Saint Mary's University

Department of Mathematics and Computing Science

Name:	
Signature:	
ID:	

Math 1211: Introductory Calculus II

Midterm Test March 3, 2016 (7:00–9:00pm)

Instructor: J. Irving

Instructions:

- No electronic devices, or aids of any kind, are permitted.
- There are 6 pages plus this cover page. Check that your test paper is complete.
- There are a total of 75 points. The value of each question is indicated in the margin.
- Answer in the spaces provided, using backs of pages for additional space if necessary.
- Show all your work. Insufficient justification will result in a loss of points.

Page	Maximum	Your Score
1	14	
2	16	
3	8	
4	12	
5	15	
6	10	
Total	75	

1. Evaluate the following. Simplify your answers as much as possible:

[3] (a)
$$\int \frac{e^{2x}}{\sqrt{1+e^{2x}}} dx$$

$$[5] (b) \int \cos^3 x \, \sin^3 x \, dx$$

[6] (c)
$$\int x^2 (\ln x)^2 dx$$

[8] (d)
$$\int \frac{x^2}{(x^2+4)^2} dx$$
 [*Hint:* Trigonometric substitution.]

[8] (e)
$$\int \frac{x+1}{(x^2+9)(x-1)} dx$$

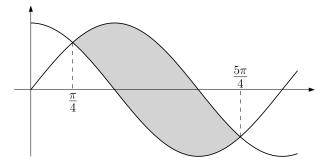
2. Determine whether the following improper integrals converge or diverge.

[3] (a)
$$\int_{1}^{2} \frac{dt}{(1-t)^3}$$

[3] (b)
$$\int_{1}^{\infty} e^{-2x} dx$$

[2] (c)
$$\int_0^\infty \frac{x}{1+x^6} dx$$
 [*Hint:* Use comparison.]

- 3. Let \mathcal{R} be the region bounded between the curves $x = y^2 1$ and x + y = 1.
- (a) Sketch \mathcal{R} and label all points of intersection of its bounding curves.


(b) Find the area of \mathcal{R} .

[3]

[4]

[5] 4. The base of a solid is the region enclosed by the curve $y = x^4$ and the line y = 1. The cross sections perpendicular to the y-axis are squares. Find the volume of this solid.

[15] 5. The shaded region \mathcal{R} shown below is bounded between the curves $y = \cos x$ and $y = \sin x$.

Give expressions, in terms of definite integrals, for each of the following quantities. Do not simplify or evaluate your expressions!

- (a) The **volume** of the solid obtained by revolving \mathcal{R} about the y axis.
- (b) The **volume** of the solid obtained by revolving \mathcal{R} about the line x = 5.

(c) The **volume** of the solid obtained by revolving \mathcal{R} about the line y = 2.

- (d) The area of \mathcal{R} .
- (e) The **perimeter** of \mathcal{R} . [*Hint:* Use the formula for arc length.]
- (f) The surface area of the solid obtained by revolving \mathcal{R} about the line y = -2.

- [10] 6. Consider the parametric curve C given by $(x, y) = (2\cos t, 1 + 2\sin t)$, for $0 \le t \le 2\pi$.
 - (a) Eliminate the parameter t to find the Cartesian equation of C.

(b) Sketch \mathcal{C} , being sure to indicated the direction of travel.

(c) Find the equation of the tangent line to C at the point where $t = \frac{5\pi}{6}$.