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Abstract

We introduce and study bimeasurings from pairs of bialgebras to algebras. It is shown that the
universal bimeasuring bialgebra construction, which arises from Sweedler’s universal measuring
coalgebra construction and generalizes the finite dual, gives rise to a contravariant functor on the
category of bialgebras adjoint to itself. An interpretation of bimeasurings as algebras in the category
of Hopf modules is considered.
© 2005 Elsevier B.V. All rights reserved.
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0. Introduction

Measurings have first been introduced and studied by M.E. Sweedler [7]. They correspond
to homomorphisms of algebras over a coalgebra which are cofree as comodules [1]. There
is a universal measuring coalgebra M(B, A) and measuring �: M(B, A) ⊗ B → A for
every pair of algebras A and B such that C-measurings from B to A correspond bijectively to
coalgebra maps from C to M(B, A). If B is a bialgebra and A is commutative then M(B, A)

carries a natural bialgebra structure [3]. If in addition, C is a bialgebra then one may consider
maps �: C ⊗ B → A which measure in both variables C and B. In the cocommutative case
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these bimeasurings account for the “mixed” term in the second Sweedler cohomology group

H 2(C ⊗ B, A) � H 2(C, A) ⊕ H 2(B, A) ⊕ P(B, C, A)

as shown in [3]. If A is commutative, then universal bimeasuring bialgebras (and universal
bimeasuring) B(C, A) and B(B, A) exist so that bimeasurings �: C ⊗ B → A bijectively
correspond to bialgebra maps from C to B(B, A) as well as bialgebra maps from B to
B(C, A). In fact

Bialg(C, B(B, A)) � Bimeas(C ⊗ B, A) � Bialg(B, B(C, A))

and hence the functor B( _, A) on the category of bialgebras is adjoint to itself. In the special
case A = k, this gives a new proof that the finite dual construction _◦ = B(_, k) is adjoint
to itself [8] (see [5] for a proof). Moreover, there is a natural injective map

B(C, A) ⊗ B(B, A) → B(C ⊗ B, A),

which is always an isomorphism in the cocommutative case, and restricts to the well-known
isomorphism C◦ ⊗ B◦ � (C ⊗ B)◦ when A = k.

There is a natural notion of bimeasuring from an abelian matched pair of Hopf algebras
H = C��B to a commutative algebra A extending that of ordinary cocommutative bimea-
surings. These skew-bimeasurings form an abelian group under convolution isomorphic to
the first matched pair cohomology group H1(C, B, A) with coefficients in A described in
[2]. This group also corresponds to a subgroup of the group of A-linear automorphisms of
the trivial H-comodule H ⊗ A and thus to a group of Hopf algebra structures on H ⊗ A,
each making H ⊗ A an algebra in the category of Hopf modules.

1. Preliminaries

1.1. Notation

All vector spaces (algebras, coalgebras, bialgebras) will be over a ground field k. If A
is an algebra and C a coalgebra, then Hom(C, A) denotes the convolution algebra of all
linear maps from C to A. The unit and the multiplication on A are denoted by �: k → A and
m: A ⊗ A → A; the counit and the comultiplication on C are denoted by ε: C → k and
�: C → C ⊗ C. We use Sweedler’s sigma notation for comultiplication: �(c) = c1 ⊗ c2,
(1 ⊗ �)�(c) = c1 ⊗ c2 ⊗ c3, etc. If f : U ⊗ V → W is a linear map, then we often write
f (u, v) instead of f (u ⊗ v).

