confused as to exactly why this
is the correct form, but it’s not too hard to prove to yourself with a little thought. In any
case, notice that: (1) we at least get the right denominator when we add the fractions on the
right-hand side, and (2) each of these fractions is easy to integrate.

Multiply the previous equation by (x+ 1)2(x− 2) to get

x2 + x− 3 = A(x+ 1)(x− 2) +B(x− 2) + C(x+ 1)2.
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Let x = −1, x = 2 and x = 0 (why these values?) to obtain

−3 = −3B

3 = 9C

−3 = −2A− 2B + C.

From here we readily get A = 2
3 , B = 1, and C = 1

3 . Therefore∫
x2 + x− 3

x3 − 3x− 2
dx =

∫ (
2/3

x+ 1
+

1

(x+ 1)2
+

1/3

x− 2

)
dx

=
2

3
ln |x+ 1| − 1

x+ 1
+

1

3
ln |x− 2|+ constant.

Example: Find

∫
125x

(x− 2)3(2x+ 1)2
dx

Solution: Isn’t that nice? Someone already factored the denominator for us. In analogy
with the previous example, this time we use the partial fractions form

125x

(x− 2)3(2x+ 1)2
=

A

x− 2
+

B

(x− 2)2
+

C

(x− 2)3
+

D

2x+ 1
+

E

(2x+ 1)2
.

Multiply through by (x− 2)3(2x+ 1)2 to clear fractions, and then set x = 2,−1
2 , 0, 1, and −1

in the resulting equation to find that A = 4
5 , B = −3, C = 10, D = −8

5 , E = 4. Therefore∫
125x

(x− 2)3(2x+ 1)2
dx =

∫ (
4/5

x− 2
− 3

(x− 2)2
+

10

(x− 2)3
−

8/5

2x+ 1
+

4

(2x+ 1)2

)
dx

=
4

5
ln |x− 2|+ 3

x− 2
− 5

(x− 2)2
− 4

5
ln |2x+ 1| − 2

2x+ 1
+ constant.

Example: Find

∫
1 + x

x2 + 4
dx.

Solution: Try as we might, we can’t factor the denominator x2 + 4 without leaving the
comfort of the real numbers and introducing the famous i =

√
−1. But first year calculus is

no place for complex numbers!2

2I can’t resist mentioning that if you were so bold as to factor x2 + 4 as (x + 2i)(x − 2i), then you could
write down a partial fractions decomposition A

x+2i
+ B

x−2i
, then determine complex constants A and B as

usual, and integrate the result to get
∫

1+x
x2+4

dx = A ln |x + 2i| + B ln |x − 2i|. This looks very strange, but

Euler’s master equation eiθ = cos θ + i sin θ, which links the exponential function with the trig functions, can
be used to show that ln |x ± 2i| = 1

2
ln(x2 + 4) ∓ i tan−1 x

2
. You will then find that, with the correct values

of A and B, all the imaginary stuff cancels and we are left with a real answer. If you think this is cool you
should take more math courses.
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Our fancy new technique does not help us here. Instead we do it the old-fashioned way, by
substitution: First split up the numerator to get∫

1 + x

x2 + 4
dx =

∫
1

x2 + 4
dx+

∫
x

x2 + 4
dx.

Now use the substitution x = 2 tan θ for the integral on the left, and u = x2 + 4 on the right.
You should find that∫

1 + x

x2 + 4
dx =

1

2
tan−1 x

2
+

1

2
ln(x2 + 4) + constant.

Example: Find

∫
3x+ 7

4− 4x+ x2 − x3
dx.

Solution: Here the denominator does factor, as (1− x)(4 + x2). The naive partial fractions
approach would begin with

3x+ 7

(1− x)(4 + x2)
=

A

1− x
+

B

4 + x2
,

from which we get

3x+ 7 = A(4 + x2) +B(1− x)

= Ax2 −Bx+ (4A+B).

Comparing coefficients of x2 and x on the left- and right-hand sides gives A = 0 and B = −3.
But clearly these values of A and B give mismatched constant terms on the left and right.
So (as usual!) something has gone wrong.

Giving our little failure some careful thought will leave you unsurprised by how we avoid this
latest trouble. We instead begin with the partial fractions decomposition

3x+ 7

(1− x)(4 + x2)
=

A

1− x
+
B + Cx

4 + x2
.

