
A User-Friendly Fortran BVP Solver

L.F. Shampine
Mathematics Department

Southern Methodist University
Dallas, TX 75275, U.S.A.

lshampin@smu.edu,

P.H. Muir∗and H. Xu
Department of Mathematics and Computing Science

Saint Mary’s University
Halifax, Nova Scotia B3H 3C3, Canada

muir@smu.ca, h xu@cs.stmarys.ca

June 7, 2006

Abstract

MIRKDC is a FORTRAN 77 code widely used to solve boundary value
problems (BVPs) for ordinary differential equations (ODEs). A significant
issue with this package and similar packages is that the user interfaces are
so complicated that potential users may be reluctant to invest the time
needed to learn how to use them properly. We have applied our experience
in writing user interfaces for ODE solvers in Matlab and Fortran 90/95
to develop a user-friendly Fortran 90/95 BVP solver from MIRKDC. In
the course of developing a completely new user interface, we added signif-
icantly to the algorithmic capabilities of MIRKDC. In particular, the new
solver, BVP SOLVER, extends the class of BVPs solved by MIRKDC to
problems with unknown parameters and problems with ODEs having a
singular coefficient. It uses more effective Runge-Kutta formulas and con-
tinuous extensions. We have also written a number of auxiliary routines to
provide further convenience to users of this package. For instance, there
are routines for evaluating the solution and its derivative, routines for
saving and retrieving solution information, and a routine that facilitates
continuation in the length of the interval.

1 Introduction

This paper describes a large project resulting in new software for the numerical
solution of boundary value problems (BVPs) for first order systems of ordi-

∗Corresponding author

1

nary differential equations (ODEs). MIRKDC [12] is a FORTRAN 77 code
widely used to solve BVPs. This code and other popular BVP solvers such as
PASVA3/BVPFD [5, 17], COLSYS/COLNEW [2, 4], and TWPBVP [7] can
appear formidable to new users because the user interfaces, i.e., argument lists
and subroutines that must be written by the user, are quite long and compli-
cated. For this reason it is all too frequent that users are reluctant to try the
packages or they try them, get into trouble, and give up. Exploiting the capabil-
ities of the Matlab programming environment [18], Kierzenka and Shampine
[16, 22] found that it was possible to simplify greatly the user interface of BVP
solvers. The algorithms of the resulting code, bvp4c, have much in common
with MIRKDC. However, to approach the convenience of its user interface in
Fortran, it is necessary to have the capabilities of Fortran 90/95. For the sake
of brevity we shall write F77 for FORTRAN 77 and F90 for Fortran 90/95 from
now on. We learned how to do something along these lines in developing the
user–friendly Fortran delay differential equation solver DDE SOLVER [23].

Here we describe a user–friendly BVP solver called BVP SOLVER. This
package was developed through a massive modification of MIRKDC. By exploit-
ing capabilities of F90 we were able to reduce radically the number of arguments
and the number of subroutines that the user must write to describe the problem.
In addition, we were able to reduce substantially the complexity of the source
code by replacing static work arrays with arrays allocated dynamically, remov-
ing all common blocks, and replacing all low–level linear algebra subroutines
with calls to intrinsic array functions. This is important because it improves
greatly the maintainability of the code and facilitates further development. The
emphasis on user-friendliness is further supported through auxiliary routines
that perform common tasks such as evaluating the solution and its derivative,
saving and retrieving solution information, and continuation in the length of
the interval. The solver and auxiliary functions are available for download at
http://cs.stmarys.ca/~muir/. Also available are a number of example pro-
grams that can be used as templates.

We consider the solution of BVPs for a first order system of NODE ordinary
differential equations of the form

y′ =
1

x − a
Sy + f(x, y, p), a ≤ x ≤ b, (1)

subject to general nonlinear separated boundary conditions (BCs)

0 = ga(y(a), p), 0 = gb(y(b), p). (2)

The constant matrix S is optional. This extension of the form typical of BVP
solvers makes it easy to solve problems with solutions that are well-behaved at
x = a despite the singular coefficient. Such problems arise most often when
partial differential equations are reduced to ODEs by cylindrical or spherical
symmetry. The vector p of unknown parameters is also optional. This is a
much more important extension of the typical form. Unknown parameters arise
naturally, as in eigenvalue problems, but most often when asymptotic expansions

2

are used to deal with singular behavior, either due to singular coefficients or
infinite intervals.

In the course of developing a completely new user interface for MIRKDC,
we added significantly to its capabilities. We have already mentioned unknown
parameters and a class of singular BVPs. A number of extensions to the capabil-
ities of MIRKDC were developed in the Master’s thesis of H. Xu [24]. One that
we include in BVP SOLVER is a set of improved Runge–Kutta formulas and
associated continuous extensions. Although the formulas originally developed
for the MIRKDC package perform well, it was shown in [19] that optimized
formulas can lead to significant improvements in the overall performance of
the code. MIRKDC requires users to provide subroutines for analytical partial
derivatives. An algorithmic development described in [24] and further devel-
oped for BVP SOLVER is a subroutine to approximate these partial derivatives
by finite differences. This is already a convenience for users, but a more im-
portant convenience is to use it by default because then a user need not even
consider this technical matter when solving an easy problem. Of course the
new interface allows users to provide subroutines for analytical partial deriva-
tives when this is worth the trouble. Provision of working storage for the F77
code is at best inconvenient. A more serious issue is that the storage needed to
solve a given problem is not known in advance and the computation will fail if
the user has not provided enough. Exploiting the dynamic storage capabilities
of F90 in BVP SOLVER, we have relieved the user entirely of such concerns.
BVP SOLVER computes an approximate solution that is C1[a, b]. It uses a
backward error analysis approach to error control and so controls the amount
by which the approximation fails to satisfy the ODEs and the boundary condi-
tions, the defect or residual of the approximation. However, the new solver has
an option for estimating the error in the solution itself at mesh points.

