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Abstract. In this paper we provide generalizations of Specht’s Theorem which states
that two n× n matrices A and B are unitarily equivalent if and only if all traces of words
in two non-commuting variables applied to the pairs (A, A∗) and (B, B∗) coincide. First,
we obtain conditions which allow us to extend this to simultaneous similarity or unitary
equivalence of families of operators, and secondly, we show that it suffices to consider a
more restricted family of functions when comparing traces. Our results do not require the
traces of words in (A, A∗) and (B, B∗) to coincide, but only to be close.

1. Introduction

A useful tool in determining whether two n×n complex matrices A and B are similar is
to compare their Jordan canonical forms. In practice, deciding whether they are unitarily
equivalent is a much more difficult problem. A Theorem of Specht [5] tells us that A and B
are unitarily equivalent if and only if tr(w(A,A∗)) = tr(w(B,B∗)) for all words w in two non-
commuting variables. Specht’s Theorem was later improved by C. Pearcy [4], who showed
that A,B ∈ Mn(C) are unitarily equivalent if and only if tr(w(A,A∗)) = tr(w(B,B∗)) for all
words w of degree at most 2n2. (In private communication, D. Djokovic has informed us that
by combining a theorem of Yu. Razmyslov with the work of C. Procesi, it can be shown that
it in fact suffices to consider words of length at most n2. More precisely, Razmyslov’s result
improves a bound in the Nagata-Higman Theorem, while the work of Procesi establishes the
equality of that bound and the length of words necessary to determine unitary equivalence
of two n×n matrices. The proof, however, is somewhat involved, and will not be elaborated
here. We direct the interested reader to Chapter 6 of [1])

The present paper examines to what extent Specht’s Theorem may be generalized. First,
one can ask whether only knowing that the traces of words in A and A∗ are close to the
traces of the same words in B and B∗ implies that A and B are close to being unitarily
equivalent. In Section Two below, we show that if A and B are unitary matrices for
which tr (Ak) lies within distance 1 of tr (Bk) for all powers k ∈ Z, then A and B are
unitarily equivalent. In Section Three, we consider indexed families for which traces of
words are close. Under certain natural conditions, we are able to conclude the existence of
a single invertible matrix which implements the simultaneous similarity of the two families
(see Cor. 3.10 below). When the families are selfadjoint, the notion of similarity may be
replaced by unitary equivalence.

One may also ask whether it is sufficient to consider a more restricted class of words w
in two non-commuting variables in the statement of Specht’s Theorem. In Section Four,
we show that if A,B ∈ Mn(C) and if tr |p(A,A∗)| = tr |p(B,B∗)| for all polynomials p in
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two non-commuting variables (here |T | = (T ∗T )1/2 for T ∈ Mn(C) ), then A is unitarily
equivalent to B. This condition is shown to be equivalent to a condition involving only
projection valued polynomials.

2. The single variable unitary case.

Suppose y1, y2, ..., yr are complex numbers of modulus 1. We shall say that y1, y2, ..., yr are
independent if for each quotient f of two words (i.e. monomials) in r variables (equivalently,
if f is a word in r variables and their inverses), the condition f(y1, y2, ..., yr) = 1 implies that
f ≡ 1. An equivalent formulation is that y1, y2, ..., yr are independent if

(
log(yk)

2πi

)
k=1,...,r

and 1 are linearly independent over the rational numbers.

2.1. Lemma. If x1, . . . , xm are complex numbers of modulus 1, then there exist y1, . . . , yr,
independent numbers of modulus 1, functions f1, . . . fm, quotients of words, and torsion
elements x′1, . . . , x

′
m so that xk = x′kfk(y1, . . . , yr).

Proof. Let z1, . . . , zr be a maximal independent subset of x1, . . . , xm and abbreviate z =
(z1, . . . , zr). Note that there exist functions gk, words in r variables and their inverses and
positive integers nk, such that xnk

k = gj(z). Let n = n1n2 · . . . · nm and choose y = (yj)j so
that yn

j = zj . Now define fk = g
n/nk

k and note that numbers x′k = xk
fk(y) are torsion. Indeed

(x′k)
nk =

xnk
k

fnk
k (y)

=
xnk

k

gn
k (y)

=
xnk

k

gk(z)
=

xnk
k

xnk
k

= 1.

2

2.2. Lemma. Suppose that (a1, ..., an) and (b1, ..., bn) are two n-tuples of complex numbers.
Suppose furthermore that there exists an integer m > 1 for which am

j = bm
j = 1 for all

1 ≤ j ≤ n. If there does not exist a permutation π of {1, 2, ..., n} such that aj = bπ(j) for
all 1 ≤ j ≤ n, then for some 1 ≤ k ≤ (m− 1) we must have∣∣∣∣∣∣

n∑
j=1

(
ak

j − bk
j

)∣∣∣∣∣∣ ≥ m

m− 1
.

Proof. Suppose, to the contrary, that for all 1 ≤ k < m we have∣∣∣∣∣∣
n∑

j=1

(
ak

j − bk
j

)∣∣∣∣∣∣ <
m

m− 1
.