1.2. Abelianization

Let H be an algebra and I ⊆ H the algebra ideal generated by all commutators, i.e. all
elements of the form [x, y] = xy − yx. If H is a Hopf algebra (bialgebra), then I is a Hopf
ideal (biideal). This is easily observed by the following identities:

S[x, y] = [S(y), S(x)],
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�[x, y] = x1y1 ⊗ x2y2 − y1x1 ⊗ y2x2

= [x1, y1] ⊗ x2y2 + y1x1 ⊗ [x2, y2].
We call the quotient algebra (Hopf algebra, bialgebra) Hab = H/I the abelianization of H.
It is the largest commutative quotient of H in the sense that if K is a commutative algebra
(bialgebra) and f : H → K is an algebra (bialgebra) map, then there exists a unique algebra
(bialgebra) map f : Hab → K such that f = f �, where �: H → Hab is the canonical
projection.

If H is a Hopf algebra, then I is also the Hopf ideal generated by 〈[x, y]H −ε(xy)〉, where
[x, y]H = S(x1)S(y1)x2y2.

1.3. Cocommutative part

For a coalgebra H we define Hc, the cocommutative part of H, to be the largest cocom-
mutative subcoalgebra of H (it is obtained as a sum of all cocommutative subcoalgebras of
H, hence it always exists). If H is a bialgebra, then Hc is a bialgebra as well (the algebra
generated by Hc is also a cocommutative subcoalgebra of H and must therefore be equal to
Hc). Finally, if H is a Hopf algebra, then so is Hc. This is seen by noting that S(Hc) is also
a cocommutative subcoalgebra of H. If f : K → H is a coalgebra (bialgebra) map and K is
cocommutative, then clearly f (K) ⊆ Hc; in other words, there exists a unique coalgebra
(bialgebra) map f : K → Hc such that f = �f (here �: Hc → H is the obvious map).

1.4. Measuring

Let A, B, be algebras, C a coalgebra.

Proposition 1.1 (Sweedler [7], 7.0.1). A map �: C ⊗ B → A corresponds to an algebra
map �: B → Hom(C, A), �(b)(c) = �(c, b) if and only if

(1) �(c, bb′) = �(c1, b)�(c2, b
′),

(2) �(c, 1) = ε(c).

If the equivalent conditions from the proposition above are satisfied, we say that � is a
measuring, or that C measures B to A.

Theorem 1.2 (Sweedler [7], 7.0.4). If A and B are algebras, then there exists a unique
measuring �: M ⊗B → A so that for any measuring f : C ⊗B → A, there exists a unique
coalgebra map f : C → M , s.t. f = �(f ⊗ 1).

The measuring �: M ⊗ B → A from the theorem above is called the universal mea-
suring and the coalgebra M = M(B, A) the universal measuring coalgebra. The functor
M(_, A): Algop → Coalg is right adjoint to Hom(_, A): Coalg → Algop. In particular, if
A=k thenM(B, A)=M(B, k)=B◦ (the finite dual) and ifB=k thenM(B, A)=M(k, A)=k.

In the construction of the universal bimeasurings, we shall use the following technical
lemma.
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Lemma 1.3. Let A and B be algebras and �: M ⊗ B → A the universal measuring. If C
is a coalgebra and f and g coalgebra maps from C to M such that �(f ⊗ 1B) = �(g ⊗ 1B),
then f = g.

Proof. Observe that �(f ⊗ 1) = �(g ⊗ 1): C ⊗ B → A is a measuring and hence by the
universal property, we have f = g. �

If we restrict ourselves to the category of cocommutative coalgebras, then we talk about
universal cocommutative measurings and universal cocommutative measuring coalgebras.
These were considered in [1]. In this case, if C is cocommutative, then C-measurings
�: C ⊗ B → A are in bijective correspondence with C-algebra maps �: C ⊗ B → C ⊗ A,
given by � = (1 ⊗ �)(� ⊗ 1) and � = (ε ⊗ 1)�.

Proposition 1.4. If A and B are algebras, then the universal cocommutative measuring
coalgebra Mc(B, A) is isomorphic to the cocommutative part M(B, A)c of the universal
measuring coalgebra M(B, A).

Proof. Note that M(B, A)c has the required universal property. �

2. Bimeasuring

Definition 2.1. If N and T are bialgebras and A an algebra, then a map �: N ⊗ T → A is
a bimeasuring if N measures T to A and T measures N to A, i.e.

