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Abstract This paper explores different means of representation for algebraic trans-
ductions, i.e., word relations realized by pushdown transducers. The relevance of this
work lies more in its point of view rather than any particular result. We are aiming
at giving specific techniques for obtaining, or perhaps explaining, decompositions of
algebraic (and incidentally, rational) relations, relying solely on their “machine” defi-
nition rather than some complex algebraic apparatus. From this point of view, we are
hoping to have demystified the heavy formalism employed in the present literature.
Some of the novelties of our work are: the use of “stack languages” and “embeddings,”
which eliminate the need of arbitrary context-free languages in our characterizations,
the study of uniformizations for algebraic transductions and the use of the so-called
stack transductions for exposing the anatomy of pushdown transducers.

1 Introduction

One of the oldest devices designed to perform specific computations in a fairly auto-
matic manner is, arguably, Pascal’s Arithmetic Machine (seventeenth century). It is
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considered by many to be the first finite-state machine/automation resembling those
known and used today ([13]). But it was not before the late 1940s when sequential
and other machines become the principal subject of a stand-alone theory. Ever since,
the interest in studying the computational power of such devices, and implicitly the
nature of those sets computable by them, has steadily gown. Although automata the-
ory has been considered (and still is, by some) a branch of formal language theory –
for the reason that automata are ideal tools to specify languages as acceptors – their
very nature is best captured when they are placed in an algebraic framework. The
study of families of computable subsets of arbitrary monoids was first proposed by
Eilenberg in [6–8], where two families of such entities were distinguished: rational
and algebraic. Rational sets soon become favorite in the research community, due to
their nice algebraic properties and elegant formalism. The same cannot be said about
the algebraic family: algebraic transductions are seldom present in the contemporary
literature, and their properties are sporadically captured by publications focussed on
broader topics, such as [2], [1, Sect. 3.1.4] and [10, Sect. 3.5]. The very few sources
that specifically address algebraic transductions include [9] and [4]. Nevertheless, it is
in our perception that their existing properties make them powerful tools in practice,
and careful design may alleviate some of their general difficulties. In this paper we
address the very basics of algebraic transductions, namely their representations, in the
spirit of the well-known saying: “the beginning of wisdom is to call things by their right
names” (Confucius).

The paper is structured as following. In Sect. 2 we introduce Dyck languages, the
so-called “stack languages” and embeddings, and we explore some of their properties.
We also present variations on the Chomsky–Schützenberger and Nivat theorems, in
whose proofs we apply some of the techniques used throughout the paper. In Sect. 3
we give a characterization of, and a matrix representation for, algebraic transduc-
tions. In Sect. 4 we tackle the problem of uniformizations for algebraic transductions.
Although we did not succeed in finding an unambiguous uniformization for the gen-
eral case, we have provided solutions for a few particular cases. Finally, in Sect. 5, we
define and study the so-called stack transductions and we use them to look under-the-
hood of pushdown transducers. Across the paper we use a few simple techniques, such
as: the use of disjoint alphabets in order to deal with projections instead of arbitrary
morphisms, or subsequently, the use of colorings in order to extend our results to
the general case. Another efficient technique that we employed is to “stick together”
different components of the labels of transitions in automata/transducers (input, stack
and output labels) in order to first deal with finite automata, then put the results in
terms of regular languages or rational relations and finally to convert everything back
to the initial (algebraic) form. This method helped us produce characterizations for
algebraic transductions without the use of heavy algebraic tools – which was our
main goal.

2 Notions and notations

In this section we introduce Dyck languages, embeddings, and we derive a character-
ization of context-free languages similar to the well-known Chomsky–Schützenberger
theorem (as found in [3, Sect. II, T. 3.10]). We also present a technique of character-
izing transductions by means of projections and “colorings,” that will further lead to
general morphism characterizations.