Since (b1, ..., bn) is not just a permutation of (a1, ..., an), there exists some 1 ≤ i0 ≤ n so
that the term ai0 appears more frequently in the sequence (a1, ..., an) than it does as a term
in the sequence (b1, ..., bn). Since our inequality is independent of permutations of the aj ’s
and the bj ’s, we may assume without loss of generality that i0 = 1 and a fortiori that

(i) a1 = a2 = · · · = ad1 for some 1 ≤ d1 ≤ n,
(ii) a1 = b1 = b2 = · · · = bd2 for some 0 ≤ d2 < d1, and
(iii) bj 6= a1, j > d2.

Moreover, since
∑n

j=1

(
ak

j − bk
j

)
=

∑n
j=d2+1

(
ak

j − bk
j

)
for each 1 ≤ k, we can in turn

restrict our attention to (ad2+1, ..., an) and (bd2+1, ..., bn). If we next divide these remaining
aj ’s and bj ’s by ad2+1 and relabel the index set to run from 1 to N := n− d2, then we see
that we have reduced the problem to the case where



3

(a) a1 = 1 and 1 6∈ {b1, ..., bN};
(b) am

j = 1 = bm
j , 1 ≤ j ≤ N , and

(c)
∣∣∣∑N

j=1

(
ak

j − bk
j

)∣∣∣ < m/(m− 1), 1 ≤ k < m. (Clearly this also holds for k = 0.)

Also note that for each 1 ≤ j ≤ N , we have
∑m−1

k=0 bk
j = 0 and

∑m−1
k=0 ak

j =
{

m ; aj = 1
0 ; aj 6= 1 .

Hence, if r := d1 − d2 > 0 is the number of 1’s among aj ’s, then we have

N∑
j=1

m−1∑
k=1

(
ak

j − bk
j

)
=

N∑
j=1

m−1∑
k=0

(
ak

j − bk
j

)
= rm ≥ m.

Now compute

m =
m−1∑
k=1

(
m

m− 1

)
>

m−1∑
k=1

∣∣∣∣∣∣
N∑

j=1

(
ak

j − bk
j

)∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
m−1∑
k=1

N∑
j=1

(
ak

j − bk
j

)∣∣∣∣∣∣ = rm ≥ m,

a contradiction. From this the desired conclusion follows.

2

2.3. Theorem. If A and B are unitary matrices such that

| trAl − trBl| ≤ 1

for all l, then A and B are unitarily equivalent.
Proof. Without any loss of generality we can assume that A = diag(a1, . . . , an), B =
diag(b1, . . . , bn) for some complex numbers al and bl of modulus 1. Suppose that A and B
are not unitarily equivalent. Through an argument similar to the one used in the previous
Lemma, we may reduce the problem to the case where a1 = 1 and bl 6= 1 for any l. We
can then use Lemma 2.1 to find c1, . . . , cr independent numbers from the unit circle, αl, βl,
quotients of words and torsion elements a′l and b′l such that al = a′lαl(c) and bl = b′lβl(c)
(here we abbreviate c = (c1, . . . , cr)).

For j = 1, . . . , r define dj = e2πi/pj , where pj are primes to be chosen as follows. First
choose p1 from primes larger than any order of b′l. When primes p1, . . . , pj−1 have been
chosen then choose pj from primes that are larger than any of the orders of

b′lβl(d1, . . . , dj−1, 1, . . . , 1).

Primes pj were chosen in this manner to ensure that b′′l := b′lβl(d) 6= 1. Indeed, if j0 is
the largest integer such that the order of xj0 in βl is nonzero, then the order of b′′l must
be divisible by pj0 . Now define also a′′l := a′lαl(d), A1 = diag(a′′l ) and B1 = diag(b′′l ).
Since the matrices A1 and B1 are clearly of finite order there exists an integer m1 such
that Am1

1 = 1 = Bm1
1 . Since a′′1 = 1 and b′′l 6= 1 the sequences of a′′l ’s and b′′l ’s cannot be

permutations of each other and hence by Lemma 2.2 there exists a positive integer l1 < m1

such that | trAl1
1 − trBl1

1 | ≥
m1

m1−1 .
Now simultaneous approximation yields an integer k so that ck = (ck

j ) is so close to d
that the numbers |αl(ck)l1 −αl(d)l1 | and |βl(ck)l1 −βl(d)l1 | are smaller than 1

2n(m1−1) (and
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hence | trAl1k − trAl1
1 |+ | trBl1k − trBl1

1 | < 1
m1−1). But then

| trAl1k − trBl1k| ≥ | trAl1
1 − trBl1

1 | − | trAl1k − trAl1
1 | − | trBl1k − trBl1

1 |

>
m1

m1 − 1
− 1

m1 − 1
= 1,

a contradiction.
2

3. Results about groups

3.1. For arbitrary matrices A,B ∈ Mn(C), knowing that tr (w(A,A∗)) is close to
tr (w(B,B∗) for all words w does not tell us very much about A and B. For example, if
we fix ε > 0 and choose A,B so that ‖A‖, ‖B‖ < ε/n, then ‖w(A,A∗)‖, ‖w(B,B∗)‖ < ε/n
for all words w, and so |tr (w(A,A∗)) − tr (w(B,B∗))| < 2ε. If we let A0 = In ⊕ A and
B0 = In⊕B in M2n(C), then ‖A0‖ = ‖B0‖ = 1 and yet the same trace inequality holds for
A0 and B0, showing that it is not just a matter of the norms of the original matrices being
too small.

