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Abstract In this paper we address a standing question on pattern expressions (PE), namely
whether the family of PE languages is closed under the intersection with regular languages.
Since this family is not closed under complement, but is closed under reversal, another natural
question has frequently been raised in the recent years, on whether particular languages such
as the mirror language and the language of palindromes are PE languages. We give answers
to these and other related questions as well, thus providing an insight on their descriptional
power.

1 Introduction

Pattern expressions, PE for brevity, were introduced in [5] as an alternative to the formal-
ism of the regular expressions, which are also known as regex in practice. Regular expres-
sions are powerful programming tools available in many language implementations such
as Perl, Awk and Python, as well as in shells and other software utilities, like egrep, vi,
and emacs. Despite a similar nomenclature, these “practical regular expressions” [7] are
quite different from their theoretical counterpart, namely the regular (or rational) expres-
sions.

Despite being developed under the influence of theoretical regular expressions, the
regex formalism and its descriptional power differ greatly across various environments.
For example, regex implemented in Lex [11] bare a strong similarity to regular expres-
sions, whereas those found in Perl [7] are significantly different. Perl regex are relatively
easy to use; for example, L(1) = {anban | n ≥ 0} can be expressed in Perl by the regex
(a∗)b\1, and L(2) = {ww | w ∈ {a, b}∗} (the language of squares) can be expressed by
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194 C. Câmpeanu, N. Santean

((a|b)∗)\1—where the operator “\1” is a reference to (copy of) the content of the first
pair of parentheses. Extended regular expressions are essentially the regex constructs in
Perl, and are defined as regular expressions which accept the additional atoms “\n”, denot-
ing “back-references”. For example, the word a2ba2 matches the expression (1(2 a∗)b)\2,
since the content of the second pair of parentheses matches the subword a2 and \2 dupli-
cates it.

In [5] is presented a method for converting a pattern expression into an extended regular
expression and vice-versa, for certain situations. Although Perl regex can express languages
such as L(1) and L(2), Perl regex and pattern expressions cannot express the language L(3) =
{anbn | n ≥ 0}. Even more intriguing, despite the recent efforts on the study of regex and PE
[3,5], some of their closure properties, as well as the nature of L(4) = {wwR | w ∈ {a, b}∗}
(the mirror language), L(5) = {(abc)n(cba)n | n ≥ 0}, L(6) = {w | w = wR, w ∈ {a, b}∗}
(the language of palindromes), and other anthological languages, have remained unsolved.
This theoretical gap has lead to the status quo of accepting these ubiquitous programming
tools without an elementary understanding of their descriptional capability.

Unlike L(3), which has been proven that cannot be generated in Perl [3] and that is not a
PE language [5], very little is known about L(4). There has been a long-standing controversy,
on whether L(4) can or cannot be generated in Perl or by pattern expressions. Some people
believe the positive, although they cannot write a Perl regex for it, whereas some others
believe the opposite, yet they cannot provide a rigorous argument to support their claim. For
the latter, the difficulty consists in the fact that both pumping lemmas for extended regular
expressions and pattern expressions fail to give a contradiction for L(4) and languages alike.
Thus, the present study, which incidentally solves this dilemma for pattern expressions, is
expected to raise the interest of theorists as well as of programmers.

In this paper we adopt the formalism of pattern expressions. One reason for this preference
is that they seem to be more versatile, and they avoid some semantic ambiguities pointed out
in [5]. Related to our study on pattern expressions we mention [2], where the power of pattern
languages is extended by the introduction of a reversal operator, or [6], where a mirror oper-
ation is introduced for increasing the power of multi-pattern languages. Other variations on
multi-pattern languages or similar constructs can be found in [6,9,10,14] and more recently
in [10,13], where one can find a comprehensive survey on the topic. The formalism and most
of the results present in this research stream are developed under the influence of parallel
communication grammar systems and other similar generative devices. It would be inter-
esting and rather challenging to analyze the relationship between the formalism proposed
and developed in [3,5] (and used throughout this paper) and those employed in the past. For
example, here we use the pattern automata introduced in [5], which bear similarities with
parallel communicating finite automata systems mentioned in [12]. It is our belief that the two
models are not equivalent, matter which we plan to address in the future. Several parallels can
be drawn between PE languages and other families of languages studied in the past. Despite
their proximity, we could not identify a previous model equivalent to pattern expressions,
and we believe that none of the results present in this paper can be stated equivalently in the
other frameworks. One reason for this status, of having several models sharing common ideas
and yet being rather different, is that due to their particularities (e.g., the use of recursive
definitions and iterating mechanisms), small model changes may have a strong impact on
the behavior of the model. A conceptual difference between PE and the other models, as
well as a justification for its study beside its inherent novelties, is that pattern expressions
were inspired by pragmatic software applications and were influenced by the formalism of
expressions (formulae) and automata (acceptors), whereas the previous work originated in
the study of grammars (generators), and had only a purely theoretical justification.
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On the closure of pattern expressions languages under intersection 195

To layout the difference between our work and that on patterns, multi-patterns, parallel
communicating automata systems, etc., that can be found in [2,6,9,12,14] and more recently
in [10,13], we emphasize some differences between PE and the other models:

– In multi-patterns, variables are replaced with words given by a regular or a context-free
language, while in pattern expressions variables are replaced with words from a pattern
expression language, in a recursive manner. Thus, there may be stages where substitutions
are performed with words in a context-sensitive language, for example.

– For multi-patterns, there is no order for substituting variables (all substitutions are done
in one step), whereas for pattern expressions, the substitutions are done in a predefined
order and in a finite number of steps.

