Name:	Solution	A#:	Section: I
-------	----------	-----	------------

[8] 1. Let f be a function whose graph of y = f(x) is given below and let $g = f^{-1}$ be its inverse function.

Fill in the following.

(a)
$$g(2) = 6$$

(b)
$$\lim_{h\to 0} \frac{f(2+h)-f(2)}{h} = \frac{1}{2}(2) = \frac{1}{6}$$

(c) The instantaneous rate of change of f(x) when x = 7 is _____

(d)
$$g'(3) = \frac{1}{2}$$

(e) If
$$h(x) = f(x^3 + 1)$$
, then $h'(2) = 12 f'(9)$ $h'(x) = 3x^2 f'(x^3 + 1)$

(f) If
$$k(x) = g(x) \ln(x)$$
, then $k'(3) = \frac{7}{3} + \frac{\ln(3)}{4}$ $k'(x) = \frac{1}{3} g(x) + g'(x) \ln(x)$

(g) If
$$F(x) = \sec^{-1}(f(x))$$
, then $F'(2) = \frac{1}{6} \sec(1) \tan(1)$ $F'(x) = \frac{1}{6} (x) \sec(F(x)) \tan(F(x))$

(h) Tangent line to the curve
$$y = 2f(x)$$
 at $x = 2$ is $y = \frac{1}{2}x + \frac{4}{3}$

$$m = 2f(2) = \frac{1}{3}$$

$$(y-2) = \frac{1}{3}(x-2)$$
v5.I

- [4] 2. Compute the derivative. Do not simplify.
 - 3. $\frac{d}{dt} \left(\sec(\ln(t)) + \tan^{-1}(t^2) + \sin^{-1}(e^3) + e^{t^3+3} \right)$

$$\frac{1}{t} \sec(\ln(t)) \tan(\ln(t)) + 2t \cdot \frac{1}{1 + (t^2)^2} + 0 + 3t^2 \cdot e^{t^3 + 3}$$

[8] 4. Consider the curve given by $x^2 + y = \cos(xy^2)$. Find the equation of the tangent line given to the curve at the point (3, -2).

$$2x + y' = (y^2 + 2xyy')(-\sin(xy^2))$$

$$2x + y' = -y^2 \sin(xy^2) - 2xyy' \sin(xy^2)$$

$$y'(1+2xy \sin(xy^2)) = -2x - y^2 \sin(xy^2)$$

$$y' = \frac{-2x - y^2 \sin(xy^2)}{1 + 2xy \sin(xy^2)}$$

at
$$(3,-2)$$
: $y' = \frac{-6-4\sin(12)}{1-12\sin(12)} = \text{slope}$

$$(y-(-2))=\frac{-6-4\sin(12)}{1-12\sin(12)}(x-3)$$

$$y = \left(\frac{-6 - 4\sin(12)}{1 - 12\sin(12)}\right) \times + \frac{3(6 + 4\sin(12))}{1 - 12\sin(12)} - 2$$

v5.I