One way to avoid this problem is to require that A and B be invertble, which is what
we shall now do. In fact, we are able to obtain results about the simultaneous unitary
equivalence of families of matrices whose traces remain (relatively) close.

3.2. Lemma. Let r, s ≥ 1 be integers. Suppose that 0 < µ < 1 is fixed, ω1, ω2, ..., ωr and
ν1, ν2, ..., νs are complex numbers of modulus one and that there exists k0 ∈ N so that k ≥ k0

implies ∣∣∣∣∣∣
r∑

i=1

ωk
i −

s∑
j=1

νk
j

∣∣∣∣∣∣ ≤ µ.

Then s = r and there exists a permutation π of {1, 2, ..., r} such that ωi = νπ(i), 1 ≤ i ≤ r.
Proof. We may assume without loss of generality that r ≥ s. Let 0 < ε < 1/2. We can
find k1 > k0 so that |1 − ωk1

i | < ε/(3r) for all 1 ≤ i ≤ r and |1 − νk1
j | < ε/(3s) for all

1 ≤ j ≤ s. Then

|r − s| ≤

∣∣∣∣∣r −
r∑

i=1

ωk1
i

∣∣∣∣∣ +

∣∣∣∣∣∣
r∑

i=1

ωk1
i −

s∑
j=1

νk1
j

∣∣∣∣∣∣ +

∣∣∣∣∣∣
s∑

j=1

νk1
j − s

∣∣∣∣∣∣(1)

≤ ε/3 + 1/2 + ε/3 < 1.(2)

Since r and s are integers, r = s.
The result now follows as an easy application of Theorem 2.3. For each k ≥ k0, let

Ak := diag(ωk
1 , ..., ωk

r ), Bk := diag(νk
1 , ..., νk

r ). By Theorem 2.3, Ak and Bk are unitarily
equivalent and as such they have the same eigenvalues appearing with equal multiplicities.
Thus there exists a permutation πk of {1, 2, ..., r} so that ωk

i = (νk
πk(i)), 1 ≤ i ≤ r. Since

there are infinitely many primes bigger than k0, but only finitely many permutations of
{1, 2, ..., r}, we can choose two distinct primes p, q > k0 so that πp = πq. Then ωp

i = νp
πp(i)

and ωq
i = νq

πp(i) with p and q relatively prime implies ωi = νπp(i), 1 ≤ i ≤ r, completing the
proof.

2
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3.3. Lemma. Suppose m ≥ 1, α1, α2, ..., αm, β1, β2, ..., βm ∈ C\{0} and that∣∣∣∣∣
m∑

i=1

(
αk

i − βk
i

)∣∣∣∣∣ ≤ 1 for all k ∈ Z.(3)

Then there exists a permutation π of {1, 2, ...,m} so that αi = βπ(i), 1 ≤ i ≤ m.
Proof. If |αi| = 1 = |βi| for all 1 ≤ i ≤ m, then by setting A := diag(α1, ..., αm) and B =
diag(β1, ..., βm), we see that | trAk−trBk| ≤ 1 for all k ∈ Z, and so by Theorem 2.3 again, A
and B are unitarily equivalent. As before, this implies that they have the same eigenvalues
appearing with the same multiplicities, from which the existence of π immediately follows.

Let us next assume that some |αi| 6= 1 or some |βi| 6= 1.
Observe that in the statement of the Lemma we can replace each αi by α−1

i if we also
replace each βi by β−1

i . Using this fact, and switching the roles of αi and βi if necessary, it
is not hard to see that without loss of generality, we may assume that

• |α1| ≥ |α2| ≥ ... ≥ |αm|;
• |β1| ≥ |β2| ≥ ... ≥ |βm|;
• |α1| > 1; and
• |α1| ≥ |β1|.

Our argument will proceed by induction upon the number m of terms.
Step One: m = 1.

Now |α1| > 1 and |α1| ≥ |β1|. If α1 6= β1, then limk→∞ |αk
1 − βk

1 | = ∞. In particular,
there exists k ∈ N so that |αk

1 − βk
1 | > 1, contradicting our assumption. Thus α1 = β1 in

this case.
Step Two: m > 1.

Suppose that the result holds for m′ < m. Now consider α1, α2, ..., αm, β1, β2, ..., βm

satisfying the inequalities (3). Fix 1 ≤ r, s ≤ m maximal with respect to the conditions
|α1| = |α2| = ... = |αr|, |β1| = |β2| = ... = |βs|.