– Despite their names, iterated patterns (model introduced in [9]) do not contain a Kleene
operator (the word “iteration” refers rather to repeated substitutions), in contrast with
pattern expressions whose definition includes intrinsically the Kleene operator.

– Arguably, a model that seems to be closest to PE is the so-called “iterative multi-patterns”,
where the patterns are given by a language generated by a regular grammar. However,
their differences become apparent when their language families are compared to those in
the Chomsky hierarchy.

In some sense, one can view the idea behind pattern expressions as a combination of the con-
cepts used in multi-patterns and iterated patterns. Yet, we do not know whether combining
these models one way or another would lead to a scheme equivalent to that of PE.

2 Notations and definitions

In this section we provide some basic notions and notations used throughout the paper.
Omitted definitions of elementary formal language concepts can be found in [8,15–17].

An alphabet � is a finite non-empty set. A word over � is an element of the free monoid
�∗, that is, a finite string of symbols (letters) in �. For a word w ∈ �∗ we denote by |w| its
length, i.e., the total number of symbols in w, and by |w|a the number of occurrences of the
letter a in w. The word with no letters (the empty word) is denoted by ε, and |ε| = 0. We
use the notation u � v to denote that u is a subword of v (we have ε � v and v � v).

A regular expression over � is the set of all well-formed parenthesized infix formulae
obtained from the elements of � (viewed as atomic formulae), the nullary operator ε, the
binary operators + and · (expressed as juxtaposition), and the unary operator ∗. The language
of a regular expression e is denoted by L(e) and is defined as in [8]. If w is a word in L(e),
we say that “w matches the regular expression e”.

Throughout the paper we have dealt with a number of languages, that we denoted using
superscripts from 1 to 16. To help the reader, we have added below a legend for all these
languages and their definitions:

L(1) = {anban | n ≥ 0}
L(2) = {ww | w ∈ {a, b}∗}
L(3) = {anbn | n ≥ 0}
L(4) = {wwR | w ∈ {a, b}∗}
L(5) = {(abc)n(cba)n | n ≥ 0}
L(6) = {w | w = wR, w ∈ {a, b}∗}
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L(7) = {w ∈ {a, b}∗ | w = anbnanbn, n ≥ 0}
L(8) = {w | w = anbmanbm, n, m ≥ 0}
L(9) = {w | |w|a = |w|b}

L(10) = {(aababb)n(bbabaa)n | n ≥ 0}
L(11) = {w | |w|a = |w|b}
L(12) = {w | |w|b = 2|w|a}
L(13) = {w | |w|a = |w|b = |w|c}
L(14) = {w | |w|a + |w|b = |w|c}
L(15) = {

ucv | |u|a + |u|b = |v|a + |v|b, u, v ∈ {a, b, c}∗}

L(16) = (L(p) L(a∗)) ∩ L((baa)∗c(ba)∗), p = (ucu, u = b∗)

Definition 1 Let � be an alphabet and V = {v0, . . . , vn−1} be a finite set of variables such
that V ∩ � = ∅. A regular pattern is a regular expression over � ∪ V . A pattern expression
is a tuple of regular patterns p = (r0, r1, . . . , rn) with the following properties:

1. r0 is a regular expression over �;
2. for i ∈ {1, . . . , n}, ri is a regular pattern over � ∪ {v0, . . . , vi−1}.
The language L(p) generated by p is defined as follows. L0 = L(r0), as defined for a regular
expression, and for all i ∈ {1, . . . , n} :

Li = {(u0/v0) . . . (ui−1/vi−1)ui | u j ∈ L j for 0 ≤ j ≤ i − 1, and ui ∈ L(ri )}
where the notation (u0/v0) . . . (uk/vk)u expresses the substitution of all occurrences of var-
iable v j in u by the word u j , for all 0 ≤ j ≤ k. By definition, L(p) = Ln .

For better handling pattern expressions, we use the notation p = (v0 = r0, v1 =
r1, . . . , vn−1 = rn−1, rn) to track easily which variable is substituted by words in which
language: variable vi is substituted by words in the language Li generated by the regular
pattern ri .

Example 1 – For p = (v0 = a∗, v0bv0), L(p) = {anban | n ≥ 0};
– For p = (v0 = ab∗, v∗

0cv0), L(p) = {(abn)mcabn | n ≥ 0, m ≥ 0};
– For p = (v0 = ab∗, v1 = baa∗, (v0 + v1)(v0 + v1)) we have

L(p) = {abnabn | n ≥ 0} ∪ {banban | n ≥ 1} ∪
{abnbam | n ≥ 0, m ≥ 1} ∪ {bamabn | n ≥ 0, m ≥ 1}.

We also emphasize that pattern expressions are extensions of patterns [2], i.e., words
containing letters and variables (a pattern language [2,14] is obtained from a pattern by
substituting variables with arbitrary words).

Remark 1 [5] It is clear that regular languages are PE languages, and it has been shown that
PE languages are context-sensitive. Context-free languages and PE languages are incompa-
rable—these families have a nonempty symmetric difference. PE languages are closed under
reversal and homomorphism, and are not closed under complement, inverse homomorphism
and finite substitution. Furthermore, PE languages over an unary alphabet may be neither
regular, nor context-free, as the PE language {am | m is not prime } proves it.

Lemma 1 (Pumping Lemma for PE [5]) Let L be a pattern expression language or a regex
language. There exists a constant N , such that any word w ∈ L, |w| > N, has a decompo-
sition w = x0 yx1 yx2 · · · xm for some m ≥ 1, such that:
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On the closure of pattern expressions languages under intersection 197

1. |x0 y| ≤ N,
2. |y| ≥ 1,
3. x0 y j x1 y j x2 · · · xm ∈ L, for all j > 0 (note that y cannot be deleted).