The development of BVP SOLVER has benefitted greatly from our experi-
ence with the Matlab solver bvp4c. Although solving a given problem with
BVP SOLVER is not as easy as solving it with bvp4c, it is not much harder
and the difference is largely due to writing programs in F90 instead of Matlab.
Because it is written in a compiled language and implements methods of higher
order, BVP SOLVER can be much faster than bvp4c, so it is to be preferred
whenever run time is important.

2 Simple Calls for Simple Problems

One of our goals was to make solving simple problems as easy as possible. As it
has turned out, just about all you have to do is define the problem. Before ex-
plaining how to do that, we need to explain that we have encapsulated all infor-
mation about a numerical solution in a derived type, namely TYPE(BVP SOL).
A solution can be called anything, but in this paper we generally use the name
SOL. Although quantities of interest can be accessed directly by means of fields
in the structure, we have generally preferred to work with the solution by means
of auxiliary functions.

3

We have split solving a BVP into two phases. An initial guess (structure)
for the solution is created by a call that is typically of the form

SOL = BVP_INIT(NODE,LEFTBC,X,Y_GUESS)

Recall that NODE is the number of ODEs. LEFTBC is the number of boundary
conditions at the left end of the interval, which is to say, it is the length of
the vector ga(y(a), p) in (2). The vector X is a guess for a mesh that reveals
the behavior of the solution; i.e., the mesh should have more points where
the solution changes most rapidly. The NPTS entries in X must be strictly
increasing with the first entry equal to a and the last equal to b. The argument
Y GUESS provides a guess for the solution on the mesh X. It can have three
forms. If it is a vector of length NODE, the function BVP INIT interprets the
guess to be constant, i.e., the guess is Y GUESS at all NPTS mesh points. If
it is an array of size NODE by NPTS, a column of the array is a guess for the
solution at the corresponding entry of X. If it is the name of a subroutine of
the form FCN(X,Y), the subroutine is called for each mesh point to obtain the
approximate solution there. BVP INIT is a generic subroutine that calls one
of three subroutines selected at run time by matching the types of the input
arguments. This nice facility of F90 allowed us to provide the user with the most
important possibilities for a guess and still have a simple and uniform interface.

The first four arguments of BVP INIT are required, but there are two op-
tional arguments. If there are unknown parameters, an initial guess for the
parameters must be supplied as the vector value of an argument with keyword
P and the call will have the form

SOL = BVP_INIT(NODE,LEFTBC,X,Y_GUESS,P)

Indeed, the solver uses the presence of this argument to recognize that there
are unknown parameters and in particular that p is present in the differential
equations (1) and the boundary conditions (2). The other optional argument is
described below.

Having supplied minimal information about the problem and required guesses
for mesh, solution, and if present, unknown parameters, the problem is solved
with a call of the form

SOL = BVP_SOLVER(SOL,FSUB,BCSUB)

The input argument SOL is a guess structure typically formed with a call to
BVP INIT. FSUB is the name of a subroutine for evaluating f(x, y, p) in (1)
and BCSUB is the name of a subroutine for evaluating the boundary conditions
functions in (2). Certainly we can say no less about the BVP. This is made
possible by heavy use of defaults.

On a successful return from BVP SOLVER, the solution and optionally its
first derivative can be evaluated with an auxiliary subroutine called BVP EVAL.
A typical call to BVP EVAL has the form

CALL BVP_EVAL(SOL,XPLOT,YPLOT)

4

For a solution encapsulated in a structure named SOL, this call with a scalar
XPLOT returns the NODE components of the approximate solution at XPLOT
in the vector YPLOT. If XPLOT is a vector of NPLOT components, the sub-
routine returns a matrix YPLOT that is NODE by NPLOT with each column of
YPLOT being the approximate solution at the corresponding entry of XPLOT.
A call of the form

CALL BVP_EVAL(SOL,XPLOT,YPLOT,DYPLOT)

similarly returns the derivative of the solution in the array DYPLOT. The solver
approximates the solution components by polynomials (based on continuous
Runge-Kutta methods) on subintervals of [a, b]. The degree of these polyno-
mials corresponds to the order of the method. Solution approximations are
computed in BVP EVAL by evaluating these polynomials and optionally their
first derivatives. It is sometimes useful to approximate the solution outside of
[a, b]. For this reason arguments outside the interval are permitted, but it is to
be appreciated that the approximations are obtained by polynomial extrapola-
tion. It is well–known that extrapolation can be unsatisfactory and that this
becomes more likely as the order increases. If there are unknown parameters,
the computed approximations are available from a call of the form

CALL BVP_EVAL(SOL,P)

or directly as the field SOL%PARAMETERS in the solution structure.
Once the computed solution is no longer needed, it is important to release

the memory that has been allocated to the array fields of SOL. This is done by
calling BVP TERMINATE which deallocates these fields.

There are a number of optional arguments for BVP SOLVER. Several are
discussed in other sections, specifically singular terms in §8, analytical partial
derivatives in §4 and §9, and monitoring the computation in §5. As mentioned
earlier, BVP SOLVER employs a set of improved Runge–Kutta formulas [19,
24]. The default method is of order 4, but there are also methods of order 2 and
6. The solver is instructed to use one of the other methods with the optional
argument METHOD. For example, if we wanted to use the method of order 6,
the basic call above that includes only required arguments would be extended
to

SOL = BVP_SOLVER(SOL,FSUB,BCSUB,METHOD=6)

Optional arguments must follow the required arguments, but by using keywords
to identify them, they can be specified in any order. An important option is
the scalar tolerance τ that can be specified by means of the optional argument
TOL. BVP SOLVER controls the size of the residual (defect) of an approximate
solution u(x) in a mixed relative-absolute sense. Specifically, it attempts to
compute u(x) so that

|u′(x) − f(x, u(x), p)|
1 + |f(x, u(x), p)|

≤ τ

5

holds for all components and all a ≤ x ≤ b, and so that the boundary conditions
are satisfied to within τ . The default tolerance is 10−6. To change this to, say,
10−3, the preceding call would be changed to either

SOL = BVP_SOLVER(SOL,FSUB,BCSUB,TOL=1D-3,METHOD=6)

or

SOL = BVP_SOLVER(SOL,FSUB,BCSUB,METHOD=6,TOL=1D-3)

As explained above, the solver controls the defect in the ODEs and the
boundary conditions. Providing the optional argument YERROR causes the
solver to estimate the error in the solution itself at the mesh points. It uses
global extrapolation to estimate the maximum error in a solution component
yi(xm) relative to 1 + |yi(xm))| for all i and all mesh points xm and returns
this quantity as YERROR. The same estimate applies to unknown parameters.
Examples are found at the end of §8.