Set ωj = αj/|α1| and νj = βj/|α1|, 1 ≤ j ≤ m. Note that |ωj | = 1, 1 ≤ j ≤ r, |ωj | < 1 if
j > r, |νj | < 1 if j > s. Then∣∣∣∣∣∣

r∑
i=1

ωk
i − (

s∑
j=1

νk
j ) +

 m∑
i=r+1

ωk
i − (

m∑
j=s+1

νk
j )

∣∣∣∣∣∣ ≤ 1

|α1|k
, k ∈ Z.(4)

Suppose |ν1| < 1 (i.e. |β1| < |α1|) and ε < 1
2 . Then we can choose k0 sufficiently large so

that k ≥ k0 implies that
(i) 1/|α1|k < ε/4; and
(ii)

∑m
i=r+1 |ωi|k +

∑m
j=1 |νj |k < ε/4.

Moreover, since each |ωi| = 1, 1 ≤ i ≤ r, we can find k1 ≥ k0 so that |1 − ωk1
i | < ε/(4r),

1 ≤ i ≤ r. From equation (4) we deduce that

r ≤

∣∣∣∣∣r −
r∑

i=1

ωk1
i

∣∣∣∣∣ +
m∑

i=r+1

|ωi|k1 +
m∑

j=1

|νj |k1 +

∣∣∣∣∣∣
m∑

i=1

ωk1
i −

m∑
j=1

νk1
j

∣∣∣∣∣∣(5)

≤ ε/4 + ε/4 + ε/4 = 3ε/4 < 1,(6)

a contradiction since r ≥ 1.
It follows therefore that |ν1| = 1, whence |ω1| = ... = |ωr| = 1 = |ν1| = ... = |νs|. Since

|ωi| < 1 if i > r and |νj | < 1 if j > s, we can find an integer k2 > 0 so that k ≥ k2 implies
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(a) 1/|α1|k < ε/4; and
(b)

∑m
i=r+1 |ωi|k +

∑m
j=s+1 |νj |k < ε/4.

From equation (4) we see that for k ≥ k2,∣∣∣∣∣∣
r∑

i=1

ωk
i −

s∑
j=1

νk
j

∣∣∣∣∣∣ ≤ 1
|α1|k

+
m∑

i=r+1

|ωi|k +
m∑

j=s+1

|νj |k(7)

< ε/4 + ε/4 < 1/2.(8)

By Lemma 3.2, s = r and there exists a permutation π0 of {1, 2, ..., r} so that ωi = νπ0(i),
1 ≤ i ≤ r. It follows that αi = βπ0(i), 1 ≤ i ≤ r. But then equation (3) holds for
αr+1, ..., αm, βr+1, ..., βm in that for all k ∈ Z,∣∣∣∣∣

m∑
i=r+1

(
αk

i − βk
i

)∣∣∣∣∣ =

∣∣∣∣∣
r∑

i=1

(
αk

i − βk
π0(i)

)
+

m∑
i=r+1

(
αk

i − βk
i

)∣∣∣∣∣(9)

=

∣∣∣∣∣
m∑

i=1

(
αk

i − βk
i

)∣∣∣∣∣ ≤ 1.(10)

Since m′ := m− r < m, we may apply our induction hypothesis to obtain a permutation π1

of {r + 1, r + 2, ...,m} so that αi = βπ1(i), r + 1 ≤ i ≤ m. This clearly establishes our claim.
2

As a simple consequence of the above Lemma, we obtain the following:

3.4. Proposition. Suppose that A,B ∈ Mn(C) are two invertible matrices and that

| tr(Ak)− tr(Bk)| ≤ 1

for all k ∈ Z. Then σ(A) = σ(B), including multiplicities.
Proof. We can (without loss of generality) assume that both A = [aij ] and B = [bij ] are
in upper triangular form. Let αi = aii, βi = bii, 1 ≤ i ≤ n. Since A, B are invertible,
αi 6= 0 6= βi for all 1 ≤ i ≤ n. Our trace condition implies that∣∣∣∣∣

n∑
i=1

(
αk

i − βk
i

)∣∣∣∣∣ =
∣∣∣tr(Ak)− tr(Bk)

∣∣∣
≤ 1 for all k ∈ Z.

By Lemma 3.3, there exists a permutation π of {1, 2, ..., n} such that αi = βπ(i), 1 ≤ i ≤ n.
2

3.5. Theorem. Suppose that A,B ∈ Mn(C) are two invertible matrices and that for all
words w in two non-commuting variables we have:

| tr(w(A,A∗))− tr(w(B,B∗))| ≤ 1,

and
| tr(w(A,A∗)−1)− tr(w(B,B∗)−1)| ≤ 1.

Then A is unitarily equivalent to B.
Proof. Let w denote an arbitrary (but temporarily fixed) word in two non-commuting
variables. Let A0 = w(A,A∗) and B0 = w(B,B∗). The conditions in the statement of the
Theorem imply that

| tr(Ak
0)− tr(B0)k| ≤ 1
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for all k ∈ Z, and so by Proposition 3.4, σ(A0) = σ(B0), including multiplicities. But then
tr(w(A,A∗)) = tr(A0) = tr(B0) = tr(w(B,B∗)). Since w was arbitrary, Specht’s Theorem
implies that A and B are unitarily equivalent.