�(nm, t) = �(n, t1)�(m, t2), �(1N, t) = ε(t),

�(n, ts) = �(n1, t)�(n2, s), �(n, 1T ) = ε(n)

for n, m ∈ N and t, s ∈ T .

Definition 2.2. Let T be a bialgebra and A an algebra. If a bimeasuring �: B ⊗ T → A

is such that for every bimeasuring f : N ⊗ T → A, there exists a unique bialgebra map
f : N → B with the property f = (f ⊗1)�, then � is called the (left) universal bimeasuring
and B = B(T , A) is called the (left) universal bimeasuring bialgebra.

If we limit ourselves to cocommutative B’s and N ’s, we talk about the universal cocom-
mutative bimeasurings and we denote the universal cocommutative bimeasuring bialgebra
(if it exists) by Bc(T , A).

2.1. Bimeasurings over commutative algebras

The following proposition shows that universal bimeasurings exist whenever the algebra
A is commutative.

Proposition 2.3. If T is a bialgebra, A a commutative algebra, and �: M ⊗ T → A the
universal measuring, then there exists a unique algebra structure on M so that T measures
M to A, i.e. �(fg, t) = �(f, t1)�(g, t2) and �(1M, t) = ε(t).
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Furthermore, with this algebra structure M becomes a bialgebra and � the universal
bimeasuring. If T is a Hopf algebra, then so is Mc.

Proof. Observe that 	: M ⊗ M ⊗ T → A, given by 	(m ⊗ m′, t) = �(m, t1)�(m′, t2) is
a measuring and defines the multiplication m: M ⊗ M → M , to be the unique coalgebra
map so that �(m ⊗ 1) = 	.

Similarly the unit �: k → M is the unique coalgebra map so that �(� ⊗ 1) = �AεN .
The associativity and the unit conditions follow from Lemma 1.3 by noting that �(m(m⊗

1M) ⊗ 1T ) = �(m(1M ⊗ m) ⊗ 1T ), �(m(� ⊗ 1M) ⊗ 1T ) = �(
l ⊗ 1T ) and �(m(1M ⊗ �) ⊗
1T )=�(
r ⊗1T ) (here 
l and 
r denote the canonical isomorphisms from k⊗M and M ⊗k,
respectively to M).

Since the multiplication and the unit are coalgebra maps, M must be a bialgebra and
�: M ⊗ T → A a bimeasuring. We claim � is the universal bimeasuring. Let f : N ⊗ T →
A be a bimeasuring. Since f is a measuring, there exists a unique coalgebra map f : N → M

so that �(f ⊗ 1) = f . It remains to show that f is also an algebra map. This follows from
Lemma 1.3, since we have �(m(f ⊗ f ) ⊗ 1) = �(f m ⊗ 1) and �(f �N ⊗ 1) = �(�M ⊗ 1).

Observe that, if T is a Hopf algebra, then there is a unique coalgebra map S: Mcop → M

such that the diagram

Mcop ⊗ T
S⊗1−−−−→ M ⊗ T

1⊗ST

⏐⏐⏐⏐� �T

⏐⏐⏐⏐�
Mcop ⊗ T op �̄−−−−→ A

commutes. Here �̄: Mcop ⊗T op → A, defined by �̄(x⊗ t)=�(x⊗ t), satisfies the measuring
conditions �̄(x ⊗ t ∗ t ′) = �(x ⊗ t ′t) = �(x1 ⊗ t ′)�(x2 ⊗ t) = �(x2 ⊗ t)�(x1 ⊗ t ′) = �̄(x2 ⊗
t)�̄(x1 ⊗ t ′). This coalgebra map S: Mcop → M is the obvious candidate for an antipode
on M. Even though �(1 ∗ S ⊗ 1) = �(�� ⊗ 1) = �(S ∗ 1 ⊗ 1), we cannot invoke Lemma
1.3 since 1 ∗ S = m(1 ⊗ S)�: M → M and S ∗ 1 = m(S ⊗ 1)�: M → M may not be
coalgebra maps, and hence S may not be convolution inverse to the identity. So M may not
be a Hopf algebra. However, Mc is invariant under S, and the restrictions 1 ∗ S: Mc → Mc
and S ∗1: Mc → Mc are coalgebra maps, the cocommutative version of Lemma 1.3 implies
that Mc is a cocommutative Hopf algebra with antipode S. �

Theorem 2.4. If A is a commutative algebra, then the universal bimeasuring bialgebra
construction gives rise to a contravariant functor B(_, A) on the category of bialgebras
that is adjoint to itself.

Proof. It is easy to see that the construction is functorial.
Let T and N be bialgebras. We shall display a canonical bijection

�T ,N : Bialg(T , B(N, A)) → Bialg(N, B(T , A)).



L. Grunenfelder, M. Mastnak / Journal of Pure and Applied Algebra 204 (2006) 258–269 263

It is observed from the diagram below:

More precisely, if �T : B(T , A) ⊗ T → A and �N : N ⊗ B(N, A) → A are universal
bimeasurings and f : T → B(N, A) is a bialgebra map, then �N(1 ⊗ f ): N ⊗ T → A

is a bimeasuring and we define �T ,N (f ) = f : N → B(T , A) to be the unique bialgebra
map such that �T (f ⊗ 1) = �N(1 ⊗ f ): N ⊗ T → A. If g: S → B(T , A) is a bialgebra
map, then define �N,T (g) = g: T → B(N, A) to be the unique bialgebra map so that
�T (1 ⊗ g) = �N(g ⊗ 1) and note that �N,T is the inverse of �T ,N .

We shall conclude the proof by showing that �R,N(f 
)=B(
, A)�T ,N (f ), if 
: R → T

is a bialgebra map. Indeed, if �R: B(R, A) ⊗ R → A is the universal bimeasuring, then
�R(B(
, A)f ⊗ 1) = �R(B(
, A) ⊗ 1)(f ⊗ 1) = �T (1 ⊗ 
)(f ⊗ 1) = �T (f ⊗ 1)(1 ⊗

) = �N(f ⊗ 1)(1 ⊗ 
) = �N(1 ⊗ f 
) = �R(�R,N(f 
) ⊗ 1). Hence we are done by
Lemma 1.3. �

Corollary 2.5 (Takeuchi [8], Michaelis [5]). The finite dual construction B �→ B◦ defines
a contravariant functor on the category of bialgebras that is adjoint to itself.

Remark. If we fix a bialgebra T, then the universal bimeasuring bialgebra construction
gives rise to a covariant functor B(T , _) from the category of commutative algebras to
the category of bialgebras. It is easy to see that the functor preserves monomorphisms. In
particular, there is a bialgebra monomorphism T ◦ → B(T , A) for any commutative algebra
A (arising from the unit �: k → A). If the algebra A is augmented, then the monomorphism
is split.

2.2. Bimeasurings over noncommutative algebras

It makes little sense to discuss bimeasurings when the algebra A is not commutative. A
point in case is the following:

Proposition 2.6. Let �: N ⊗ T → A be a bimeasuring. If either N or T is a Hopf algebra
then �(N ⊗ T ) generates a commutative subalgebra of A.

Proof. Assume N is a Hopf algebra and note that

�(n, t)�(m, s) = �(S(m1), t1)�(m2n1, t2s1)�(S(n2), s2)

= �(m, s)�(n, t).

If T is a Hopf algebra, then the argument is symmetric. �



264 L. Grunenfelder, M. Mastnak / Journal of Pure and Applied Algebra 204 (2006) 258–269

Now suppose that T is a Hopf algebra and that the algebra A is not commutative. In view
of the proposition above, it is clear that the universal bimeasuring �: B(T , A)⊗T → A can
only exist if every bimeasuring from N ⊗T to A maps into a fixed commutative subalgebra
of A′ of A. The proposition below illustrates the fact that the universal bimeasurings exist
in general only if A is commutative.