A pattern automaton (PA for short, introduced in [5]) is an automata system
P = (A0, A1, . . . , An), where

(i) A0 = (Q0, �, δ0, q0,0, F0), and
(ii) Ai = (Qi , � ∪ {v0, . . . , vi−1}, δi , qi,0, Fi ), 0 < i ≤ n,

are finite automata, also called modules of P . A0 operates over �, and for each i ∈ {1, . . . , n},
Ai has the same structure as A0, except for the transition labels which may eventually desig-
nate one of the variables v0, . . ., vi−1. We assume that Qi ∩ Q j = ∅ for 0 ≤ i 	= j ≤ n, and
we denote Q = ⋃n

i=0 Qi . This automata system mimics closely the structure of a pattern
expression p = (v0 = r0, v1 = r1, . . . , vn−1 = rn−1, rn), where ri is the regular pattern cor-
responding to automaton Ai , for all i ∈ {0, . . . , n}. Then p will represent a pattern expression
associated to the pattern automaton P .

If n = 0, the pattern automaton consists of only one automaton which operates as an
usual finite automaton. For n > 0, P uses a stack S storing elements of Q, an array of
stacks U = (Ui )0≤i<n , whose stacks store elements of {0, 1}, and an array of stacks V =
(Vj )0≤ j<n , whose stacks store elements of �∗. The interpretation for U and V is as follows.
Let p = (v0 = r0, v1 = r1, . . . , vn−1 = rn−1, rn) be a pattern expression associated with
P . A computation step of P involving a transition labeled vi consists of matching a prefix
of the remaining input with an expression ri of p, leading to the instantiation of variable
vi . When this happens, the top element of each U j indicates whether the variable v j has
been instantiated, whereas the top of stack Vj stores the actual string which instantiates
v j . One can observe that all stacks in U and V are bounded, each containing at most n
elements.

The current configuration of pattern automaton P can be described by its current state
q ∈ Q, the remaining of the input word w ∈ �∗, the current content of the state stack S, and
of every stack in U and V . Thus, the current configuration at step t is (st , xt , St , U t , V t ),
where st denotes the current state and xt denotes the remaining input. This configuration is
an accepting configuration if st ∈ Fn and xt = ε.

Initially, P holds an input string w ∈ �∗ on its tape, and its current (initial) state is qn,0. S
is empty and all the stacks in U and V are empty. Thus, the initial configuration is described
by

(s0, x0, S0, U 0, V 0) = (qn,0, w, ε, ε, ε).

The first step of P is push(Ui , 0), for all 0 ≤ i < n (meaning that no variable has been
instantiated yet). The transitions between consecutive configurations are defined by one of
the following rules:

1. Let xt = ay ∈ �∗, with a ∈ �. If st = p ∈ Qn , then st+1 = q with q ∈ δn(p, a), and
xt+1 = y. If st = p ∈ Qi for some i < n, then st+1 = q with q ∈ δi (p, a), xt+1 = y,
and top(Vi ) = top(Vi )a.

2. Let st = p ∈ Qi for some i > 0. If for an index j ∈ {0, . . . , i −1} we have q ∈ δi (p, v j )

and top(U j ) = 0, then push(S, q), push(Vj , ε), push(Uk, 0) for all 0 ≤ k < j . Then
set st+1 = q j,0 and leave xt+1 = xt .

3. If st = p ∈ Fi for 0 ≤ i < n and top(Ui ) = 0, then set st+1 = top(S), pop(S),
pop(Vj ) for 0 ≤ j < i , pop(U j ) for all 0 ≤ j < i , and set top(Ui ) = 1.
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4. Let st = p ∈ Qi for some i > 0. If for an index j ∈ {0, . . . , i −1} we have q ∈ δi (p, v j ),
top(U j ) = 1, and xt = top(Vj )y, then set st+1 = q , top(Vi ) = top(Vi )top(Vj ) and
xt+1 = y.

5. If st ∈ Fn and xt = ε, then accept.

Note that the behavior of the pattern automata system is non-deterministic, in that for
a given configuration of the system, each of the transitions outlined above can poten-
tially be chosen at every step of the computation, when the corresponding conditions are
met.

The language recognized by P is:

L(P) = {w | (qn,0, w, ε, ε, ε) 
∗ ( f, ε, S, U, V ), f ∈ Fn}.
If for each automaton Ai , 0 ≤ i ≤ n, we denote Ri = L(Ai ) ⊆ (� ∪ {v0, . . . , vi−1})∗, then
the language recognized by P is given by

Wn = {(u0/v0) . . . (un−1/vn−1)un | un ∈ Rn, ui ∈ Wi , 0 ≤ i ≤ n − 1},
where

W0 = R0, and for i ∈ {1, . . . , n − 1},
and

Wi = {(u0/v0) . . . (ui−1/vi−1)ui | ui ∈ Ri , u j ∈ W j , 0 ≤ j ≤ i − 1}.
Since Ri = L(ri ), it follows that Wi = Li , hence L(P) = L(p), i.e., the automata system
recognizes the same language as the language generated by the pattern expression p.

Note that the PA behavior is non-deterministic, leading to believe that the membership
problem takes exponential run-time. Since pattern automata recognize languages generated
by pattern expressions, we question whether is possible to construct some device that has a
better running time than PA.

Theorem 1 The membership problem for pattern expressions is NP-complete and has
O(n2m) space complexity, where n is the number of regular patterns of the given pattern
expression and m is the length of the input word.