Representation and uniformization of algebraic transductions

We assume known basic notions of automata theory. Notation-wise, a finite trans-
ducer (FT) is denoted by (Q, X, Y, δ, q0, F) and a pushdown transducer (PDT) by
(Q, X, Y, Γ , δ, q0, Z0, F). X, Y and Γ are finite alphabets: input, output and stack,
respectively. Q is a finite set of states with q0 denoting an initial state. For the push-
down machine, Z0 ∈ Γ represents a symbol present on the stack at the beginning of
its computations. δ is the transition table (partial function) that governs the computa-
tional steps of either machine and takes one of the following forms:

• δ : Q × (
X ∪ {ε}) → PF(

Y∗ × Q
)
, in the case of a FT,

• δ : Q × (
X ∪ {ε}) × Γ → PF(

Γ ∗ × Y∗ × Q
)
, in the case of a PDT,

where ε denotes the empty word and PF(A) stands for the family of finite subsets of a
set A. Sometime we choose the notation (p, x : y, q) ∈ δ in order to denote a transition
in a FT, from the state p to the state q, with input x and output y (equivalent with saying
that (y, q) ∈ δ(p, x)). Also, we sometime consider “lazy” FT, that are finite transducers
with transitions having words as input. For pushdown transducers, we sometime use
the notation (p, x, A/α : y, q) ∈ δ to denote a transition from state p to state q on input
x, output y and with the following stack operations: pop A and push α (equivalent
with saying that (α, y, q) ∈ δ(p, x, A)). The graphical representation of these transi-
tions is depicted in Fig. 1. Pushdown automata (PDA) and nondeterministic finite
automata (NFA) are defined similarly, with exception of the output component that
is missing.

The transductions (word relations) realized by FT are called rational and their
family is denoted by Rat(X∗ × Y∗) and those realized by PDT are called algebraic
and denoted by Alg(X∗ × Y∗). As will become apparent later, the three acceptance
criteria for PDT (“by final state,” “by empty stack” and both) are equivalent (similar
to PDA), and we will mostly use the acceptance criterion “by final state.”

Let Γ = {z1, . . . , zn} be a finite alphabet and let Γ̂ = Γ ∪ Γ . We denote by ∼ the
restricted Dyck congruence over Γ̂ ∗, generated by

zizi ∼ ε, ∀i ∈ {1, . . . , n}.

In other words, ∼ is the smallest congruence that verifies the above relation. The
congruence is called “restricted” due to the fact that it does not necessarily imply that
zizi ∼ ε, ∀i ∈ {1, . . . , n}.

Fig. 1 Transition notations for finite transducers (FT) and pushdown transducers (PDT)
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The class of a word w ∈ Γ̂ ∗ with respect to ∼ is denoted by [w] and the canoni-
cal(surjective) homomorphism induced by ∼ is given by

p : Γ̂ ∗ → (
Γ̂ ∗/ ∼ )

, p(w) = [w].
The n-ary restricted Dyck language (over Γ ) is the language

Dn = (p−1 ◦ p)(ε),

and consists of all the words in the class of ε.

Definition 1 The n-ary stack language (over Γ ), is the language

Sn = (p−1 ◦ p)(Γ ∗).

In other words, Sn is the set of those words that are equivalent to some word with
no symbol in Γ . The motivation for the terminology “stack language” will become
apparent by the end of this section.

Both Dn and Sn are context-free languages over Γ̂ and Dn ⊆ Sn. Indeed, Dn is
the language of “well-formed” words over n pairs (types) of parentheses and Sn is
the language of words u1v1u2v2 · · · ukvkuk+1 where uj ∈ Γ ∗, ∀j ∈ {1, . . . , k + 1} and
vi ∈ Dn ∀i ∈ {1, . . . , k}. A context-free grammar for Sn may have the productions:

S → US | VUS | V | ε, U → z1 | · · · | zn,
V → VV | z1Vz1 | · · · | znVzn | z1z1 | · · · | znzn,

where {S, U, V} is the set of nonterminals with S initial symbol. This grammar shows
that Sn is not inherently ambiguous (the grammar is unambiguous). Dn and Sn will be
denoted by D(Γ ) and S(Γ ) when we intend to emphasize the alphabet Γ over which
they are constructed.