Proposition 2.7. The universal bimeasuring bialgebra B(k[x], A) exists if and only if the
algebra A is commutative.

Proof. It is sufficient to see that every element of A is in the image of some bimeasuring
N ⊗k[x] → A. This is observed by noting that �
: k[x]⊗k[x] → A, given by �(xi, xj )=
�i,j i!
i is a bimeasuring for all 
 ∈ A (�i,j denotes the Kronecker’s delta function). �

3. Universal cocommutative bimeasuring bialgebras

Proposition 3.1. Let T be a bialgebra and A an algebra (not necessarily commutative).
If the universal bimeasuring bialgebra B(T , A) exists, then the universal cocommutative
bialgebra Bc(T , A) exists as well and we have the equality Bc(T , A) = (B(T , A))c.

Proof. Clear. �

Hence if A is a commutative algebra, then we always have Bc(T , A) = B(T , A)c. The
proposition below sheds some light on the structure of universal cocommutative bimeasur-
ings.

Proposition 3.2. Suppose the image of a bimeasuring �: N ⊗ T → A generates a com-
mutative subalgebra of A. If N is cocommutative, then � factors through Tab, i.e. there is a
unique bimeasuring �: N ⊗Tab, such that �=�(1⊗�), where �: T → Tab is the canonical
projection.

Proof. We compute

�(n, ts) = �(n1, t)�(n2, s) = �(n2, s)�(n1, t) = �(n1, s)�(n2, t) = �(n, st)

and conclude the proof by pointing out that if �(n, t) = 0 for some t ∈ T and all n ∈ N ,
then �(n, sts′) = �(n1, s)�(n2, t)�(n3, s

′) = 0 for all s, s′ ∈ T . �

Corollary 3.3. Let N and T be cocommutative bialgebras. If �: N ⊗ T → A is a bimea-
suring with commutative image in A, then � factors through Nab ⊗Tab, i.e. there is a unique
bimeasuring �: Nab ⊗ Tab → A such that � = �(� ⊗ �).

Proposition 3.4. If T is a perfect Hopf algebra (i.e. Tab=k), then the universal bimeasuring
bialgebra Bc(T , A) exists for all algebras A and it is equal to the ground field k.

Proof. Apply Lemma 2.6 and Proposition 3.2. �
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Proposition 3.5. If A is a commutative algebra and T a cocommutative bialgebra, then the
universal bimeasuring bialgebra B(T , A) is commutative.

Proof. Apply Proposition 3.2. �

It is natural to ask the symmetric question: If T is a commutative bialgebra, is the universal
bimeasuring bialgebra B(T , A) automatically cocommutative? We conjecture this is not the
case in general; however, we can say the following.

Proposition 3.6. If A is a commutative algebra and T a bialgebra, then Bc(T , A) =
Bc(Tab, A).

Proof. Apply Proposition 3.2. �

Remark. The proposition above is symmetric to Proposition 3.5 in the sense that the
proposition in question is equivalent to saying that

B(Tc, A)ab = B(Tc, A).

If T is a Hopf algebra and A is a commutative algebra, then the subsets Alg(T , A) and
Der(T , A) of the convolution algebra Hom(T , A) form a group and a Lie algebra under
convolution, respectively. Moreover, Alg(T , A) acts on Der(T , A) by “conjugation”, giving
rise to a canonical algebra map � : UDer(T , A)�kAlg(T , A) → Hom(T , A). The map
� : Der(T , A) × Alg(T , A) × T → A, defined by �(f, g, t) = f (t1)g(t2), extends to a
bimeasuring

� : UDer(T , A)�kAlg(T , A) ⊗ T → A.