Proof We analyze the membership problem for pattern automata. Let P be a pattern autom-
aton as previously defined, and w be an input word. If we guess the “right choice” in each
module Ai of P (i.e., we always make the proper variable substitutions and avoid backtrack-
ing), it takes O(|w|) time to recognize w; thus, the problem is in NP. Since the problem
w ∈ L(p) is NP-hard when p is just a pattern (see [2, T. 3.2.3, p.133]), we conclude that our
problem is also NP-hard, therefore NP-complete.

The space complexity results from the fact that all stack elements (words) used for simu-
lating a pattern automaton have a length bounded by the length of the input word w (storing
some subwords of w) and there are 2n + 1 stacks, each of depth at most n. �


A similar result was obtained by Aho for regex in [1]. Note that Theorem 1 has an impor-
tant implication: any application/program that uses practical regular expression is most likely
inefficient. This fact is arguably ignored by some programmers, when evaluating the com-
putational complexity of algorithms that use PE as programming tools.
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3 Intersection with context free and regular languages

3.1 Intersection with context free languages

We first tackle the intersection with context free (CF) languages. It is easy to see that the
language L(7) = {w ∈ {a, b}∗ | w = anbnanbn, n ≥ 0} is not a context free language,
simply by applying the Bar-Hillel lemma. Moreover, we can also prove that this language is
not in PE:

Lemma 2 The language L(7) = {w ∈ {a, b}∗ | w = anbnanbn, n ≥ 0} is not a pattern
expression language.

Proof Considering a word w = anbnanbn, with n “large enough”, there exists a subword
y of w such that pumping y into w as described in Lemma 1 would produce words in the
language. For y we have the following possibilities:

1. |y|a > 0 and |y|b > 0, thus we have arbitrary many alternations of a and b;
2. |y|a = 0 or |y|b = 0, thus we do not have the same numbers of a’s and b’s.

Both situations lead to words not belonging to the language, thus contradicting the pumping
lemma. Hence L(7) cannot be in PE. �

Theorem 2 The family of PE languages is not closed under intersection with context-free
languages.

Proof We consider the following PE: r = (wxwx, w = a∗, x = b∗), generating the lan-
guage L(8) = {w | w = anbmanbm, n, m ≥ 0} and the context free language L(9) = {w |
|w|a = |w|b}. We can see that L(7) = L(8) ∩ L(9), but L(7) is not PE. �


Incidentally, this also proves that the family of context-free languages is not closed under
the intersection with PE languages.

3.2 Intersection with regular languages

In Sect. 2 we have presented a pumping lemma for PE languages (which also holds for
regex languages). This lemma turns out to be too weak for proving that a language like L(4)

(mentioned in the Sect. 1) is not a PE language. To alleviate this problem, as well as for other
theoretical and practical reasons, we prove this important closure property for the family of
pattern expression languages, which has remained hidden.

Theorem 3 The family of pattern expression languages is closed under the intersection with
regular languages.

Proof Let L = L(p) with p = (r0, r1, . . . , rn) be a pattern expression language and R be a
regular language accepted by a trim DFA B = (Q B , �, δB , 0B , FB). We consider a pattern
automaton P , such that L(P) = L(p), and construct a pattern automaton P ′ which simulates
the run of P in “parallel” with B. The simulation goes in parallel when P transits from state
to state based on letters in �. When P meets a transition labeled with a variable name “v”, B
is put on hold, and P calls the proper module which takes over the resolution of v. Whenever
a module called recursively uses a transition labeled with a letter in �, B is revived and
advances again in parallel with P . This idea is facing the challenge of designing this simula-
tor as a pattern automaton. The problem turned out to be rather difficult, mainly because of
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over exponential size blow-up, and we will see that the constructed pattern automata system
for the intersection uses significantly more variables than P .

One essential technique used in the following proof is to index the variables of the con-
structed PA in such manner, that the subscripts themselves provide information on where the
run of B has paused at, or where it should resume from (in terms of the states of B), and on
the value of instantiated variable. Hence, we anticipate that beside the normal indexing of
variables in P , we need two more sets of subscripts.

In order to construct a PA for the intersection, we need to consider the family of functions
fw : Q B → Q B defined as fw(q) = δB(q, w). Since Q B is finite, the number of functions
{ fw | w ∈ �∗} is finite. These functions, together with composition and with fε as identity,
form a finite monoid: the transition monoid TB of B.

We partition �∗ into equivalent classes, given by the equivalence of finite index: w1 ≡
w2 ⇔ fw1 = fw2 . We denote W = �∗/ ≡, the quotient of �∗ under ≡, and denote the
functions in TB by { fc}c∈W . Then, W = {c1, . . . , cm}, with c1, . . . , cm ∈ �∗ being chosen
representatives for the equivalence classes of W . Thus, if w1, w2 ∈ c, then for all i ∈ Q B ,

δB(i, w1) = j iff δB(i, w2) = j, thus fw1 = fw2. (1)

Note that we may have δB(i, w1) = δB(i, w2), for w1 ∈ c1, w2 ∈ c2, c1, c2 ∈ W , and
c1 	= c2. However, if w1 ∈ c1,w2 ∈ c2, c1, c2 ∈ W , and c1 	= c2, then it necessarily exists
some i ∈ Q B such that δB(i, w1) 	= δB(i, w2).

Also, if δB(i, w1) = j and δB(i, w2) = j for some i ∈ Q B , then we may still have
w1 	≡ w2. We can only say that w1 and w2 are equivalent if Eq. (1) holds for all i ∈ Q B .
Therefore, the transitions from a state i in B can be precisely determined for each class
c ∈ W .