Definition 2 Let X, Y be two alphabets such that Y ⊆ X. The projection of X∗
onto Y∗ is the surjective homomorphism πY : X∗ → Y∗, given by πY(x) = ε, ∀x ∈
X \ Y and πY(y) = y, ∀y ∈ Y.

In other words, the projection of a word w in X∗ is obtained by “erasing” all the
symbols of w that are not in Y. The projection is extended in a natural way to work
on languages.

Definition 3 Let U, V be two disjoint alphabets and L ⊆ U∗ be a nonempty language.
The embedding of V into L is the largest (inclusionwise) language E(V, L) ⊆
(U ∪ V)∗ that satisfies:

πU
(E(V, L)

) = L ∪ {ε}.
By convention, E(V, ∅) = ∅.

Properties:

1. If u1 · · · uk ∈ L with u1, . . . , uk ∈ U, then

v1u1v2 · · · ukvk+1 ∈ E(V, L), ∀v1, . . . , vk+1 ∈ V∗.

Aside of these words, E(V, L) contains solely the words of V∗.
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2. L ⊆ E(V, L) and E(V, U+) = E(V, U∗) = (U ∪ V)∗.
3. If L1 ⊆ L2 then E(V, L1) ⊆ E(V, L2).
4. E(V, L1 ∪ L2) = E(V, L1) ∪ E(V, L2), E(V, L1 ∩ L2) = E(V, L1) ∩ E(V, L2) and

E(V, L1L2) = E(V, L1)E(V, L2). Consequently, the application

E : 2U∗ → 2(U∪V)∗ , given by L → E(V, L)

is a monoid morphism with respect to either union or intersection, and is a semi-
group morphism with respect to concatenation.

5. If L �= ∅ then

E(V, L) = π−1
U (L ∪ {ε}).

Consequently, if L is regular then E(V, L) is also regular and if L is context-free
then E(V, L) is context-free as well.

In the following we state a characterization of context-free languages similar to the
well-known Chomsky–Schützenberger theorem. The result is essentially the same, the
differences consisting of the fact that we will use regular languages in place of local
regular languages, projections instead of alphabetic morphisms and “embeddings” in
place of Dyck languages. The importance of this characterization consists of making
the intuitive connection between the languages D(Γ ) and S(Γ ) on one hand, and
the acceptance criteria for PDA: final state and empty stack versus final state, on the
other.

Theorem 1 Let X be an alphabet and L ⊆ X∗ be a nonempty language. The following
statements are equivalent:

(i) L is context-free.
(ii) There exists an alphabet Γ with no symbols in common with X, and a regular

language R ⊆ (X ∪ Γ̂ )∗ such that

L = πX

(
R ∩ E(

X, D(Γ )
))

(iii) There exists an alphabet Γ with no symbols in common with X, and a regular
language R ⊆ (X ∪ Γ̂ )∗ such that

L = πX

(
R ∩ E(

X, S(Γ )
))

Characterization (ii) corresponds to PDA’s acceptance by final state and empty stack
and characterization (iii) corresponds to PDA’s acceptance by final state only.

Proof We prove (i)⇔(iii), the equivalence (i)⇔(ii) being proven in a similar way.
Considering the diagram in Fig. 2, we first notice that π−1

Γ̂
(S(Γ )) = E(

X, S(Γ )
)

–
since the empty word is contained in S(Γ ).

Fig. 2 A characterization of
context-free languages
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Fig. 3 Transformation of a pushdown automaton (PDA) into a nondeterministic finite automaton
(NFA)

(i) ⇒ (iii). Suppose L is a context-free language. Then there exists a PDA A =
(Q, X, Γ , δ, q0, Z0, F) which accepts L by final state. We first construct a “lazy” NFA
(i.e., an NFA with words as transition labels) A′ = (Q∪{q′

0}, X ∪Γ̂ , δ′, q′
0, F) by adding

a new state q′
0 and by setting

δ′(q′
0, Z0) = {q0},

∀p �= q′
0 : δ′(p, xaαR) � q, if (α, q) ∈ δ(p, x, a).