Thus, there is a unique bialgebra map �̄ : UDer(T , A)�kAlg(T , A) → B(T , A) such
that �(�̄ ⊗ 1) = �, whose image is in Bc(T , A). The fact that Bc(T , A) is a subcoalgebra
of the cofree coalgebra C(Hom(T , A)) [7] now shows together with Proposition 1.4 that
the group of points and the Lie algebra of primitives of Bc(T , A) can be identified with
Alg(T , A) and Der(T , A), respectively. If k is an algebraically closed field of character-
istic zero, it then follows by the structure theorem for cocommutative Hopf algebras that
UDer(T , A)�kAlg(T , A)�Bc(T , A).

4. Tensor products and universal bimeasurings

Throughout this section, T and S will be bialgebras and A a commutative algebra. We shall
examine how the tensor product B(T , A) ⊗ B(S, A) of universal bimeasuring bialgebras
B(T , A) and B(S, A) is related to the universal bimeasuring bialgebra B(T ⊗S, A). Recall
that if the algebra A is the ground field k, then we have

B(T , k) ⊗ B(S, k) = T ◦ ⊗ S◦ � (T ⊗ S)◦ = B(T ⊗ S, k).

We conjecture that, in general, the bialgebras B(T , A) ⊗ B(S, A) and B(T ⊗ S, A) are
not isomorphic.
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Since the algebra A is commutative, the linear map

�: B(T , A) ⊗ B(S, A) ⊗ T ⊗ S → A,

given by

�(f ⊗ g, t ⊗ s) = �T (f, t)�S(g, s),

is a bimeasuring. Define


: B(T , A) ⊗ B(S, A) → B(T ⊗ S, A)

to be the unique coalgebra map such that�=�T ⊗S(
, 1). Furthermore, let �1: B(T ⊗S, A) →
B(T , A), �2: B(T ⊗ S, A) → B(S, A), �1: B(T , A) → B(T ⊗ S, A) and �2: B(S, A) →
B(T ⊗S, A) be bialgebra maps induced by �1 =1⊗�: T → T ⊗S, �2 =�⊗1: S → T ⊗S,
�1 = 1 ⊗ ε: T ⊗ S → T and �2 = ε ⊗ 1: T ⊗ S → S, respectively. Using Lemma 1.3, it is
easy to see that the following diagram commutes, and symmetrically for B(S, A) with �2
and �2.

Hence the composite map

B(T , A) ⊗ B(S, A)

→ B(T ⊗ S, A)

�1∗�2→ B(T , A) ⊗ B(S, A),

where �1 ∗ �2 = (�1 ⊗ �2)�, is the identity and therefore, 
 must be an injective mapping.
However, although �
(�1 ∗ �2)=�(1, 1), we cannot invoke Lemma 1.3 here, since 
(�1 ∗ �2)

is not a coalgebra map. But the restriction 
: Bc(T , A) ⊗ Bc(S, A) → Bc(T ⊗ S, A) is
easily seen to be an isomorphism by invoking the cocommutative version of Lemma 1.3.

5. Cocommutative bimeasurings and Hopf modules

Throughout this section, T and N denote cocommutative Hopf algebras and A a commu-
tative algebra. Furthermore let �: N ⊗ T → N and �: N ⊗ T → T be a pair of actions
making (N, T , �, �) into an abelian matched pair of Hopf algebras [4]. We can then talk
about skew bimeasurings �: N ⊗ T → A, that is linear maps satisfying

�(nm, t) = �(n, m1(t1))�(m2, t2), �(1, t) = ε(t),

�(n, ts) = �(n
t1
1 , s)�(n2, t), �(n, 1) = ε(n),
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where we abbreviate �(n, t) = n(t) and �(n, t) = nt , or equivalently

�(ntm) = �(nt1)�(t2m), �(t) = ε(t),

�(tns) = �(tn1)�(n2s), �(n) = ε(n).