For i, j ∈ Q B , denote by Bi, j the automaton obtained from B by setting i to be the initial
state and j the only final state. Then, beside the normal indexing of variables in P , we need
extra information for subscripts: one component to keep track of the states from Q B , and
another component to keep track of the class of W for variable instantiation. The indices in
Q B are used to keep track of the states in B, while those in W are used for synchronizing
the instantiation of the variables vk .

We also require some minimal information associated to the states of P , in order to keep
track of whether a variable has been initialized or not. Moreover, if a newly introduced
variable, derived from a variable vk in P , is initialized, it must be synchronized with all
subsequently used vk-derived variables. Therefore, if a state in the newly constructed PA
will have out-transitions labeled with vk , then its name should bear enough information to
distinguish among various circumstances of variables’ instantiation.

Since in the new PA all transitions labeled with a variable corresponding to some vk in P
will belong to a corresponding new automaton, we need to construct these new automata/mod-
ules and establish their initial states. The information stored in the “Q B component” of those
initial states will be reflected in the indices of all variables labeling the transitions of those
automata. The following sets are constructed to store this information.

Let S = (Q B W ∪ {ε})n+1. For k ∈ {0, . . . , n}, let Sk be the set

Sk = {S ∈ S | S = (ε, . . . , ε︸ ︷︷ ︸
n−k

, αk, αk−1, . . . , α0)}.

For 0 ≤ h ≤ n−1, and each S ∈ S we will also use the projections πh : S −→ (Q B W ∪{ε}),
defined as πh(S) = αh . This h-component of S, αh stores the following information:
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On the closure of pattern expressions languages under intersection 201

1. if αh = ε, then the variable vh has not been instantiated yet;
2. if αh 	= ε, then αh = bhch , (bh ∈ Q B and ch ∈ W ), the variable vh has been instantiated

with a word in the class ch .

The elements S of Sk will be used as indices for states in such a way, that will allow us
avoid instantiations of more than one variables vk,S for a same k and different S’es.

From now on, we follow the convention that S ∈ Sk can be expressed as S = (αk, . . . ,

αh, . . . , α1, α0), i.e., we omit the n − k empty words preceding the index k.
Let p = (r0, . . . , rn) be the initial pattern expression with n + 1 regular patterns and vari-

ables v0, . . . , vn−1, and let P = (C0, C1, . . . , Cn) be the corresponding pattern automaton
system, where

Ci = (Qi , � ∪ {v0, . . . , vi−1}, δi , qi,0, Fi )

are the modules of P . We construct a pattern automaton system P ′ for the intersection
L(p) ∩ L(B), consisting of the following finite automata:

1. for all k and S ∈ S0\{(ε)}, i.e., S = (bc), for some b ∈ Q B and c ∈ W ,
A0,S = (

Q0 × Q B , �, (00, b), δ0,S, F0, j
)
, j = fc(b);

for all (p, l) ∈ Q0 × Q B and for all a ∈ �:

δ0,S ((p, l), a) = {(q, j ′) | q ∈ δ0(p, a), j ′ = δB(l, a)}
and F0, j = F0 × { j};
one can see that C0 does not have transitions labeled with variables and in this case
variables are not used, thus the construction is the usual automata Cartesian product
[8], C0 × Bb, fc(b);

2. for all k ∈ {1, . . . , n − 1} and S ∈ Sk , with πk(S) = bkck ; and denoting b = bk , d = ck ,
and j = fd(b), we have:

Ak,S =
(

Qk × Q B × Sk−1, � ∪ {vk′,S′ | k′ < k, S′ ∈ Sk−1},

(0k, b, ε, . . . , ε︸ ︷︷ ︸
k

), δk,S, Fk, j

)
,

where Fk, j = Fk × { j}, and

(a) for all (p, l, S′) ∈ Qk × Q B × Sk−1, a ∈ �:

δk,S
(
(p, l, S′), a

) = {(q, j ′, S′) | q ∈ δk(p, a), j ′ = δB(l, a)};
(b) for all (p, b′, S′) ∈ Qk × Q B × Sk−1 and T ′ ∈ Sk−1, such that there exists k′ < k

verifying πk′(S′) = ε, πh(S′) = πh(T ′) for all h 	= k′, and πk′(T ′) = b′d , we
have:

δk,S
(
(p, b′, S′), vk′,T ′

) = {(q, j ′, T ′) | q ∈ δk(p, uk′), j ′ = fd(b′)};
(c) for all (p, b′′, S′) ∈ Qk × Q B × Sk−1, k′ < k, such that πk′(S′) = b′d 	= ε, we

have:

δk,S
(
(p, b′′, S′), vk′,S′

) = {(q, j ′, S′) | q ∈ δk(p, vk′), j ′ = fd(b′′)}.
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Note that, for any k′ < k, a transition defined in (c) must be preceded by a transi-
tion in (b) that can be triggered at most once. This ensures a synchronization between
subsequent transitions with vk′,S′ , which mimics the synchronization present in Ck.