The solver adapts and refines the initial mesh until it manages to compute
an approximation that satisfies the accuracy requirement or it gives up because
it believes more than the allowed number of subintervals will be necessary. The
maximum number of subintervals is 3000, but this can be changed using the
optional argument MAX NUM SUBINTERVALS in the call to BVP INIT. We
illustrate this in §10. The solver terminates the run with an explanatory message
when it fails, but this behavior can be changed with an appropriate value for the
optional argument STOP ON FAIL as explained in §5 and illustrated in §10.

In simplest use BVP INIT has 4 arguments and BVP SOLVER has 3. This
is remarkably fewer arguments than seen in popular BVP solvers. For instance,
MIRKDC has 20 arguments, COLSYS/COLNEW has 17, and TWPBVP has
26. This is partly due to the language because in F77 it is necessary for users to
deal with storage and there is no provision for optional arguments. It is also due
to differences in design. For instance, COLSYS/COLNEW allows for systems
of mixed order, for points that are to be kept fixed when adapting meshes to the
solution, and allows the user to tell the code if the problem is linear. TWPBVP
also provides the last two of these options. Both COLSYS/COLNEW and TW-
PBVP have an error control that involves a vector of weights. BVP SOLVER
does not provide these options so COLSYS/COLNEW and TWPBVP have ad-
ditional arguments that might well be considered worthwhile. All of the other
solvers require users to provide subroutines for evaluating partial derivatives; the
default in BVP SOLVER avoids this by approximating partial derivatives with
finite differences. None of the other codes provides for unknown parameters.
In simplest use, our design requires only one additional argument in BVP INIT
when there are unknown parameters.

3 Unknown Parameters

Often it is necessary to determine some unknown parameters as part of solving
a BVP. An obvious example is computing an eigenvalue along with an eigen-
function. When an asymptotic expansion is used to represent a solution at

6

an end point where a coefficient is singular or the end point is at infinity, the
expansion typically involves unknown parameters that must be determined as
part of solving the BVP. A nonlinear eigenvalue problem of lubrication theory
studied in §6.1 of H.B. Keller’s text [15] is a concrete example. The equation
has the form

εy′(x) = sin2(x) − λ
sin4(x)
y(x)

. (3)

There is a known parameter ε > 0 in this first order equation. Because of the
unknown parameter λ, there are two boundary conditions,

y(−π/2) = 1, y(π/2) = 1. (4)

Our example program LUBRICATION solves this problem for ε = 0.1. Because
BVP SOLVER provides for unknown parameters, the program is completely
straightforward. Some details are found in §9. Another example in that section
shows how an asymptotic expansion can be used to compute a solution with
singular behavior. It is a difficult problem that requires some analysis to deter-
mine the behavior of the solution and continuation in the length of the interval
as explained in §7.

The Fortran BVP solvers in wide use do not provide for unknown parameters
and in particular, MIRKDC does not. The main reason for this is the way
that the codes solve linear systems. With separated boundary conditions (2)
the linear systems that arise with standard methods can be written so that
the matrices are of a form called “almost block diagonal” (ABD) [1]. Special
methods have been developed to solve such systems using Gaussian elimination
with alternate row and column pivoting to obtain a stable decomposition of
the matrix without introducing fill-in. A quality implementation of such an
algorithm is the COLROW program [11]. MIRKDC uses this program and so
does BVP SOLVER. The trouble with this approach and the reason most solvers
do not provide for unknown parameters is that they lead to matrices that are not
ABD. That is not an issue with bvp4c because it solves its linear systems with a
program for general sparse matrices already available in Matlab. At some cost
in storage, sparse matrix technology made it easy to provide the convenience of
unknown parameters in bvp4c.

It is straightforward to introduce new variables so as transform a problem
with unknown parameters into a bigger problem without unknown parameters.
There is an additional ODE for each unknown parameter, but generally there
are few unknown parameters, so this increase in the size of the system is harm-
less. This way of using standard BVP solvers to deal with unknown parameters
is suggested in standard texts like [3], but it is at best an annoyance for users.
To provide the convenience of unknown parameters and still take advantage
of software for ABD systems, we transform the problem inside BVP SOLVER
and so extend the class of problems solved by MIRKDC to (1),(2). If there
are unknown parameters, p, a user must naturally provide a guess for them.
As mentioned earlier, this is done with an optional argument of BVP INIT.
From the user’s point of view, that is really all that is different about solving a

7

problem with unknown parameters with BVP SOLVER, at least if the default
finite difference approximations are used for partial derivatives. Naturally the
subroutine FSUB for evaluating the ODEs must accept arguments X,Y,P and
evaluate f(x, y, p) and correspondingly for the boundary conditions subroutine.
A programming issue is how to arrange that the solver call subroutines with
the correct sets of arguments. In F90 there is an intrinsic for testing whether
an optional argument is present. The solver defines a global variable NPAR in
BVP M that is the length of the vector p if a guess was provided to BVP INIT
and otherwise, zero. The solver evaluates the ODEs by calling a subroutine
P FSUB. This subroutine calls FSUB with arguments X,Y,P if NPAR is posi-
tive and otherwise with arguments X,Y. The boundary conditions subroutine is
handled in the same way.

4 Finite Difference Jacobians

BVP codes are more likely to converge and converge faster if provided the
analytical partial derivatives

∂f

∂y
,

∂ga

∂y(a)
,

∂gb

∂y(b)
,

and if there are unknown parameters,

∂f

∂p
,

∂ga

∂p
,

∂gb

∂p
.