(Here we identify nt ∈ T ��N with n⊗ t ∈ N ⊗T ). The set P�,�(N, T , A) of all such maps
then becomes an abelian group under convolution. It is then easy to observe that the abelian
group of skew bimeasurings is isomorphic to the first cohomology group of the matched
pair (see [2], Sections 1.3 and 1.4, for definition and description of the cohomology groups
H∗(N, T , A) of the abelian matched pair (N, T ) = (N, T , �, �) with coefficients in the
algebra A).

Proposition 5.1. If (N, T , �, �) is an abelian matched pair of Hopf algebras, we have an
isomorphism P�,�(N, T , A) � H1(N, T , A). In particular, the abelian group P(N, T , A)

of all bimeasurings from N ⊗ T to A is isomorphic to the cohomology group H1(N, T , A)

of the trivial matched pair (N, T , 1 ⊗ ε, ε ⊗ 1).

There is a relation between bimeasurings, Hopf module isomorphisms and algebras in the
category of Hopf modules, which we want to outline here. A Hopf module (M, �, �) over
a Hopf algebra H is a H-comodule �: M → H ⊗ M together with a compatible H-module
structure �: H ⊗ M → M , so that the diagram

H ⊗ M
�H⊗M−−−−→ H ⊗ H ⊗ M

�

⏐⏐⏐⏐� 1⊗�

⏐⏐⏐⏐�
H

�−−−−→ H ⊗ M

commutes, i.e. �(hm)=h1m−1⊗h2m0, where �H⊗M =(mH ⊗1⊗1)
23(�⊗�).A morphism
of Hopf modules is just an H-linear and H-colinear map. The cotensor product M⊗H N

together with the diagonal action, which restricts from the diagonal action of M ⊗ N , is a
symmetric tensor in the category of Hopf modules VectHH . The vector space of coinvariants

A = McoH = equ

(
M

�
⇒
�⊗1

H ⊗ M

)

is precisely the image of � = �(S ⊗ 1)�: M → M , which then has the image factorization
� = ��̄: M → A → M , where �̄: M → A is the projection and �: A → M the inclusion.

Theorem 5.2 (Sweedler [7], Montgomery [6]). � = (1 ⊗ �̄)�: M → H ⊗ A is an iso-
morphism of Hopf modules. The functor ( )coH : VectHH → Vect is a tensor preserving
equivalence of categories with inverse H ⊗ _: Vect → VectHH .

Proof. It is easy to check that � is a homomorphism of Hopf modules and that ��(a)=1⊗a

for all a ∈ A. It then follows that �(1 ⊗ �)� = idM and ��(1 ⊗ �) = idH⊗A, so that � is
invertible and �−1 = �(1 ⊗ �). �
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An algebra in VectHH is a Hopf module M together with Hopf module maps �: H → M and
∇: M⊗H M → M satisfying the usual unitarity and associativity conditions. It follows that
the equivalence described in the preceding theorem restricts to algebras ( )coH : AlgH

H →
Alg.

Theorem 5.3. If (M, �, �) is an algebra in AlgH
H with algebra of coinvariants A, then the

following groups are isomorphic:

(1) Reg+(H, A), the group of convolution invertible normalized linear maps �: H → A,
(2) AutHA (M), the group of A-linear H-comodule automorphisms �: M → M ,
(3) the group A of A-linear actions �: H ⊗M → M , such that (M, �, �) is a Hopf module.

Proof. By Theorem 5.2 it suffices to consider the H-comodule H ⊗ A. Convolution in-
vertible, normalized linear maps �: H → A are in bijective correspondence with A-
linear H-comodule automorphisms �: H ⊗ A → H ⊗ A, i.e. there is an isomorphism

: Reg+(H, A) → AutHA (H ⊗ A) given by 
(�) = (1 ⊗ mA)(1 ⊗ � ⊗ 1)(�H ⊗ 1) and

−1(�) = (εH ⊗ 1)�(1 ⊗ �A). In particular, if � = 
(�), then �(h ⊗ a) = h1 ⊗ �(h2)a.