Recall that a denotes the symbol in Γ such that aa ∼ ε. This transformation is
depicted in Fig. 3. It suffices now to denote by R the regular language accepted by
A′. One can observe that A′ simulates the computations of A, except the situations
when A rejects the input caused by a stack mismatch. In other words, A′ simulates
A on R ∩ E(

X, S(Γ )
)
. Projecting this intersection onto X∗ restores the input words

accepted by A.

(iii) ⇒ (i). Let L = πX

(
R ∩ E(

X, S(Γ )
))

for some regular language R ∈ (X ∪ Γ̂ )∗.

Recall that the family of context-free languages is closed under morphisms and
that the intersection between a regular and a context-free language is context-free.
The conclusion follows immediately from the fact that E(

X, S(Γ )
)

is context-free
(Property 5). ��

In the above theorem, the requirement that Γ and X are disjoint may be dropped,
by replacing the projection with an arbitrary monoid homomorphism. For exempli-
fication, we present this technique on a different result, this time in the context of
rational transductions, hence anticipating the main purpose of this paper, that of the
representation of algebraic transductions. Recall that a word transduction over two
alphabets X and Y is simply a relation ν ∈ X∗ × Y∗. By convenience, we view ν as a
mapping from X∗ into 2Y∗

, and we use the short notation ν : X∗ → Y∗.
The First Factorization Theorem ([7, Sect. IX, T. 2.2.]) for rational relations, also

known as Nivat’s representation theorem for rational transductions ([12]), can be
re-stated in terms of projections and identities as following:

Theorem 2 Let X and Y be disjoint alphabets. A transduction ν : X∗ → Y∗ is rational
if and only if there exists a regular language R ⊆ (X ∪ Y)∗ such that

ν = πY ◦ IR ◦ π−1
X ,

where IR is the identity on R (see Fig. 4).

For completeness, we give here a sketch of the proof.

Proof It suffices to observe that given a finite transducer T realizing ν, we can con-
struct a finite automaton A as following: A has the same set of states (and initial and
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Fig. 4 A factorization of
rational transductions

Fig. 5 Nivat’s characterization
of rational transductions

final states) as T and for every transition (p, x, w, q) in T with p, q states, x input word
and w output word, we associate a transition (p, xw, q) in A. We denote by R the
language accepted by A and is easy to observe that projecting any word w ∈ R onto
both X∗ and Y∗ leads to pairs of words in ν. ��

Notice that the requirement that X and Y are disjoint is a rather weak condition,
since in the general case we can always perform a “coloring” (i.e., isomorphic trans-
formation) and ensure this condition. This method leads us to the first factorization
theorem in the general and original form. The process of coloring is depicted in Fig. 5
and is detailed as following:

1. If X and Y are not disjoint, map bijectively Y into a new alphabet Y ′ such that
Y ′ ∩ X = ∅. Extend this mapping to an isomorphism φ1 : Y ′∗ → Y∗. We can
trivially construct a transduction ν′ : X∗ → Y ′∗ such that ν = φ1 ◦ ν′.

2. We can now apply the theorem for ν′, since X and Y ′ are disjoint. Then, there
exists a regular language R′ ⊆ (X ∪ Y ′)∗ such that ν′ = πY ′ ◦ IR′ ◦ π−1

X .
3. In order to replace (X ∪ Y ′)∗ with an arbitrary free monoid, we perform a second

coloring by choosing a new alphabet Z bijectively mapped into (X∪Y ′). As before
we extend this bijection to an isomorphism φ2 : Z∗ → (X ∪ Y ′)∗. Then denote
R = φ−1

2 (R′), which is regular in Z∗.
4. Finally, set h1 = πX ◦ φ2 and h2 = φ1 ◦ πY ′ ◦ φ2. Then we obtained the following

general result:

Theorem 3 A transduction ν : X∗ → Y∗ is rational if and only if there exist an alphabet
Z, two morphisms h1 : Z∗ → X∗ and h2 : Z∗ → Y∗, and a regular language R ⊆ Z∗
such that ν = h2(R ∩ h−1

1 ).
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The formula is interpreted as ν(u) = h2(R ∩ h−1
1 (u)). Notice that the “if” part of

this result is proven trivially, since ν becomes a composition of rational transductions
(projections, identity over regular languages, morphisms and inverse morphisms are
rational).

This technique can be applied to most results in this paper, that are stated for
disjoint alphabets. It is in our belief that the natural way for obtaining transduction
characterizations is to first obtain factorizations through “constants,” i.e. through pro-
jections and identities over predefined languages, and then to generalize them to
work over disjoint alphabets. In the following section we apply similar methods to
characterize algebraic transductions.

Finally, let us recall an important property of rational relations, namely the “uni-
formization property.” The result basically says that for any rational relation ν, one
can find a rational function that “chooses” for every word u in the domain of ν a word
in the image ν(u). To be more precise, we give the following definition and theorem:

Definition 4 Let ν : X∗ → Y∗ be an arbitrary relation. An uniformization of ν

is any function f : X∗ → Y∗ such that dom(f ) = dom(ν) and f (u) ∈ ν(u), ∀u ∈ dom(ν).

Theorem 4 (Rational Uniformization Theorem–[11]) Any rational relation is unifor-
mized by an unambiguous rational function.

Since any rational function f : X∗ → Y∗ (which satisfies that either f (ε) = ε or
f is undefined in ε) is unambiguous ([7, Sect. IX.8, T. 8.1]), the unambiguity prop-
erty mentioned in the previous theorem is somehow redundant. However, a similar
result for algebraic relations would not manifest such redundancy due to the exis-
tence of algebraic functions that are not unambiguous (for example, the identity over
any inherently ambiguous context-free language). Notice that functionality of alge-
braic transductions is clearly an undecidable property – surprisingly, this matter was
reported as an open problem in [5, Sect. 3.5.1, p. 116]. Indeed, given a context-free
grammar, one can construct a pushdown transducer that, for each word generated
by the grammar, it outputs its left derivation. Then the transducer is functional if
and only if the grammar is unambiguous, a property known to be undecidable in
general.

3 Algebraic transductions: characterization

In the previous section we have recalled a representation of rational transductions
(word relations) by means of regular languages and projections/morphisms. A simi-
lar representation can be obtained for algebraic transductions, i.e., for transductions
realized by pushdown transducers. Indeed, such a transduction can be expressed by
means of morphisms and context-free languages, a characterization sometimes used
as a definition:

Definition 5 ([3, Sect. II.4, p. 71]) A transduction τ : X∗ → Y∗ is algebraic if there
exist an alphabet Z, two morphisms h1 : Z∗ → X∗, h2 : Z∗ → Y∗, and a context-free
language L ⊆ Z∗ such that

τ = h2(L ∩ h−1
1 ).
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In the following we present yet another two characterizations of algebraic transduc-
tions, by means of projections/morphisms and either regular languages or rational
relations.

Theorem 5 Let X, Y be disjoint alphabets and τ be a word relation from X∗ to Y∗.
Then the following statements are equivalent:

(i) τ is algebraic.
(ii) There exists an alphabet Γ (disjoint from X and Y) and a regular language R

over X ∪ Γ̂ ∪ Y, such that

τ = πY

(
π−1

X ∩ R ∩ E(
X ∪ Y, S(Γ )

))
,

where πX is the projection of (X ∪ Γ̂ ∪ Y)∗ onto X.
(iii) There exist an alphabet Γ (disjoint from X and Y) and a rational transduction ν

from X∗ to
(
Γ̂ ∪ Y

)∗ such that

τ = πY

(
ν ∩ E(

Y, S(Γ )
))

,

where πY is the projection of (Γ̂ ∪ Y)∗ onto Y.
(iv) There exist an alphabet Γ (disjoint from X and Y) and a rational transduction η

from (X ∪ Γ̂ )∗ to Y∗ such that

τ = η
(
π−1

X ∩ E(
X, S(Γ )

))
,

where πX is the projection of (X ∪ Γ̂ )∗ onto X.