2

3.6. In [2], a semigroup of operators G ⊆ Mn(C) was defined to be semisimple if its linear
span forms a semisimple algebra. We extend this definition slightly, namely: we shall say
that a non-empty subset A ⊆ Mn(C) is semisimple if the algebra Alg A generated by A is
semisimple. When A is a semigroup, these two notions coincide. Also, if A is an algebra to
begin with, then all definitions of semisimplicity are consistent.

We say that a family A ⊆ Mn(C) is selfadjoint if T ∈ A implies that T ∗ ∈ A. It is readily
verified that any selfadjoint family A is semisimple in the above sense.

We next recall a Theorem of Hladnik, Omladič and the third author of the present work
which we shall need below. We shall not state that Theorem in its full generality, but rather
only in the context we require.

3.7. Theorem. [2] Suppose that G and H are two semisimple semigroups of invertible
n × n matrices. If ϕ : G → H is a surjective, trace-preserving semigroup homomorphism,
then there exists an invertible operator R ∈ Mn(C) so that

ϕ(A) = R−1AR for all A ∈ G.

Let us write AdR to denote the map X 7→ R−1XR. The domain of this map will be clear
from the context.

3.8. Theorem. Let G,H ⊆ Mn(C) be two semisimple groups of invertible matrices. If
ϕ : G → H is a surjective homomorphism, and if

|tr(ϕ(A))− tr(A)| ≤ 1 for all A ∈ G,

then ϕ = AdR for some invertible operator R ∈ Mn(C).
Proof. Fix A ∈ G and set B = ϕ(A). Our trace condition on the group G implies that∣∣∣tr(Bk)− tr(Ak)

∣∣∣ =
∣∣∣tr(ϕ(Ak))− tr(Ak)

∣∣∣
≤ 1 for all k ∈ Z.

By Proposition 3.4, σ(A) = σ(B) including multiplicities. But then tr(B) = tr(ϕ(A)) =
tr(A). Since A ∈ G was arbitrary, ϕ is a trace preserving surjective homomorphism between
semisimple groups of Mn(C). It follows from Theorem 3.7 above that ϕ = AdR for some
invertible operator R ∈ Mn(C).

2

Recall that if A ∈ Mn(C), then the absolute value of A is the element |A| = (A∗A)1/2.
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3.9. Corollary. If G,H are selfadjoint subgroups of the invertible group of Mn(C) and
ϕ : G → H is a surjective ∗-homomorphism satisfying

|tr(ϕ(A))− tr(A)| ≤ 1 for all A ∈ G,

then ϕ = AdU for some unitary operator U ∈ Mn(C).
Proof. By Theorem 3.8, ϕ = AdR for some invertible operator R. A standard argument
shows that if a ∗-homomorphism is implemented by a similarity, then it is implemented by
the unitary part of the polar decomposition of that similarity.

We include the argument for completeness: for A ∈ G, ϕ(A) = R−1AR, while R−1A∗R =
ϕ(A∗) = ϕ(A)∗ = (R−1AR)∗ = R∗A∗(R−1)∗. Thus A∗(RR∗) = (RR∗)A∗ for all A ∈ G,
whence (RR∗)A = A(RR∗) for all A ∈ G. But then |R∗|A = A|R∗| for all A ∈ G. Write the
polar decomposition R∗ = U |R∗| where U is unitary. Then R = |R∗|U∗ and R−1 = U |R∗|−1,
and so

ϕ(A) = R−1AR = U |R∗|−1A|R∗|U∗

= U |R∗|−1 |R∗|AU∗

= UAU∗

for all A ∈ G.
2

We can now rephrase some of these results as multivariable versions of Specht’s Theorem.

3.10. Corollary. Suppose that A = {Aα}α∈Λ and B = {Bα}α∈Λ are two semisimple,
inverse-closed families of invertible operators in Mn(C). If

|tr(w(A))− tr(w(B))| ≤ 1

for all finite words w in |A| non-commuting variables, then there exists R ∈ Mn(C) invertible
such that

Aα = R−1BαR for all α ∈ Λ.

Note: We first recall that the semisimplicity of B implies that alg(B) is similar to a C∗-
algebra. It is readily verified that there is no loss of generality in invoking that similarity
at the outset and assuming a priori that alg(B) is a C∗-algebra, as we shall do below.
Proof. Fix q, a finite word in |A| variables, and let Uq := q(A), Vq := q(B). Note that Uq

and Vq are invertible operators. If k ∈ Z, then Uk
q and V k

q represent the same words in A
and B respectively. By our hypothesis,∣∣∣tr(Uk

q )− tr(V k
q )

∣∣∣ ≤ 1 for all k ∈ Z.

From Proposition 3.4, σ(Uq) = σ(Vq), including multiplicities and so tr(Uq) = tr(Vq).
Let SA (resp. SB) denote the multiplicative semigroup generated by A (resp. by B). Let

ϕ : SA → SB
r(A) 7→ r(B)

where r is an arbitrary word in |A| variables. We claim that ϕ is well-defined, whence it is
a semigroup homomorphism.