3. AS =
(

Qn × Q B × Sn−1, � ∪ {vk′,S′ | k′ < n, S′ ∈ Sn−1},

(0n, 0, ε, . . . , ε︸ ︷︷ ︸
n

), δn,FB , Fn,FB

)
,

where Fn,FB = Fn × FB , and

(a) for all (p, l, S′) ∈ Qk × Q B × Sn−1 and a ∈ �:

δn,FB

(
(p, l, S′), a

) = {(q, j ′, S′) | q ∈ δn(p, a), j ′ = δB(l, a)};
(b) for all (p, b′, S′) ∈ Qn × Q B × Sn−1 and T ′ ∈ Sn−1, such that there exists k′ < n

verifying πk′(S′) = ε, πh(S′) = πh(T ′) for all h 	= k′, and πk′(T ′) = b′d , we
have:

δn,FB

(
(p, b′, S′), vk′,T ′

) = {(q, j ′, T ′) | q ∈ δn(p, uk′), j ′ = fd(b′)};
(c) for all (p, b′′, S′) ∈ Qn × Q B × Sn−1, k′ < n, such that πk′(S′) = b′d 	= ε, and

j ′ = fd(b′′):

δn,FB

(
(p, b′′, S′), vk′,S′

) = {(q, j ′, T ′) | q ∈ δn(p, vk′)}.
Then, the sought pattern automaton P ′ is obtained by ordering all the above automata with
respect to their dependencies. Then, we make the following observations, which justify the
correctness of our construction:

1. If in the pattern automaton P ′ we consider only the first component of each state and
ignore the extra subscripts, i.e., the indices S, we notice that a computation in P ′ for an
input word w is successful if and only if there exists a successful computation for w in
this reduced version of P ′, since all automata Ak,S are identical with Ak , for all S.

2. Denote pk = (r0, . . . , rk) the pattern expression obtained from p considering only the
first k +1 patterns with 0 ≤ k < n. Similarly, for S ∈ Sk , denote P ′

k,S the pattern autom-
aton obtained from P ′ considering the automata Ak,S and all its dependency modules
Ak′,S , with k′ < k. Then one can check by induction that L(pk) ∩ L(Bb, j ) = L(P ′

k,S),
where πk(S) = bc and fc(b) = j .

3. If a word w belongs to L(p), then it can be factorized as w = x0u1x1 . . . us xs , where
we have all xi ∈ �∗ and each ui ∈ L(pr ) for some r ∈ {0, . . . , n − 1}. The words ui

are the substitution words for the variables in the pattern rn used for generating w. If w

belongs to L(B) as well, then we have the following sequence:

x0 ∈ B0,b1 , u1 ∈ Bb1, j1 , x1 ∈ B j1,b2 , . . . ,

xs−1 ∈ B js−1,bs , us ∈ Bbs , js , xs ∈ B js ,bs+1 , and bs+1 ∈ FB .

Since each ul also belongs to a language L(pt ) for some t ∈ {0, . . . , n − 1}, we obtain
ul ∈ L(pt ) ∩ Bbl , jl = L(P ′

t,S), where πl(S) = blc, fc(bl) = jl . Using this relation, it
can be checked that the automaton AS should accept w as well, hence w ∈ L(P ′).

For the reciprocal we can verify that all the above implications are in fact equivalences.
Thus, the newly constructed automata system P ′ recognizes the intersection between L(P)

and L(B), proving that the intersection is a pattern expression language. �
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Unlike what we initially expected, the construction in Theorem 3 turned out to be substan-
tially more complex than a simple automaton cross product. Indeed, the simple simulation
of automaton B in parallel with the pattern automaton P does not suffice for recognizing
the sought language intersection: one needs to keep track of variable instances and multiple
non-deterministic computations performed by various modules of P , using only the means
provided by a pattern automaton. Consequently, the resulting automaton has a size signifi-
cantly bigger then the product of the sizes of the initial automata.

4 Limitations of pattern expressions

In this section we use Theorem 3 to prove that several languages, such as the mirror language
L(4), are not pattern expression languages, despite the fact that the family of PE languages is
closed under the reversal operation. We first prove it on an easier case, that of alphabets with
at least three letters, and we start with a preliminary result.

Lemma 3 The language L(5) = {(abc)n(cba)n | n ≥ 0} is not a pattern expression lan-
guage.

Proof Assume by contrary, that L(5) is a PE language. Invoking the pumping lemma
(Lemma 1), there exists a constant N such that any word w ∈ L(5) with |w| > N can
be factorized as w = x0 yx1 . . . xm−1 yxm such that m ≥ 1, |x0 y| ≤ N , |y|≥1, and wi =
x0 yi x1 . . . xm−1 yi xm ∈ L(5), for all i ≥ 1.

Let w = (abc)n(cba)n with 3n > N , and consider a factorization of w as above. It is
clear that y cannot consist of only one letter, since otherwise w3 	∈ L(5). If |y| = 2, then
y can be one of the following words: ab, bc, ca, cc, cb, ba or ac, and one can check that
y2 	� (abc)n(cba)n for any n ≥ 0. It remains the case when |y| ≥ 3.

We first note that y � (abc)n, since |x0 y| ≤ N . We also observe that y can only be in one
of the following forms: bxa, cxb, axc, bxc, axb or cxa, with x a nonempty word (otherwise,
y3 	� (abc)n(cba)n, for any n ≥ 0).

If y is either bxc, axb, or cxa, then clearly y2 should cross the middle of w2, since it has
one of the subwords cb, ba, or ac (found only in the second half), and the first occurrence
of y is in the first half of w. Thus, y2 must produce a cc, and y4 must produce two such
groups—a contradiction.

It remains that y must be of the form bxa, cxb, or axc, and then, no occurrence of y can
be in the second half of w. Indeed, y cannot cross the middle of w, and it cannot be com-
pletely in the second half of w, since y2 produces one of the sequences ab, bc, or ca found
only in the first half. Then there exists k sufficiently large such that one factor yk will cross
the middle of wk , since for each pumped y, the first half of w increases with |y| symbols,
whereas the middle shifts to the right |y|/2 positions. But this leads to a contradiction yet
again, since once yk has produced cc, y2k will produce two such groups. Having exhausted
all possibilities, we conclude that L(5) is not a PE language. �

Remark 2 Note that Theorem 2 is consequence of Lemma 3.