This leads to

3x+ 7 = A(4 + x2) + (B + Cx)(1− x)

= (A− C)x2 + (C −B)x+ (4A+B).

and comparing coefficients now gives {A − C = 0, C − B = 3, 4A + B = 7}, which leads to
A = 2, B = −1, C = 2. Therefore∫

3x+ 7

4− 4x+ x2 − x3
dx =

∫ (
2

1− x
+
−1 + 2x

4 + x2

)
dx

= 2

∫
dx

1− x
−
∫

dx

4 + x2
+

∫
2x

4 + x2
dx

= −2 ln |1− x| − 1

2
tan−1 x

2
+ ln |4 + x2|+ constant.
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Example: Find

∫
x3

(x2 + 4x+ 5)2
dx.

Solution: The quadratic x2 +4x+5 does not factor any further. By this point you won’t be
surprised that, because two copies of it appear in the denominator, we start with the partial
fraction form

x3

(x2 + 4x+ 5)2
=

A+Bx

x2 + 4x+ 5
+

C +Dx

(x2 + 4x+ 5)2
.

Clear fractions as usual, by multiplying through by (x2 + 4x+ 5)2, to get

x3 = (A+Bx)(x2 + 4x+ 5) + (C +Dx).

We could substitute in 4 values of x to obtain 4 equations in the unknowns A,B,C,D. But
in this case there are no values of x that make the substitution particular “simple”, so we’re
just as well off to compare coefficients. Either way, check that you end up with A = −4,
B = 1, C = 20, D = 11. Therefore∫

x3

(x2 + 4x+ 5)2
dx =

∫ (
x− 4

x2 + 4x+ 5
+

20 + 11x

(x2 + 4x+ 5)2

)
dx.

Unfortunately, we still have a lot of work to do. The first step is to “complete the square”
and write

x2 + 4x+ 5 = (x+ 2)2 + 1.

Then we can substitute u = x+ 2 integrals to get∫
x3

(x2 + 4x+ 5)2
dx =

∫ (
u− 6

u2 + 1
+

11u− 2

(u2 + 1)2

)
du

=

∫
u

u2 + 1
du− 6

∫
du

u2 + 1
+ 11

∫
u

(u2 + 1)2
du− 2

∫
du

(u2 + 1)2

=
1

2
ln(u2 + 1)− 6 tan−1 u− 11

2(u2 + 1)
− 2

(
u

2(u2 + 1)
+

1

2
tan−1 u

)
,

where the last line follows by performing the substitution z = u2 + 1 on the first and third
integrals, and u = tan θ on the second and fourth.

Collecting like terms and converting back from u to x gives the final result:∫
x3

(x2 + 4x+ 5)2
dx =

1

2
ln |x2 + 4x+ 5| − 7 tan−1(x+ 2)− 2x+ 15

2(x2 + 4x+ 5)
+ constant.
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Example: Find

∫
2x6 + 9x4 + x3

x4 + 6x2 + 9
dx

Solution: We start with long division (because the numerator is bigger than the denomina-
tor) and then factor the denominator. Putting these steps together, we have:∫

2x6 + 9x4 + x3

x4 + 6x2 + 9
dx =

∫ (
2x2 − 3 +

27 + x3

x4 + 6x2 + 9

)
dx

=
2

3
x3 − 3x+

∫
27 + x3

(x2 + 3)2
dx.

Now we follow the usual partial fractions route for the remaining integral:

27 + x3

(x2 + 3)2
=
A+Bx

x2 + 3
+

C +Dx

(x2 + 3)2

=⇒ 27 + x3 = (A+Bx)(x2 + 3) + C +Dx

=⇒ 27 + x3 = Bx3 +Ax2 + (3B +D)x+ (3A+ C)

=⇒ {B = 1, A = 0, 3B +D = 0, 3A+ C = 27}
=⇒ A = 0, B = 1, C = 27, D = −3.

Therefore∫
27 + x3

(x2 + 3)2
dx =

∫ (
x

x2 + 3
+

27− 3x

(x2 + 3)2

)
dx

=

∫
x

x2 + 3
dx+ 27

∫
dx

(x2 + 3)2
− 3

∫
x

(x2 + 3)2
dx

=
1

2
ln(x2 + 3) + 27

(
x

6(x2 + 3)
+

√
3

18
tan−1(x

√
3)

)
− 3

2(x2 + 3)
+ constant

=
1

2
ln(x2 + 3) +

9x− 3

2(x2 + 3)
+

3
√

3

2
tan−1(x

√
3) + constant

where we tackled the integrals via the substitutions u = x2 + 3 and x =
√

3 tan θ.

Finally, collecting everything together gives the final answer, namely:∫
2x6 + 9x4 + x3

x4 + 6x2 + 9
dx =

2x3

3
− 3x+

ln(x2 + 3)

2
+

9x− 3

2(x2 + 3)
+

3
√

3

2
tan−1(x

√
3) + constant.

Phew!
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