Furthermore, it may be (much) cheaper to evaluate the derivatives analyti-
cally than to approximate them by finite differences. This is why MIRKDC
requires users to supply subroutines for analytical partial derivatives. However,
it is our experience that the most common mistake users make is the incor-
rect preparation of these subroutines. To make it as easy as possible to solve
easy problems, the default in BVP SOLVER is therefore to approximate these
partial derivatives by finite differences. Naturally the solver allows users to
provide subroutines when this is convenient or desirable. For example, if it is
convenient to provide a subroutine for evaluating analytically the partial deriva-
tives of f(x, y, p), it can be passed to the solver with the keyword DFDY. Note
that this keyword is used whether or not p is present. Similarly the keyword
DBCDY is used to communicate the name of a subroutine for evaluating partial
derivatives of the boundary conditions functions. An example is found in §9.

We assume that the number of ODEs is not so large that it is important
to take the structure of f(x, y) into account. Correspondingly our function
for approximating ∂f/∂y is an F90 implementation of a standard algorithm for
dense Jacobians much like the FDJAC1 routine of MINPACK [13]. Dealing with
boundary conditions is more complicated. Before explaining how partial deriva-
tives are approximated, we need to discuss how the user defines the boundary
conditions. MIRKDC asks the user to evaluate both ga(y(a)) and gb(y(b)) in a

8

single subroutine of the form GSUB(NODE,YA,YB,GYAYB). The user provides
the solver with an integer LEFTBC that specifies the number of boundary condi-
tions imposed at x = a, i.e., the length of the vector ga(y(a)). In this design the
subroutine returns a vector GYAYB of NODE components. The first LEFTBC
components are ga(YA) and the remaining components are gb(YB). Because
ga(YA) and gb(YB) are computed and used separately, it seemed more natural
to us to return the vectors directly. Accordingly, BVP SOLVER expects a sub-
routine of the form BCSUB(YA,YB,BCA,BCB). The output argument BCA is
the vector ga(YA) and BCB is the vector gb(YB).

The subroutine of [24] for approximating ∂ga/∂y(a) and ∂gb/∂y(b) forms
both these rectangular matrices in a matrix that is NODE × NODE. The sub-
routine approximates the two matrices one after the other at a cost of 2*NODE
calls to GSUB. In the corresponding function of BVP SOLVER we take ad-
vantage of the structure of the square matrix of partial derivatives to form the
two rectangular submatrices simultaneously at a cost of only NODE calls. This
is a straightforward application of the ingenious scheme of Curtis, Powell, and
Reid [9]. It might be remarked that the numerical approximations are the same
in both programs, it is just that the approach we employ in BVP SOLVER is
less expensive. When there are unknown parameters, partial derivatives with
respect to p are approximated in the same way.

5 Tracing the Progress of the Computation

The progress of the computation can be monitored by means of an optional
argument of BVP SOLVER with keyword TRACE. The default value for this
parameter, TRACE = 0, corresponds to no output when the code executes
successfully. However, if the computation is unsuccessful, the code will write a
message to the standard output channel and STOP. Other values of TRACE
increase the amount of information returned by the code: When TRACE = 1,
the code returns the number of subintervals of each mesh and the number of
(full) Newton iterations for each mesh. When TRACE = 2, it also returns the
mesh points and the norm of each Newton correction.

Sometimes it is necessary to change the way the solver behaves on a failure.
This is the case when the solver is embedded in a package that cannot permit a
subroutine to output a message directly or to STOP. An example is discussed in
§10. If the optional argument STOP ON FAIL is set to .FALSE., the solver will
not output a message and it will not stop on a failure. If this is done, the calling
program must be able to determine whether the computation was successful.
This is done by testing whether the field SOL%INFO is 0. This value indicates
success and any non-zero value indicates failure.

9

6 Saving and Retrieving a Solution

BVP SOLVER encapsulates a solution as a structure of derived type. Auxiliary
functions make it easy to work with a solution in this form. However, sometimes
we wish to save a solution for later use. This is not entirely straightforward in
F90 because the BVP TOL derived type uses pointers for arrays of a size that
cannot be determined in advance. It is not difficult to deal with this, but
it is enough trouble that we have written two auxiliary functions to facilitate
the task. The subroutine BVP SAVE(UNUM,FNAME,SOL) saves the solution
structure SOL in a file. UNUM specifies the unit to be OPENed. The unit
is CLOSEd after use. The string FNAME specifies the name of the file. The
structure can be retrieved from this file with BVP GET, which has a similar
syntax. For example, we could save a solution structure in one program with

CALL BVP_SAVE(8,"SaveSOL",SOL)

and then retrieve it in another with

CALL BVP_GET(9,"SaveSOL",SOL)

The general form for a call to BVP SAVE is

CALL BVP_SAVE(UNUM,FNAME,SOL)

where UNUM specifies the unit to be opened and the string FNAME specifies
the name of the file where the information in the solution structure SOL will
be saved. The argument list for BVP GET is identical. In BVP SAVE we
first determine the sizes of the pointer arrays. Some of these dimensions are
already available as fields in the structure SOL and the rest we get from the
fields themselves with the SIZE intrinsic. We write the sizes to an unformatted
file and then use the sizes to write all the fields of the structure to the file. In
BVP GET we reverse this process by reading the sizes and then reconstruct the
solution by reading the data for the various fields.

7 Continuation

A principal difficulty in solving BVPs is finding guesses for the mesh and solution
good enough that an approximate solution can be computed. Continuation is
an important approach to securing a good guess. Often a BVP involves a
known parameter and we are interested in solutions for a range of parameter
values. Generally, but not always, the solution of a BVP will change by a small
amount when a parameter is changed by a small amount. The solution for one
value of the parameter will then provide a good initial guess for the solution
of the BVP with a slightly different value of the parameter. The lubrication
problem (3),(4) makes the point. Keller computes and plots solutions of this
singularly perturbed ODE for a range of ε. The BVP is easy to solve with
ε = 0.1 and by a succession of modest changes in ε, we can compute solutions for
quite small values of the parameter. Some BVP solvers automate continuation;

10

early examples are [10, 17] and a recent one is [8]. MIRKDC does not have
this capability and neither does BVP SOLVER. On the other hand, we have
designed BVP SOLVER to facilitate continuation. This is accomplished by
using the same structure for guesses and solutions, meaning that the solution
for one problem can be used as guess for another.