Corollary 1 Let � be an alphabet with at least three letters. Then the language L(4′) =
{wwR | w ∈ �∗} is not a pattern expression language.

Proof Assume by contradiction that L(4′) is a pattern expression language, i.e., that there
exists a pattern expression p = (r0, . . . , rn) such that L(4′) = L(p). Let a, b, c be three
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204 C. Câmpeanu, N. Santean

distinct letters of �. Invoking Theorem 3, it follows that L(5) = L(p)∩ (abc)∗(cba)∗ is also
a PE language. This contradicts Lemma 3. �


In the following we prove an analogous result for the binary alphabet, this time
using a more intricate combinatorial apparatus. The idea is to take the language
L(10) = {(aababb)n(bbabaa)n | n ≥ 0} and prove that is not a pattern expression lan-
guage. We first prove two useful combinatorial lemmas.

Lemma 4 Let v ∈ {a, b}∗ be such that v � (aababb)2 and 0 < |v| < 6. Then vk 	�
(aababb)n, for all n ≥ 0 and k > 2.

Proof Let us list all the subwords v of (aababb)2 with 0 < |v| < 6: a and b, of length 1;
ab, ba, bb and aa, of length 2; aab, aba, bab, abb, bba and baa, of length 3; aaba, abab,
babb, abba, bbaa and baab, of length 4; aabab, ababb, babba, abbaa, bbaab and baaba,
of length 5. One may check that if v is any of these subwords, then v3 	� (aababb)n, for any
n ≥ 0. For example, if v = baaba, then v3 = baababaababaaba, and we observe that any
two occurrences of b are separated by a’s; nevertheless, this is not true for (aababb)n. Thus,
v3 cannot be a subword of (aababb)n, therefore we have that vk 	� (aababb)n, for all n ≥ 0
and k > 2. �

Lemma 5 Let n ≥ 0 and v ∈ {a, b}∗ be such that v � (aababb)n. If |v| ≥ 6, then
v 	� ababb(bbabaa)m, for all m ≥ 0.

Proof We observe that any subword of (aababb)n, of length at least 6, must have as a pre-
fix one of the following words: aababb, ababba, babbaa, abbaab, bbaaba, and baabab.
We also note that each of these prefixes have one of the following subwords: aaba, bbaa,
and babba. However, one may check that none of these three subwords can be a subword
of ababb(bbabaa)m, for any m ≥ 0. For example, aaba cannot be a such subword, since
in ababb(bbabaa)m any double occurrence of a is followed by two b’s. The conclusion
follows. �

Theorem 4 Let � be an alphabet with at least two symbols. The language L(4) = {wwR |
w ∈ �∗} is not a PE language.

Proof The intersection L(4) ∩ {(aababb)n(bbabaa)m | n, m ≥ 0} is exactly the lan-
guage L(10) = {(aababb)n(bbabaa)n | n ≥ 0}. Indeed, the middle of a word w =
(aababb)i (bbabaa) j must divide w in two factors of equal length, multiple of 3. Since w is
a “mirror word”, one can check that the middle of w must separate precisely the iterations
of aababb from those of bbabaa.

Invoking the closure of PE languages to intersection with regular languages, it suffices
to prove that L(10) is not a PE language. Assume by contradiction that L(10) is a PE lan-
guage. Then, by applying the pumping lemma, there exists a constant N such that any word
w ∈ L(10) of length greater than N has a decomposition w = x0 yx1 y . . . xt−1 yxt for some
t ≥ 1, such that |x0 y| ≤ N , |y| ≥ 1, and wk = x0 yk x1 yk . . . xt−1 yk xt ∈ L(10), for all k > 0.

The pumping lemma applies to the word w = (aababb)n(bbabaa)n with 6n > N + 6,
thus w has a decomposition as above. We observe that the factor y must be a proper subword
of (aababb)n (since |y| ≤ N ). We distinguish the following two choices: |y| < 6 or |y| ≥ 6.

If |y| < 6, we have that y � (aababb)2, thus we can apply Lemma 4 and infer that
y3 	� (aababb)m, for any m > 0. Note that pumping two extra y after x0 in w, would shift
the middle of w at most |y| < 6 symbols to the left (at most half of how much was pumped),
thus the resulting subword y3 would still be in the first half of w3 (since y occurs within the
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first N symbols of w, the middle of w is beyond N + 6, y3 occurs within the first N + 2|y|
symbols, and the middle of w3 is beyond N + |y| + 6). This is a contradiction considering
that y3 is a subword of (aababb)m. Thus, w3 	∈ L(10), contradicting the pumping lemma.

If |y| ≥ 6, we first show that all occurrences of y must necessarily be in the first half
of w. We have that y � (aababb)n because |x0 y| ≤ N ; if a subsequent occurrence of y
was spanning across the middle of w, then y would have b3 as a subword. Since this is
impossible, we infer that no occurrence of y can cross the middle of w. Furthermore, using
y � (aababb)n and |y| ≥ 6, by applying Lemma 5 it follows that y 	� ababb(bbabaa)n,
thus y cannot occur in the second half of w either. It follows that all possible occurrences
of y are in the first half of w. Note that in this case, for each “pumped” y, the middle of the
word shifts to the right |y|/2 symbols (the word expands twice as fast as the displacement
of its middle). Thus, for k sufficiently large, there must be an occurrence of y which goes
beyond the middle of wk . This leads to a contradiction by the same arguments used in the
first place to prove that y must occur within the first half of w.