Indeed, suppose that r1(A) = r2(A) for words r1, r2. Then r3 := r1r
−1
2 is simply another

word in |A|-variables, and r3(A) = I. As such, if w is any other word, then the argument
of the first paragraph shows that

σ(w(B)) = σ(w(A)) = σ(r3(A)w(A)) = σ(r3(B)w(B)),
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including multiplicities. In particular, therefore,

tr(w(B)) = tr(w(A)) = tr(r3(A)w(A)) = tr(r3(B)w(B))

for all words w. By linearity, it follows that

tr((r3(B)− I)Q) = 0

for all Q ∈ spanSB = alg(B). But B is semisimple, and so as pointed out above, we
may assume that alg(B) is a C∗-algebra. But then (r3(B) − I) ∈ alg(B) implies that
(r3(B)− I)∗ ∈ alg(B) and therefore that

tr((r3(B)− I)(r3(B)− I)∗) = 0.

Since the trace is faithful on Mn(C), it follows that r3(B)− I = 0, or that r3(B) = I. From
this we get r1(B) = r2(B). In particular, ϕ is a well-defined semigroup homomorphism.

We are now in a position to apply Theorem 3.8 to conclude that ϕ = AdR for some
invertible matrix R ∈ Mn(C), from which the result is easily obtained.

2

3.11. Corollary. Suppose that A = {Aα}α∈Λ and B = {Bα}α∈Λ are two selfadjoint,
inverse-closed families of invertible operators in Mn(C). If

|tr(w(A))− tr(w(B))| ≤ 1

for all finite words w in |A| non-commuting variables, then there exists Z ∈ Mn(C) unitary
such that

Aα = Z−1BαZ for all α ∈ Λ.

Proof. Note that A and B selfadjoint automatically implies that these families are semisim-
ple. By Corollary 3.10, we can find R ∈ Mn(C) an invertible operator so that Aα = R−1BαR
for all α ∈ Λ. As in the proof of Corollary 3.9, we find that the selfadjointness of the families
A and B implies that the unitary part Z of the polar decomposition of R implements the
simultaneous unitary equivalence of A and B.

2

4. The Projection Condition

Recall that for a matrix A ∈ Mn(C), |A| denotes the positive square root of A∗A. Also,
C∗(A) denotes the C∗-algebra generated by A, that is, the smallest norm-closed, unital
selfadjoint subalgebra of Mn(C) which contains A. If we use C[X, Y ] to denote the set of
polynomials in two non-commuting variables X and Y with complex coefficients, then, in
the finite-dimensional setting, C∗(A) is easily seen to coincide with the set {p(A,A∗) : p ∈
C[X, Y ]}.

4.1. Definition. Let A,B ∈ Mn(C).
We shall say that A and B satisfy the projection condition (we abbreviate this to the

PC) if, for any polynomial p ∈ C[X, Y ] in two non-commuting variables x and y for which
p(A,A∗) is a projection, it follows that p(B,B∗) is a projection of the same trace.

We shall say that A and B satisfy the absolute value condition (we abbreviate this
to the AVC) if, for any polynomial p ∈ C[X, Y ] in two non-commuting variables x and y,
|p(A,A∗)| is unitarily equivalent to |p(B,B∗)|.

It is worth making a few observations. First we remark that there is an apparent asym-
metry in our definition of the projection condition. However, as the next Proposition
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demonstrates, the projection condition and the absolute value condition are equivalent for
pairs A and B of n× n matrices. Since the AVC is easily seen to be a symmetric relation,
it follows that the PC is also symmetric. Secondly, it is clear that the trace condition in
the definition of the projection condition can be replaced with the condition that p(A,A∗)
and p(B,B∗) are projections of equal rank, or are unitarily equivalent projections. Finally
if tr(w(A,A∗)) = tr(w(B,B∗)) for all words w in two non-commuting variables, then by
Specht’s Theorem, A is unitarily equivalent to B and so A and B satisfy the PC.

Our goal in this section is to prove the converse of this result, namely: if A and B satisfy
the projection condition, then they are unitarily equivalent.

4.2. Proposition. Suppose A, B ∈ Mn(C). The following are equivalent:
(i) A and B satisfy the PC;
(ii) A and B satisfy the AVC.

Proof. Suppose first that they satisfy the AVC. Let p ∈ C[X, Y ] and suppose P := p(A,A∗)
is a projection. Let Q := p(B,B∗). Then 0 = |PP ∗ − P ∗P | implies that 0 = |QQ∗ −Q∗Q|,
and hence Q is normal. Also, 0 = |P 2 − P | implies 0 = |Q2 −Q|, and so Q is a projection.
But then the AVC implies that P = |P | ' |Q| = Q, and so P and Q are clearly projections
with the same trace. Thus A and B satisfy the PC.

Suppose next that A and B satisfy the PC. Let p ∈ C[X, Y ] be any polynomial in two
non-commuting variables. Set PA = p(A,A∗)∗p(A,A∗) and PB = p(B,B∗)∗p(B,B∗). It
suffices to prove that PA is unitarily equivalent to PB.