Moreover, the theorem still holds if we replace S(Γ ) by D(Γ ).

Remark 1 To be more precise on the meaning of these notations, we interpret – for
example – the relation used in (ii) as:

τ(u) = πy

(
π−1

X (u) ∩ R ∩ E(
X ∪ Y, S(Γ )

))
,

where we consider πy as the additive extension of the projection to subsets of its
domain.

Proof (i) ⇔ (ii). Figure 6 is a useful companion for this proof. Consider τ to be alge-
braic and let us prove (ii). Let T = (Q, X, Y, Γ , δ, q0, Z0, F) be a pushdown transducer
which realizes τ by final state.

Construct the “lazy” NFA A = (Q ∪ {q′
0}, X ∪ Γ̂ ∪ Y, δ′, q′

0, F) by adding a new
state q′

0 and by defining the transition function as following:

δ(q′
0, Z0) = {q0};

∀p �= q′
0 : δ′(p, xaαRw) � q, if (α, w, q) ∈ δ(p, x, a).

Fig. 6 Characterization of
algebraic transductions by
regular languages
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Fig. 7 First characterization of
algebric transductions by
rational transductions

If we denote by R the language accepted by A′, observe that A′ simulates the
computations of A on inputs in R ∩ E(

X ∪ Y, S(Γ )
)
, hence the conclusion follows

shortly.
Vice-versa, consider that (ii) holds. Notice that R ∩ E(

X ∪ Y, S(Γ
))

is a context-
free language. The fact that τ is algebraic follows immediately from the Nivat-like
characterization of algebraic transductions (Definition 5).

We now prove (i)⇔(iii). We use the diagram in Fig. 7. Consider once again that τ

is algebraic, realized by a pushdown transducer T = (Q, X, Y, Γ , δ, q0, Z0, F), by final
state. Construct the finite transducer T ′ = (Q ∪ {q′

0}, X, Γ̂ ∪ Y, δ′, q′
0, F) with q′

0 new
state and δ′ given by

δ′(q′
0, Z0) = {(ε, q0)};

∀p �= q′
0 : δ′(p, x) � (aαRw, q), if (α, w, q) ∈ δ(p, x, a).

T ′ simulates the computations of T when its output is in E(
Y, S(Γ )

)
, whence the

conclusion follows.
Vice-versa, suppose (iii) holds and consider the identity on E(

Y, S(Γ )
)
, given by

IE(Y,S(Γ )) =
{
(u, u)/u ∈ E(

Y, S(Γ )
)}

.

Since E(
Y, S(Γ )

)
is context-free, trivially IE(Y,S(Γ )) is an algebraic relation over

(Γ̂ ∪ Y)∗. It is also easy to notice that πY ◦ IE(Y,S(Γ )) is also an algebraic relation
in (Γ̂ ∪ Y)∗ × Y∗. Then τ is the composition of a rational relation ν and an algebraic
relation πY ◦ IE(Y,S(Γ )), hence it is algebraic.

We prove now (i) ⇔ (iv). The diagram in Fig. 8 is a companion of this proof. Con-
sidering τ to be algebraic, realized by the pushdown transducer T = (Q, X, Y, Γ , δ,
q0, Z0, F) by final state, we construct a finite transducer T ′ = (Q ∪ {q′

0}, X ∪ Γ̂ , Y, δ′,
q′

0, F) with the transition function given by

δ′(q′
0, Z0) = {(ε, q0)}

∀p �= q′
0 : δ′(p, xaαR) � (w, q) if (α, w, q) ∈ δ(p, x, a).