Continuation can take many forms. A form not included in the previous
discussion is particularly helpful when the interval is infinite, namely continu-
ation in the length of the interval. We provide a function, BVP EXTEND, to
facilitate this. It can be called as

SOLOUT = BVP_EXTEND(SOLIN,ANEW,YANEW,BNEW,YBNEW)

Here SOLIN is a solution structure previously computed for a system of NODE
differential equations on an interval [A,B]. If ANEW is less than A, the mesh
SOLIN%X is extended in SOLOUT%X to include ANEW. Specifically, the
SOLOUT%X array has one more entry than the SOLIN%X array, ANEW is
the first entry of this array, and the mesh points of SOLIN%X are the remain-
ing entries. Similarly, the array of approximate solutions SOLIN%Y is extended
in SOLOUT%Y to include the approximation YANEW at ANEW, i.e., the ar-
ray SOLOUT%Y has one more column than SOLIN%Y. The first column has
the value YANEW and the remaining columns are equal to those of SOLIN%Y.
If ANEW is not less than A, the arguments ANEW, YANEW are ignored by
the function. After processing ANEW, the right end of the interval is treated
in the same way based on the values of BNEW and YBNEW.

Generally the best way to obtain a value at a new end point, say YBNEW, is
to use an asymptotic approximation. If such an approximation is not available,
a natural approach is to extrapolate the computed solution of SOLIN by

CALL BVP_EVAL(SOLIN,BNEW,YBNEW)

and then input this YBNEW to BVP EXTEND. However, the dangers of high-
order polynomial extrapolation to points far outside the interval are well-known,
so it may be preferable to extrapolate then with polynomials of very low degree.
This is an option built into BVP EXTEND. When called in the form

SOLOUT = BVP_EXTEND(SOLIN,ANEW,BNEW,ORDER)

with ORDER = 1, values YANEW and YBNEW are formed by linear extrapo-
lation. If ORDER = 0 or this optional argument is not present, the values are
formed by constant extrapolation.

If there are unknown parameters, the default in BVP EXTEND is to use
the values stored in SOLIN%PARAMETERS. A different guess can be supplied
to BVP EXTEND with an optional argument P . An example in §9 shows how
continuation in the length of the interval can be used to compute a solution
with singular behavior. Continuation is discussed further in §10.

11

8 Singular BVPs

Solving BVPs with solutions that are not well–behaved is not a routine matter,
as we illustrate in §9. On the other hand, there is a class of problems with
singular coefficients that can be treated in a routine way. These problems are
sufficiently common that it is worth providing for them. We have in mind a
system of the form (1) with non-zero S that is to be solved on [a, b] with a < b.
It is assumed that the solution y(x) satisfies

lim
x→a

(
S

y(x)
x − a

)
= Sy′(a). (5)

Some of the most popular BVP solvers, e.g., COLSYS/COLNEW, implement
methods that do not evaluate the differential equation at the ends of the in-
terval, so they can be applied to equations with a coefficient that is singular
at an end without giving any special attention to the matter. However, Cash
and Silva [6] provide several examples with well–behaved solutions for which
COLSYS returned numerical solutions “which had no resemblance to the true
solution” for a range of tolerances. We assume that the BVP has the form
(1) with well–behaved solution and impose certain restrictions on the matrix
S because it has been shown [14] that standard methods converge for such
problems. BVP SOLVER and bvp4c implement methods that evaluate the dif-
ferential equation at the ends of the interval, so the codes must account for the
singular term. The paper [21] considers how to do this and illustrates the points
by modifying bvp4c, modifications later made to the version of Matlab itself.
This is mainly a matter of evaluating properly the differential equation. Passing
to the limit in (1), we see that y′(a) must be a solution of

(I − S)y′(a) = f(a, y(a), p).

de Hoog and Weiss [14] solve this equation for y′(a) in an implementation of
the trapezoidal rule. However, it is pointed out in [21] that the system can
be singular, so Shampine takes a different approach in bvp4c, computing the
pseudoinverse (I − S)+ and then

y′(a) = (I − S)+ f(a, y(a), p). (6)

This approach is not expensive because the number of ODEs is generally quite
small. The pseudoinverse is computed only once and saved for computing the
limit values with a matrix multiplication.

To solve a singular BVP, the user supplies the matrix S as the value of an
optional argument SINGULARTERM to BVP INIT. From the user’s point of
view, this is the only thing different about solving a singular BVP of this kind.
The function f(x, y, p) is evaluated by a subroutine FSUB as usual. On entry
to the solver the pseudoinverse (I −S)+ is formed and made available through-
out the module as a globally defined matrix. A logical variable SINGULAR
with global scope is used to indicate whether S has been supplied. The coding

12

introduced for unknown parameters turns out to be quite convenient here. Re-
call that the solver calls a subroutine P FSUB that calls FSUB in a way that
takes account of the presence of unknown parameters to get f(x, y, p). When
SINGULAR is .TRUE., that evaluation is followed by a test on the independent
variable. If x = a, the value y′(a) is computed using (6) and otherwise y′(x) is
computed by adding Sy/(x − a) to f(x, y, p). When the Jacobian is computed
by finite differences, no further action is necessary, but when a subroutine is pro-
vided for analytical partial derivatives of f(x, y, p), the partial derivative with
respect to y must be modified by adding S/(x − a) when x > a and multiplied
by (I − S)+ when x = a.

For the limit (5) to exist, it is necessary that

Sy(a) = 0. (7)

It may not be convenient for a user to supply a guess that satisfies this condition
and it is not clear that successive approximations computed by the solver will
satisfy it automatically. We follow [21] and impose the condition by multiplying
approximations to y(a) by I − S+S. This requires computing another pseu-
doinverse, but again it is done only once and then this matrix is available to
impose the necessary condition on the guess and all approximations both easily
and inexpensively.