The A-linear H-comodule automorphisms �: H ⊗ A → H ⊗ A correspond bijectively
to A-linear actions �̃: H ⊗H ⊗A → H ⊗A such that (H ⊗A, �⊗ 1, �̃) is a Hopf module
over H with coinvariants A. The bijection is given by the commutative diagram

H ⊗ H ⊗ A
�−−−−→ H ⊗ A

1⊗�

⏐⏐⏐⏐� �

⏐⏐⏐⏐�
H ⊗ H ⊗ A

�̃−−−−→ H ⊗ A

i.e. by the isomorphism �: AutHA (H ⊗ A) → A defined by �(�) = ��(1 ⊗ �−1) and
�−1(�̄)= �̄(1⊗�H ⊗1). A tedious, but straightforward calculation shows that (H ⊗A, �, �̄)

is a Hopf module and, in fact, an algebra in the category of Hopf modules over H. On the
other hand, � = �−1(�̄) = �̄(1 ⊗ �H ⊗ 1) is an A-linear H-comodule map, since �̄ is an
A-linear action such that (H ⊗ A, �, �̄) is a Hopf module. By the arguments in the proof of
Theorem 5.2, it follows that �̄� = idH⊗A = ��̄. Moreover, �−1�(�) = ��(1 ⊗ �−1) = �

and ��−1(�̄) = �̄�(1 ⊗ �̄
−1

) = �̄�(1 ⊗ �) = �̄��̄ = �̄. �

If (N, T , �, �) is a matched pair of cocommutative Hopf algebras with bismash product
H = T ��N , then the relation between the action �̄: (T ��N) ⊗ N ⊗ T ⊗ A → N ⊗ T ⊗ A

and the skew bimeasuring �: T ��N → A is given by

�̄(nt ⊗ m ⊗ s ⊗ a) = �̄(n ⊗ �̄(t ⊗ m ⊗ s ⊗ a))

= �̄(n ⊗ t1[m1] ⊗ t2s ⊗ �(t3m2)a)

= n1 · t1[m1] ⊗ n2(t1s1) ⊗ �(n3t2s2)�(t3m2)a,

where t[n] = n
S(n1)(S(t))
2 = S(S(n)S(t)).
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Corollary 5.4. If (N, T , �, �) is a matched pair of cocommutative Hopf algebras and A is
a commutative algebra then the following groups are isomorphic:

(1) Bimeas(N ⊗ T , A), the group of bimeasurings under convolution,
(2) AutT ��N

N⊗A (N ⊗ T ⊗ A) ∩ AutT ��N
T ⊗A (N ⊗ T ⊗ A), the group of T ��N -comodule auto-

morphisms which are N ⊗ A-linear as well as T ⊗ A-linear,
(3) A, the group of actions �̄: (N��T ) ⊗ (N ⊗ T ⊗ A) → N ⊗ T ⊗ A diagonal in N as

well as in T (i.e. the N-action is N ⊗ A-linear and the T-action is T ⊗ A-linear).

Proof. The result follows directly from Theorem 5.3 by a lengthy, routine computation.
We use the identities

t1[n1](tn2
2 ) = ε(n)t ,

(t1[n1])t
n2
2 = nε(t)

connecting the distributive law nt = n1(t1)n
t2
2 and its inverse tn = t1[n1]tn2

2 , where t[n] =
S(S(n)S(t)) and tn = S(S(n)(S(t))) [2]. �

Remark. Motivated by the referee’s report we have recently found a rather lengthy and
technical proof of our conjecture in Section 4 that 
 : B(T , A) ⊗ B(S, A) → B(T ⊗ S, A)

is not an isomorphism, and moreover that no “natural” such isomorphism can exist. This
question together with more details on the structure of B(T , A) will be addressed in a
subsequent paper.
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