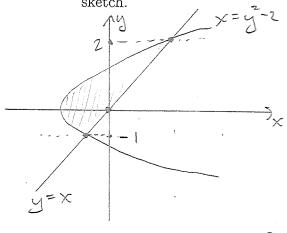

Name: SULUTIONS A#:

For each of the following questions, begin by drawing a relevant diagram and then compute the required area or volume.

1. Find the area bounded between $y = \cos x$ and $y = \sin 2x$ on the interval $0 \le x \le \frac{\pi}{2}$. Begin by sketching this region, being sure to appropriately label your diagram.

$$\omega_{3} \times = \sin 2x \iff \omega_{3} \times = 2\sin x \cos x$$


$$\iff \omega_{3} \times (1 - 2\sin x) = 0$$

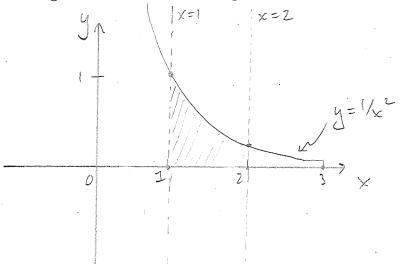
$$\iff \omega_{3} \times = 0 \text{ or } \sin x = \frac{1}{2}$$

$$\iff x = [0, \frac{\pi}{2}], \text{ gt only } x = \frac{\pi}{2} \text{ and } x = \frac{\pi}{6}$$

Then AREA =
$$\int_{0}^{\pi/c} (\cos x - \sin 2x) dx + \int_{\pi/c}^{\pi/2} (\sin 2x - \cos x) dx$$

= $(\sin x + \frac{1}{2} \cos 2x)_{0}^{\pi/c} + (-\frac{1}{2} \cos 2x - \sin x)_{\pi/c}^{\pi/2}$
= $(\frac{1}{2} + \frac{1}{4}) - (o + \frac{1}{2}) + (\frac{1}{2} - 1) - (-\frac{1}{4} - \frac{1}{2})$
= $\frac{1}{2}$

2. Find the area bounded between the curves $y^2 = x + 2$ and y = x. Begin with a relevant sketch.



Get y-word of int. points:

$$y^2 = y+2 \Leftrightarrow y^2 - y-2 = 0$$

So ARDA =
$$\int_{-1}^{2} (y - (y^2 - 2)) dy$$

= $(\frac{1}{2}y^2 - \frac{1}{3}y^3 + 2y)]_{-1}^{2}$
= $\frac{10}{3} - (-\frac{7}{6})$
= $\frac{27}{6}$
= $\frac{9}{7}$

- 3. Let \mathcal{R} be the region bounded between the curves $y=1/x^2$, y=0, x=1, and x=2.
 - (a) Sketch the region \mathcal{R} . Label all relevant points and curves.

(b) Find the volume of the solid obtained by revolving \mathcal{R} around the x-axis.

Volume =
$$\pi \int_{-\frac{\pi}{2}}^{2} \left(\frac{1}{x^{2}}\right)^{2} dx$$

= $\pi \int_{-\frac{\pi}{2}}^{2} \left(\frac{1}{x^{2}}\right)^{2} dx$
= $\pi \int_{-\frac{\pi}{2}}^{2} \left(\frac{1}{x^{2}}\right)^{2} dx$

(c) Give an expression, in terms of a definite integral, for the solid obtained by revolving \mathcal{R} around the line y = -2. You do not need to evaluate this integral!

$$\pi \int_{1}^{2} \left(\left(2 + \frac{1}{x^{2}} \right)^{2} - 2^{2} \right) dx$$

(d) Give an expression, in terms of a definite integral, for the solid obtained by revolving \mathcal{R} around the line x = -1. You do not need to evaluate this integral!

WASHERS:
$$\pi \int_{0}^{1/4} \left(3^{2}-2^{2}\right) dx + \pi \int_{1/4}^{1} \left(1+\sqrt{y}^{2}-2^{2}\right) dx$$
Shels: $2\pi \int_{0}^{2} \left(1+x\right) \frac{d}{x^{2}} dx$
 $x = 1/4y$