We have obtained a contradiction in both cases, thus L(10) is not a PE language, and by
Theorem 3 it follows that L(4) cannot be a PE language either. �


The closure of PE languages under the intersection with regular languages is a very pow-
erful tool, in particular for proving that certain languages are not PE. The following results
illustrate this technique. We use a, b, c for letters and u, v, w for words.

Corollary 2 The following languages are not pattern expression languages:

L(6) =
{
w | w = wR

}
, (the language of palindromes)

L(11) = {w | |w|a = |w|b} , (the language of balanced words)

L(12) = {w | |w|b = 2|w|a} , (the language of semi-balanced words)

L(13) = {w | |w|a = |w|b = |w|c} ,

L(14) = {w | |w|a + |w|b = |w|c} ,

L(15) = {
ucv | |u|a + |u|b = |v|a + |v|b, u, v ∈ {a, b, c}∗} .

Proof We observe that: L(6) ∩ (aababb)∗(bbabaa)∗ = {(aababb)n(bbabaa)n | n ≥ 0},
which is not a PE language (Lemma 3); L(11) ∩ a∗b∗ = {anbn | n ≥ 0}, which is not a PE
language [5]; L(12) ∩ a∗b∗ = {

a2nbn | n ≥ 0
}
, which is not a PE language [5, Example 7];

L(13) ∩ a∗b∗c∗ = {
anbncn

∣
∣n ≥ 0

}
, which is not a PE language [5]; L(14) ∩ (a + b)∗c∗ =

{{a, b}ncn | n ≥ 0}, which is not a PE language [5, Example 8]; and L(15) ∩ (a + b)∗c(a +
b)∗ = {{a, b}nc{a, b}n | n ≥ 0}, which is not a PE language [5]. �


Corollary 3 The family of PE languages is not closed under shuffle with regular languages.

Proof Assume by contradiction that PE languages are closed under shuffle with regular
languages. Choose p = (ucu, u = b∗) and define

L(16) = (L(p) L(a∗)) ∩ L((baa)∗c(ba)∗).

By our assumption, and using the closure under the intersection with regular languages, it
follows that L(16) is a PE language. However, using an argument similar to the one used
in [3], we can prove that L(16) is not a PE language, since it does not satisfy the pumping
Lemma for PE languages. We give the proof for completeness.

123



206 C. Câmpeanu, N. Santean

Let N be the constant obtained from the pumping lemma for the language L(16) and
consider

w = (baa)N c(ba)N ∈ L(16).

By the pumping lemma we can write w = x0 yx1 y · · · yxm , where

w j = x0 y j x1 y j · · · y j xm (2)

is in L(16) for any j ≥ 1. Clearly, the subword y cannot contain the marker c, since it has a
unique occurrence in words of L(16). We have four possibilities to consider.

1. If y contains a b and all occurrences of y in w are before the marker c, then w2 contains
more b’s before the marker c than after it.

2. The case where all occurrences of y are after the marker is not possible because the prefix
of w before the marker has length greater than N .

3. Consider the case where y contains a b and some subwords y occur before the marker
c and some occur after it. Since w2 has to be in L((baa)∗c(ba)∗) and some subword y
occurs before c, it follows that 2 · |y|b = |y|a . Similarly, since another subword occur-
rence y lies after the marker c, it follows that |y|b = |y|a . This is impossible, since
y 	= ε.

4. Finally, if y consists only of a’s (that is, y = a or y = aa), then w3 	∈ L((baa)∗c(ba)∗).

If L(p) L(a∗) was a PE language, so would be L(16) and we just proved that it is not. �

Since the class of PE languages is not closed under inverse homomorphism, the result

of Corollary 3 can be alternatively proven by invoking the following known property (we
provide a proof for completeness):

Lemma 6 Every family F of languages, closed under homomorphism, intersection with reg-
ular languages and shuffle with regular languages is closed under inverse homomorphism.

Proof Assume that F is a family of languages with the closure properties listed above. Let
h : �∗ −→ �∗ be an arbitrary homomorphism and L ⊆ �∗ be a language in F . Also
let �′ = {a′ | a ∈ �} be a copy of � such that �′ ∩ � = ∅. The following equality is
immediate:

h−1(L) = g((L �′) ∩ {h(a)a′ | a ∈ �}∗),
where g is a homomorphism that removes all letters in � and restores the quoted letters to
the original ones. �


Finally, we should mention that some previous results involving several pages of elaborate
proofs, such as Lemma 3 in [3], are trivially validated by the closure property of PE languages
under the intersection with regular languages, as given by Theorem 3.

5 Conclusion

In this paper we used pattern automata systems to prove the closure of pattern expression
languages under the intersection with regular languages. This property turned out to be a
very useful tool in showing that several popular languages, such as the mirror language, the
language of palindromes or the language of balanced words, are not PE, thus revealing some
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of the limitations of pattern expressions unforeseen before. Recently, we have proven similar
results for regex languages, however, in a different framework (see [4]). Incidentally, we have
also raised a warning on the inefficiency of the membership testing for pattern expressions.
Thus, it is in our belief that our results reach out beyond theory, to programmers and other
users of PE and practical regular expressions.
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quality of this presentation.
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6. Dumitrescu, S., Păun, G., Salomaa, A.: Pattern Languages versus Parallel Communicating Grammar

Systems. TUCS Report, vol. 42, September 1996
7. Friedl, J.E.F.: Mastering Regular Expressions. O’Reilly & Associates, Inc., Cambridge (1997)
8. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computa-

tion. Addison Wesley, Reading (2006)
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