Now PA and PB are positive matrices, and so we can find distinct non-negative real
numbers a1, a2, ..., aκA and distinct non-negative real numbers b1, b2, ..., bκB so that PA '
⊕κA

j=1ajIlj and PB ' ⊕κB
i=1biImi for some lj ,mi ≥ 1 satisfying

∑κA
j=1 lj = n =

∑κB
i=1 mi.

Suppose that there exists 1 ≤ i ≤ κB so that bi 6∈ {a1, ..., aκA}. Without loss of generality,
we may assume that b1 6∈ {a1, ..., aκA}. For each 1 ≤ j ≤ κA, consider the polynomials

qj(z) =

 ∏
1≤r 6=j≤κA

z − ar

aj − ar

 ,

and q′j(z) = qj(z)
(

z − b1

aj − b1

)
.

Then q′j(aj) = 1, q′j(ar) = 0, 1 ≤ r 6= j ≤ κA, and q′j(b1) = 0.
As such,

∑κA
j=1 q′j(PA) = I, and clearly

∑κA
j=1 q′j(PA) is a polynomial in A and A∗. It

follows from the projection condition that
∑κA

j=1 q′j(PB) = I. But

κA∑
j=1

q′j(PB) ' ⊕κB
i=1

 κA∑
j=1

q′j(bi)

 Imi .

Since
∑κA

j=1 q′j(b1) = 0, we get that
∑κA

j=1 q′j(PB) 6= I, a contradiction. From this we conclude
that σ(PB) ⊆ σ(PA), i.e.; bi = aj(i) for some 1 ≤ j(i) ≤ κA, 1 ≤ i ≤ κB. Recalling that the
bi’s are distinct, we see that aj(i) 6= aj(i′) if i 6= i′.

Next, for each 1 ≤ j ≤ κA, qj(PA) ' Ilj and hence qj(PB) must be a projection of the
same rank. But

qj(PB) ' ⊕κB
i=1qj(bi)Imi ' ⊕κB

i=1qj(aj(i))Imi .

Thus there exists a unique i0 so that bi0 = aj(i0) = aj , and mi0 = lj . It follows that the
multiplicity of aj as an eigenvalue of PA is the same as its multiplicity as an eigenvalue of
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PB. Hence PA is unitarily equivalent to PB, and so, as stated, A and B satisfy the absolute
value condition.

2

4.3. Lemma. Suppose A,B ∈ Mn(C) satisfy the projection condition. Then A is similar
to B.
Proof. By Proposition 4.2, A and B satisfy the AVC as well. Given T ∈ Mn(C), a complete
set of similarity invariants for T is given by {nul (T − λI)k : λ ∈ C, 1 ≤ k ≤ n}. Since
ker(T − λI)k = ker |(T − λI)k|, and since |(A− λI)k| is unitarily equivalent to |(B − λI)k|
for each λ ∈ C and 1 ≤ k ≤ n, we see that A and B share the same similarity invariants,
and hence the same Jordan form. In particular, A is similar to B.

2

As an immediate consequence, we observe that if A and B satisfy the absolute value
condition (or equivalently the projection condition), then A and B have the same spectrum
occurring with the same multiplicities.

4.4. Lemma. Suppose A,B ∈ Mn(C) satisfy the projection condition. Let P1, P2, ..., Pm

denote the minimal central projections of C∗(A). Choose polynomials p1, p2, ..., pm ∈ C[X, Y ]
so that Pi = pi(A,A∗) for each 1 ≤ i ≤ m. Then Qi := pi(B,B∗) are the minimal central
projections of C∗(B). Moreover, Pi is unitarily equivalent to Qi for each 1 ≤ i ≤ m.
Proof. By definition of the projection condition, Qi is a projection of the same rank as Pi

for each i. Moreover, PiPj = pi(A,A∗)pj(A,A∗) = δi,jPi (where δi,j denotes the Kronecker
delta) and hence QiQj ' PiPj = 0 if i 6= j. That is, the Qi’s form a family of pairwise
orthogonal projections.

Let r ∈ C[X, Y ] be any polynomial. If we set R = r(A,A∗) and S = r(B,B∗), then, since
A and B satisfy the AVC as well, |PiR −RPi| = 0, which implies |QiS − SQi| = 0, and so
we see that Qi’s are central in C∗(B).

By symmetry, the minimality of the Pi’s as central projections for C∗(A) implies that
the Qi’s are central projections for C∗(B).

2

4.5. Lemma. Suppose A,B ∈ Mn(C) satisfy the projection condition, and that C∗(A)
contains no central projections other than 0 and I. Then the same holds for C∗(B), and
furthermore, A is unitarily equivalent to B.
Proof. By Lemma 4.2, we may assume that A and B satisfy the AVC as well. By
Lemma 4.4, C∗(B) has no proper central projections. We consider R1,1, R2,2, ..., Rk,k, a
maximal set of minimal projections in C∗(A), and choose polynomials rj,j ∈ C[X, Y ] so
that Rj,j = rj,j(A,A∗). Then Tj,j := rj,j(B,B∗) is a projection of the same (constant) rank
m in C∗(B), by the projection condition. By symmetry, any proper subprojection of the
Tj,j ’s would be carried to a proper subprojection of the Rj,j ’s, and so the minimality of the
Rj,j ’s implies that of the Tj,j ’s. Without loss of generality, we may assume that Rj,j = Tj,j

for each 1 ≤ j ≤ k.
For i = 1, 2, ..., k − 1, fix a polynomial ri,i+1 ∈ C[X, Y ] so that Ri,i+1(A,A∗) satisfies