Emden’s equation

y′′ +
2
x

y′ + yn = 0 (8)

models a spherical body of gas. Russell and Shampine [20] use this equation
with n = 5 and boundary conditions

y′(0) = 0, y(1) =
√

3/4 (9)

as a test problem because it has the analytical solution (1 + x2/3)−1/2. It is
also used as a test problem in [21] where it is written as a system of first order
equations with (y1, y2) = (y(x), y′(x)), namely

d

dx

(
y1

y2

)
=

1
x

(
0 0
0 −2

) (
y1

y2

)
+

(
y2

−y5
1

)
.

This system has the form (1) and numerical solution of the BVP as coded in the
example program EMDEN is completely straightforward. The program uses a
constant initial guess for the solution of (

√
3/4, 10−4) and a default initial mesh

of 10 equally spaced points. This guess does not satisfy the necessary condition
(7). With default tolerance the problem was solved easily and the computed
solution satisfied the necessary condition perfectly.

Because the BVP has an analytical solution, we used it to illustrate the op-
tion of estimating the error in the solution itself at the mesh points. Table 1
shows the maximum relative error in the two solution components and all mesh
points. In our experiments with other BVPs the estimated maximum was of-
ten quite good, but it was unusually accurate for this problem. It is perhaps

13

worth remarking that when there are unknown parameters, the same estimate
of the maximum error applies. This means that if the maximum error occurs
in a solution component, the errors in the unknown parameters will be smaller
than the estimate. For instance, we computed a reference value for the un-
known parameter λ of the problem that is discussed in §3 and solved with the
LUBRICATION example program in §9. With this reference value and default
tolerance, we obtained the results of Table 2.

METHOD 2 4 6
Estimate 1.05D-6 9.58D-8 3.89D-9

True 1.05D-6 9.58D-8 3.89D-9

Table 1: Maximum relative error at mesh points for problem (8), (9).

METHOD 2 4 6
Estimate 1.46D-7 3.70D-8 6.23D-9

True 6.30D-8 3.76D-8 3.56D-9

Table 2: Maximum relative error in λ for problem (3), (4) with ε = 0.1.

9 Numerical Examples

Solving a BVP with BVP SOLVER requires two files: The module BVP M.f90
contains the solver and its supporting programs written in F90. The file BVP LA.f
contains legacy software for linear algebra computations written in F77. The
two files and programs that solve the problems of this paper and other illustra-
tive problems are available from http://cs.stmarys.ca/~muir/.

With one exception, all our examples are written in a single file that begins
with a module containing the subroutines for the differential equations and the
boundary conditions and followed by a program for the computation and output
of the solution. It is convenient to have the module defining the BVP in the
same file as the main program, but, of course, it could be placed in a separate
file if it is lengthy. That is the case for the example discussed in §10. We extract
some critical lines from the LUBRICATION example discussed briefly in §3 to
show the typical form.

MODULE DEFINE_FCN
. . .
INTEGER, PARAMETER :: NODE=1,NPAR=1,&

LEFTBC=1,RIGHTBC=NODE+NPAR-LEFTBC
CONTAINS

. . .

14

END MODULE DEFINE_FCN
PROGRAM LUBRICATION

USE DEFINE_FCN
USE BVP_M
. . .
X = BVP_LINSPACE(A,B,NSUB+1)
Y_GUESS = (/ 0.5D0 /)
P = (/ 1D0 /)
SOL = BVP_INIT(NODE,LEFTBC,X,Y_GUESS,P)
SOL = BVP_SOLVER(SOL,FSUB,BCSUB,DFDY=DFSUB,DBCDY=DGSUB)
. . .
DO I = 1,100

XPLOT = A + (I-1)*((B - A)/99D0)
CALL BVP_EVAL(SOL,XPLOT,YPLOT)

. . .
END DO
CALL BVP_TERMINATE(SOL)

END PROGRAM LUBRICATION

It is convenient in the declarations part of the DEFINE FCN module to define
some parameters for global use, namely NODE, the number of ODEs; NPAR,
the number of unknown parameters; LEFTBC, the number of boundary condi-
tions at the left end point; and RIGHTBC, the number of boundary conditions
at the right end point. For the sake of clarity we define RIGHTBC in terms
of the other parameters. These parameters are used, e.g., to define the sizes of
arrays in the subroutines appearing after the CONTAINS statement. The pro-
gram LUBRICATION begins with the USE of the modules defining the BVP
and the solver. Obviously the module BVP M.f90 must be compiled and linked
with the main program, but so must the file BVP LA.f with the F77 linear
algebra routines. An initial mesh is defined in terms of parameters defined in
the program itself, namely the end points A and B and the number of subin-
tervals NSUB in the initial mesh. The BVP LINSPACE function used to form
the initial mesh has the same basic functionality as the LINSPACE function
of Matlab. It is available in BVP M as a convenience in dealing with this
common task. A reasonable alternative for this problem is the default mesh of
10 equally spaced points that would be used if the call were

SOL = BVP_INIT(NODE,LEFTBC,(/A,B/),Y_GUESS,P)

In this example BVP INIT is called with a constant guess for the solution and a
guess is supplied for an unknown parameter. Note that both must be supplied as
vectors even though they have only one component. By making use of defaults,
only minimal information must be supplied by the user. Optional subroutines
for the partial derivatives of the differential equations and boundary conditions
are supplied to BVP SOLVER in this example program to show how this is
done using the keywords DFDY and DBCDY. This example uses BVP EVAL
to evaluate the approximate solution at 100 equally spaced points in the interval

15

and write these results to a file. The call to BVP TERMINATE releases the
memory allocated to the array fields of SOL.