If we denote by η the rational transduction realized by T ′, one observes that (iv)
holds.

Fig. 8 Second
characterization of algebraic
transductions by rational
transductions
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Conversely, if we consider that (iv) holds, it is easy to observe that π−1
X ∩E(

X, S(Γ )
)

can be realized by a pushdown transducer, hence that τ is a composition of an algebraic
and a rational transduction. It immediately follows that τ is algebraic. ��
Using the coloring technique mentioned in the previous section, we obtain the fol-
lowing known characterizations of algebraic transductions - which cover the case of
non-disjoint alphabets:

Corollary 1 Let X and Y be arbitrary languages (not necessarily disjoint). Then the
following statements are true.

(ii′) τ : X∗ → Y∗ is algebraic if and only if there exist an alphabet Z, a context-free
language L ∈ Z∗ and two morphisms h1 : Z∗ → X∗ and h2 : Z∗ → Y∗ such
that τ = h2 ◦ IL ◦ h−1

1 .
(iii′) τ : X∗ → Y∗ is algebraic if and only if there exist an alphabet Z, a context-

free language L ∈ Z∗, a morphism h : Z∗ → Y∗ and a rational transduction
ν : X∗ → Y∗ such that τ = h ◦ IL ◦ ν.

Notice that this result is somehow stronger than (ii′), since morphisms are par-
ticular cases of rational transductions. The property captured by (iii′) is that
the composition of a rational and an algebraic transduction is algebraic.

(iv′) Similar to (iii′), we can have a factorization τ = ν ◦ IL ◦ h−1.

Observe that all characterizations are by means of only one “variable”: in (ii) a
regular language, in (iii) and (iv) a rational transduction. However, the classical char-
acterizations (Corollary 1 (ii′), for example) use three variables (two morphisms and
a context-free language, in this case). It is not clear which characterizations are more
general; however it appears that Theorem 5 can be applied arguably more easily than
Corollary 1, since it bears more information.

In Fig. 9 we detail the coloring used to obtain (ii′) of Corollary 1 from (i) of
Theorem 5. Since we work with three disjoint alphabets (X, Γ , and Y), we require

Fig. 9 A coloring that infers (ii′) from (ii)



S. Konstantinidis et al.

the coloring of both X and Y. φ1, φ2 and φ3 are colorings (isomorphisms) and R is
a regular language given by (ii). We also have L = φ−1

3 (R), h1 = φ1 ◦ πX ′∗ ◦ φ3 and
h2 = φ2 ◦ πY ′∗ ◦ φ3 that are obviously homomorphisms which verify τ = h2 ◦ IL ◦ h−1

1 .
To conclude this section, we give a “matrix representation” of algebraic transduc-

tions, based on the characterization of Theorem 5.

Definition 6 Let X and Y be two disjoint alphabets. An algebraic matrix rep-
resentation (AMR, for short) from X∗ into Y∗ is a tuple M = (Γ , Q, q0, F, µ)

where

• Γ is a stack alphabet, having no symbols in common with X ∪ Y;
• Q is a finite set of states;
• q0 ∈ Q is an initial state;
• F ⊆ Q is a set of final states and
• µ is a semigroup morphism from X∗ into the multiplicative monoid of the semiring

[
Rat(Γ̂ ∪ Y)∗

]Q×Q
,

µ : X∗ →
[
Rat(Γ̂ ∪ Y)∗

]Q×Q
.

The transductions |MF |, |MS| : X∗ → Y∗ realized by M are defined by

|MF |(w) = πY

⎛

⎝
⋃

q∈F

µ(w)q0q ∩ E(
Y, S(Γ )

)
⎞

⎠ ,

|MS|(w) = πY

⎛

⎝
⋃

q∈Q

µ(w)q0q ∩ E(
Y, D(Γ )

)
⎞

⎠ .

