Name:	Solution	A\#:
Section: I		

[8] 1. Let f be a function whose graph of $y=f(x)$ is given below and let $g=f^{-1}$ be its inverse function.

Fill in the following.
(a) $g(2)=6$
(b) $\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=f^{\prime}(2)=1 / 6$
(c) The instantaneous rate of change of $f(x)$ when $x=7$ is \qquad
(d) $g^{\prime}(3)=1 / 4$
(e) If $h(x)=f\left(x^{3}+1\right)$, then $h^{\prime}(2)=12 f^{\prime}(9)$ $h^{\prime}(x)=3 x^{2} f^{\prime}\left(x^{3}+1\right)$

(g) If $F(x)=\sec (f(x))$, then $F^{\prime}(2)=1 / 6 \sec (1) \tan (1) \quad F^{\prime}(x)=f^{\prime}(x) \sec (f(x)) \tan (f(x))$
(h) Tangent line to the curve $y=2 f(x)$ at $x=2$ is \qquad

$$
\begin{gathered}
m=2 f^{\prime}(2)=1 / 3 \\
(y-2)=1 / 3(x-2) \\
y=1 / 3 x+4 / 3
\end{gathered}
$$

[4] 2. Compute the derivative. Do not simplify.
3. $\frac{d}{d t}\left(\sec (\ln (t))+\tan ^{-1}\left(t^{2}\right)+\sin ^{-1}\left(e^{3}\right)+e^{t^{3}+3}\right)$

$$
\frac{1}{t} \sec (\ln (t)) \tan (\ln (t))+2 t \cdot \frac{1}{1+\left(t^{2}\right)^{2}}+0+3 t^{2} \cdot e^{t^{3}+3}
$$

[8] 4. Consider the curve given by $x^{2}+y=\cos \left(x y^{2}\right)$. Find the equation of the tangent line given to the curve at the point $(3,-2)$.

$$
\begin{align*}
& 2 x+y^{\prime}=\left(y^{2}+2 x y y^{\prime}\right)\left(-\sin \left(x y^{2}\right)\right) \\
& 2 x+y^{\prime}=-y^{2} \sin \left(x y^{2}\right)-2 x y y^{\prime} \sin \left(x y^{2}\right) \\
& y^{\prime}\left(1+2 x y \sin \left(x y^{2}\right)\right)=-2 x-y^{2} \sin \left(x y^{2}\right) \\
& y^{\prime}=\frac{-2 x-y^{2} \sin \left(x y^{2}\right)}{1+2 x y \sin \left(x y^{2}\right)} \\
& \text { at }(3,-2): y^{\prime}=\frac{-6-4 \sin (12)}{1-12 \sin (12)}=\text { slope } \\
& (y-(-2))=\frac{-6-4 \sin (12)}{1-12 \sin (12)}(x-3) \\
& y=\left(\frac{-6-4 \sin (12)}{1-12 \sin (12)}\right) x+\frac{3(6+4 \sin (12))}{1-12 \sin (12)}-2
\end{align*}
$$