Neng Wang, a professor of finance and economics at Columbia Business
School, communicated to us an interesting BVP that he formulated when study-
ing an optimal consumption problem with learning. He needed the solution y(x)
of a BVP defined on [0, 1] by the ODE

ry(x) =
δx

r
+

δ2

2σ2
x2(1 − x)2y′′(x)

− γrδ2

2σ2
x2(1 − x)2 (y′(x))2 − γδx(1 − x)y′(x) (10)

and boundary conditions

y(0) = 0, y(1) =
δ

r2
(11)

Typical values of the constants that were used in the example program ECON
are r = 0.04, δ = 0.2, σ = 0.2, γ = 5. Solving this BVP is not a routine matter
because the ODE is singular at both ends of the interval. An asymptotic analysis
shows that more than one kind of behavior is possible at the right end. When
γδ > r, as it is for our example program, the quadratic equation

δ2

2σ2
c(c − 1) + γδc − r = 0

has a negative root and a root that satisfies 0 < c < 1. For the positive root,
the ODE has a solution that behaves like

y(x) ∼ δ

r2
+ p(1 − x)c (12)

as x → 1−, where p is a undetermined parameter at this order in the asymptotic
analysis. Notice that if p 6= 0, then y′(x) → +∞ as x → 1− because c < 1. At
the left end of the interval,

y(x) ∼ δ

r(r + γδ)
x (13)

as x → 0+. We see that the solution and its first derivative are well-behaved at
this end.

We use a standard approach to the numerical solution of a singular BVP in
the ECON example program. For ∆ > 0, we solve the ODE (written as a first
order system) on [∆, 1− ∆] where it is non-singular. The boundary conditions
for the numerical problem are that y(x) agree with the analytical approximation
(13) at ∆ and (12) at 1−∆. The asymptotic expansion (12) involves an unknown
parameter p. It is introduced into the numerical approximation by requiring
that y′(x) agree with the derivative of (12) at 1 − ∆. This is easy because
BVP SOLVER provides for unknown parameters. An important issue with any

16

difficult BVP is finding an initial guess good enough to get convergence. If
we can accomplish that for some ∆, we can expect continuation to provide a
sufficiently good guess for a ∆ that is a little smaller. We must also provide
an initial guess for the unknown parameter p. An easy way to get reasonable
guesses for both is to choose p so that the asymptotic approximation (12) at the
right end satisfies the boundary condition at the left end, namely p = −δ/r2,
and use the asymptotic solution as a guess on all of [∆, 1− ∆].

For ∆ = 0.1, the BVP is not hard to solve with the guesses stated and
an initial mesh of 20 equally spaced points. BVP EXTEND is used to extend
the solution on one interval to form the guess for the bigger interval. Values
at the new end points are obtained from the asymptotic approximations. We
found that the solution for one value of ∆ provides a good enough guess to
get convergence when ∆ is halved. In this approach we obtain a solution on
all of [0, 1] by using the analytical approximations at the ends of the interval
and evaluating the numerical solution on [∆, 1− ∆] with BVP EVAL. To gain
confidence in our results, we test the consistency of the intermediate solutions.
Specifically, we compute approximations to y(x) at 100 points equally spaced
in [0, 1] and then compute the maximum change in y(x) relative to the biggest
value of the solution, namely y(1). With the solver’s default tolerance, we accept
the computed solution when the results agree to 10−4. This is achieved when
∆ = 7.8 × 10−4, at which time the maximum relative difference in successive
solutions is about 3.6×10−5. Despite the singular behavior of the first derivative
evident in Figure 1, there are only 41 points in the final mesh. That is possible
because the singular behavior is represented by an asymptotic expansion and a
numerical method is applied where the solution is relatively smooth.

This problem illustrates an approach for solving BVPs with singular behav-
ior. First we sort out the behavior of the solution near singularities by analytical
means. That may not be not easy, but once it is done, a program to compute the
solution is relatively straightforward because the design of BVP SOLVER makes
it easy to incorporate this behavior, even when it involves unknown parameters,
and continue in either a known parameter or the length of the interval.

10 Continuation Revisited and a Test Set

Some experimentation was necessary with the ECON example of the last section.
If we decrease ∆ too fast, e.g., dividing it by 5 instead of 2, the computation
fails. In this section we discuss how to make adjustment of the continuation
parameter more automatic and the whole process more efficient by exploiting
some capabilities of the solver. This is illustrated with an example program,
CTS.f90, that solves all the problems of a test set formulated by J. Cash. The
CTS program could serve as a template for solving difficult BVPs by continua-
tion in a parameter. It demonstrates that all problems in a substantial test set
that includes solutions exhibiting a variety of boundary, interior, and transition
layers can be solved readily with BVP SOLVER.

The test set can be downloaded from

17

0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

120

140

Figure 1: Solution y(x) of (10), (11) with r = 0.04, δ = 0.2, σ = 0.2, γ = 5.

http://www.ma.ic.ac.uk/~jcash/BVP_software/readme.php

There are 32 problems in the set. Problems 1–30 involve a scalar second order
ODE written as a system of two first order equations and problems 31–32 involve
systems of four first order equations. The ACDC code, which can be downloaded
from the same site, has automatic continuation. It asks for starting and ending
values of a known parameter EPS, so Cash specifies values for each problem
called EPS0 and EPSF, respectively. Our CTS program solves these problems
by continuation in EPS using BVP SOLVER. Continuation was actually useful
only for problems #24, 30, 32, so for the other problems we solve directly the
problem with EPS equal to EPSF. We use default settings and in particular,
use finite difference partial derivatives. The error tolerance is given a nominal
value of 10−3. In the last section we commented that it may be convenient to
define the problem in a separate file if it is complicated. The thirty problems
#1–30 are defined in the file CTS130.f90. Because of the difference in the sizes
of the systems, it was convenient to define problems #31–32 in a separate file,
CTS3132.f90. The CTS program can USE only one of these files at a time. At
run time CTS asks which problem is to be solved. After the problem is solved,
its solution is written to a data file. An M-file, CTS.m, is provided that imports
this data into Matlab and plots the solution.