Ri,i Ri,i+1 Ri+1,i+1 = Ri,i+1 and Ri,i+1 R∗i,i+1 = Ri,i. Let Ti,i+1 := ri,i+1(B,B∗). Then
|Ti,i Ti,t+1 Ti+1,i+1 − Ti,i+1| is unitarily equivalent to |Ri,i Ri,t+1 Ri+1,i+1 − Ri,i+1| = 0, and
so Ti,i Ti,t+1 Ti+1,i+1 = Ti,i+1 = Ri,i Ti,i+1 Ri+1,i+1. Since |Ti,i+1| is unitarily equivalent
to Ri,i+1, again, without loss of generality we may assume that Ti,i+1 = Ri,i+1 for all
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1 ≤ i ≤ k − 1. For i < j, define Ri,j = Ri,i+1 Ri+1,i+2 · · ·Rj−1,j and for j < i, define
Ri,j = R∗j,i. To complete the proof, we shall show that Ri,iARj,j = Ri,iBRj,j for all i and j.

Consider, for 1 ≤ j ≤ k, Xi,j = Rj,i(Ri,iARj,j) = ai,jRj,j . Then Yi,j = Tj,i(Ti,iBTj,j) =
bi,jTj,j = bi,jRj,j . But Xi,j and Yi,j satisfy the AVC - or equivalently the PC - and so by
Lemma 4.3, Xi,j is similar to Yi,j . Hence their spectra agree, which means that ai,j = bi,j

for each pair i and j. That is, A = B.
2

4.6. Theorem. Suppose A,B ∈ Mn(C) satisfy the projection condition. Then A is uni-
tarily equivalent to B.
Proof. By Lemma 4.4, we may choose a set of minimal central projections P1, P2, ..., Pm

for C∗(A) and Q1, Q2, ..., Qm for C∗(B) such that Pi is unitarily equivalent to Qi for each
i. Since PiPj − PjPi = 0, and hence is a projection, it follows that QiQj −QjQi is again a
projection with the same trace - namely zero. Thus QiQj = QjQi. Similarly, I−

∑m
i=1 Pi = 0

is the zero projection, and hence so is I−
∑m

i=1 Qi. It follows that there must exist a unitary
U ∈ Mn(C) such that U∗PiU = Qi, 1 ≤ i ≤ m. As such, without loss of generality, we may
assume that Pi = Qi, 1 ≤ i ≤ m.

Now PiAPi and PiBPi satisfy the PC, and so Ai := PiAPi|PiCn and Bi = PiBPi|PiCn are
also readily seen to satisfy the PC.

But C∗(Ai) and C∗(Bi) contain no proper central projections, and so by Lemma 4.5, Ai

is unitarily equivalent to Bi, 1 ≤ i ≤ k, say V ∗
i AiVi = Bi for some Vi unitary in B(PiCn).

Letting V = ⊕m
i=1Vi, V ∗AV = B and we are done.

2

4.7. Corollary. Suppose A,B ∈ Mn(C), and that

tr (|p(A,A∗)|) = tr (|p(B,B∗)|)

for all polynomials p in two non-commuting variables. Then A is unitarily equivalent to
B.
Proof. Fix a polynomial p in two non-commuting variables. Let Hp = |p(A,A∗)|2 and Kp =
|p(B,B∗)|2. Since any word in Hp and its adjoint is really just a power of Hp, it is easily seen
that Hk

p = qk(A,A∗)∗qk(A,A∗) for some polynomial q and that Kk
p = qk(B,B∗)∗qk(B,B∗).

In particular, Hk
p = |Hk

p | and Kk
p = |Kk

p |. Our assumption therefore implies that trHk
p =

trKk
p for all k ≥ 1, whence trw(Hp,H

∗
p ) = trw(Kp,K

∗
p) for all words w in two variables. It

follows from Specht’s Theorem that Hp and Kp are unitarily equivalent. But then H
1/2
p =

|p(A,A∗)| is unitarily equivalent to K
1/2
p = |p(B,B∗)|. That is, A and B satisfy the AVC.

By Theorems 4.2 and 4.6, A and B are unitarily equivalent.
2

4.8. Example. We point out that in the above Corollary, it is not sufficient to consider
absolute values of words (as opposed to absolute values of polynomials) in A and A∗. For
example, if A = I and U is any unitary other than I in Mn(C), then for all words w,
|w(A,A∗)| = |w(B,B∗)| = I, and so their traces agree, despite the fact that A and U are
not unitarily equivalent.

On the other hand, consideration of dimensions of kernels as in Lemma 4.3 shows that
if we begin with two nilpotent matrices A and B, then the unitary equivalence of absolute
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values of words in A and A∗ with the corresponding words in B and B∗ implies the similarity
of A and B.
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