The straightforward approach to continuation illustrated in §9 does not han-

18

dle a failed step in a satisfactory way. By default the solver will terminate the
computation then. However, as explained in §5, we can prevent this by giving
the optional argument STOP ON FAIL the value .FALSE. and testing the field
SOL%INFO for success or failure. The solver will not quit until it has tried the
maximum number of subintervals, which by default is 3000. The idea of con-
tinuation is to make a small change in the parameter so as to obtain a problem
that is easy to solve. If the new problem requires many more subintervals, the
change in the parameter was too large. In CTS we first solve the problem with
the starting value of the parameter, EPS0. The number of mesh points required
by BVP SOLVER in order to solve the problem is available as SOL%NPTS. We
use SOL%X and SOL%Y computed for one value of EPS as a guess for the mesh
and solution when EPS is reduced by a FACTOR less than 1. The successive
problems get harder, so we must allow more mesh points. If the solver is having
trouble finding a suitable mesh, it may resort to halving its current mesh. In
this situation we would prefer to give up and try again with less of a change
in EPS. We can achieve this by using the option discussed in §2 to limit the
number of subintervals to twice the number in the guess less 1 when we form
the guess structure with BVP INIT. CTS reduces EPS by a FACTOR that is
initialized to 0.1. If a step fails, FACTOR is increased, the previous successful
solution is restored, and the continuation step tried again with the larger value
of EPS. However, if the step fails and the number of subintervals is equal to the
maximum allowed of 3000, the program stops with a message to the effect that
the continuation has failed. No provision has been made to reduce FACTOR.
In part this is because we do not attempt to make continuation as efficient as
possible and in part because we expect the problems to become more difficult
for the solver as EPS approaches EPSF.

It is not easy to provide an automatic continuation facility because continua-
tion is not an algorithm per se, rather an approach to solving difficult problems.
We have not yet attempted to develop such a facility for BVP SOLVER, but
the CTS program outlined here shows how to use capabilities of the solver to
implement continuation more effectively than in the ECON example. In partic-
ular, CTS shows how to recognize early when the parameter has been reduced
too much and handle gracefully a computation that fails for this reason.

References

[1] P. Amodia, J.R. Cash, G. Roussos, R.W. Wright, G. Fairweather, I. Glad-
well, G.L. Kraut, and M. Paprzycki, Almost block diagonal linear systems:
sequential and parallel solution techniques, and applications, Numer. Lin-
ear Algebra Appl., 7 (2000) 275–317.

[2] U.M. Ascher, J. Christiansen, and R.D. Russell, Collocation software for
boundary value ODEs, ACM Trans. Math. Softw., 7 (1981) 209–222.

[3] U.M. Ascher and R.D. Russell, Reformulation of boundary value problems
into “standard” form, SIAM Rev., 23 (1981) 238–254.

19

[4] G. Bader and U.M. Ascher, A new basis implementation for a mixed order
boundary value ode solver, SIAM J. Sci. Stat. Comp., 8 (1987) 483–500.

[5] BVPFD, subroutine in IMSL FORTRAN 77 Mathematics and Statistics
Libraries v. 3, Visual Numerics Inc., Houston, TX, 2002.

[6] J.R. Cash and H.H.M. Silva, On the numerical solution of a class of singular
two–point boundary value problems, J. Comp. Appl. Math., 45 (1993) 91–
102.

[7] J.R. Cash and M.H. Wright, A deferred correction method for nonlinear
two-point boundary value problems: implementation and numerical evalu-
ation, SIAM J. Sci. Stat. Comput., 12 (1991) 971–989.

[8] J.R. Cash, G. Moore, and R.W. Wright, An automatic continuation strat-
egy for the solution of singularly perturbed nonlinear boundary value prob-
lems, ACM Trans. Math. Softw., 27 (2001) 245–266.

[9] A.R. Curtis, M.J.D. Powell, and J.K. Reid, On the estimation of sparse
Jacobian matrices, J. Inst. Math. Appl., 13 (1974) 117–119.

[10] P. Deuflhard, H.J. Pesch, and P. Rentrop, A modified continuation method
for the numerical solution of nonlinear two-point boundary value problems
by shooting techniques, Numer. Math., 26 (1976) 327–343.

[11] J.C. Diaz, G. Fairweather, and P. Keast, Algorithm 603. COLROW
and ARCECO: FORTRAN packages for solving certain almost block
diagonal linear systems by modified alternate row and column elim-
ination, ACM Trans. Math. Softw., 9 (1983) 376–380. COLROW,
http://www.mscs.dal.ca/~keast/, 1992.

[12] W.H. Enright and P.H. Muir, Runge-Kutta software with defect control for
boundary value ODEs, SIAM J. Sci. Comput., 17 (1996) 479–497.

[13] FDJAC1, subroutine in MINPACK, http://www.netlib.org/minpack.

[14] F.R. de Hoog and R. Weiss, Difference methods for boundary value prob-
lems with a singularity of the first kind, SIAM J. Numer. Anal., 13 (1976)
775–813.

[15] H.B. Keller, Numerical Methods for Two–Point Boundary–Value Problems,
Dover, New York, 1992.

[16] J. Kierzenka and L.F. Shampine, A BVP solver based on residual control
and the Matlab PSE, ACM Trans. Math. Softw., 27 (2001) 299–316.

[17] M. Lentini and V. Pereyra, A variable order finite difference method non-
linear multipoint boundary value problems, Math. Comp., 28 (1974) 981–
1004.

20

[18] Matlab 6, The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA 01760,
2002.

[19] P.H. Muir, Optimal discrete and continuous mono-implicit Runge-Kutta
schemes for boundary value ODEs, Adv. Comp. Math., 10 (1999) 135–167.

[20] R.D. Russell and L.F. Shampine, Numerical methods for singular boundary
value problems, SIAM J. Numer. Anal., 12 (1975) 13–26.

[21] L.F. Shampine, Singular boundary value problems for ODEs, Appl. Math.
and Comput., 138 (2003) 99–112.

[22] L.F. Shampine and M.W. Reichelt, The Matlab ODE Suite, SIAM J. Sci.
Comput., 18 (1997) 1–22.

[23] S. Thompson and L.F. Shampine, A Friendly Fortran
DDE Solver, Appl. Numer. Math., 56 (2006) 503–516.
http://www.radford.edu/~thompson/ffddes/.

[24] Hui Xu, Enhancements to a Runge-Kutta BVODE solver, M.Sc. Appl. Sci.
Thesis, Dept. Math. and Comp. Sci., Saint Mary’s University, Halifax, Nova
Scotia, Canada, 2004.

21