MF will be called an “algebraic matrix representation by final state,” and MS will
be called an “algebraic matrix representation by final state and empty stack.” Their
corresponding families of transductions will be denoted by AMRF and AMRS respec-
tively. In the following we state that both families of AMR are one with the family of
algebraic transductions from X∗ into Y∗.

Corollary 2 Let X and Y be two disjoint alphabets and τ be a transduction from X
into Y. The following statements are equivalent:

(i) τ is algebraic.
(ii) There exists an AMRF M such that τ =| M |.

(iii) There exists an AMRS M such that τ =| M |.
In other words,

AMRF = AMRS = Alg(X∗ × Y∗).

Proof This is a direct consequence of Theorem 5, affirmation (iii), in which we replace
the rational transduction ν with its matrix representation (see [13, Sect. IV.1.5.b] for
an introduction to matrix representations for rational relations). ��
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4 Uniformization of algebraic transductions

Our next purpose is to use the properties of rational transductions in order to produce
an uniformization of algebraic transductions. Essentially, considering the factorization
in Fig. 7, we investigate the situation when ν is replaced by its uniformization: we will
see that in specific circumstances we indeed obtain an uniformization of τ . However,
we could not produce an uniformization for the most general case, and it is in our
belief that this is probably not possible.

We first give a uniformization result that can be drawn directly from the existing
properties of rational and algebraic transductions. In the following, by AlgF we denote
the family of algebraic functions, and by UAlgF the family of unambiguous algebraic
functions (i.e., of those functions realized by unambiguous pushdown transducers).
Similarly, by RatF we denote functions realized by finite transducers.

Proposition 1 Any algebraic relation in Rat ◦ AlgF is uniformized by an algebraic
function. Any algebraic relation in Rat ◦ UAlgF is uniformized by an unambiguous
algebraic function.

Proof Let τ : X∗ → Y∗ be an algebraic transduction which accepts a factorization
τ = ν ◦ η with ν : Z∗ → Y∗ rational relation and η : X∗ → Z∗ algebraic function
(X, Y, Z are alphabets). By the uniformization theorem for rational transductions
(Theorem 4), there exists a rational unambiguous function ν′ : Z∗ → Y∗ which
uniformizes ν. Then, ν′ ◦η clearly uniformizes τ , by the fact that η is a function as well
and its codomain has remained unchanged. If η is unambiguous then ν′ ◦ η becomes
unambiguous as well, since it is known (see, for example, [4]) that RatF ◦ UAlgF =
UAlgF. ��
Let us give an intuitive description of the factorization of algebraic transductions
depicted in Fig. 7 and reproduced (and interpreted) for convenience in Fig. 10, in
terms of homomorphisms. The transducer for ν was constructed in such way, that
it simulates the computations of the initial pushdown automaton in terms of state
transitions triggered by the input and ignoring the correctness of stack operations.
Then, the identity over a stack language does nothing more than filter out all those
computations that are invalid from the stack point of view. Finally, the homomorphism
in the last stage extracts from the remaining valid computations the corresponding
output.

As mentioned in the introduction of this section, we investigate sufficient conditions
in which the uniformization of ν, as shown in the decomposition of τ in Fig. 10, triggers
an uniformization of τ .

Fig. 10 Factorization of algebraic transductions–an interpretation
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Definition 7 Let A be an arbitrary set and D = {Dj}j∈J be an arbitrary family of sets.
We say that A separates D if for any nonempty set Dj ∈ D, either Dj ⊆ A or
Dj ∩ A = ∅.

Notice in this definition that if D1, D2 are two sets of D such that D1 ∩ D2 �= ∅ then
they are either both included in A or neither has common elements with A. Notice
also that the condition in the previous definition applies only to nonempty sets of the
family (∅ always satisfies both relations).

Theorem 6 Let τ : X∗ → Y∗ be an arbitrary algebraic transduction and h ◦ IL ◦ ν be
a factorization of τ , with L a context-free language over an alphabet Z, ν : X∗ → Z∗ a
rational relation, and h : Z∗ → Y∗ a monoid morphism.

(i) If L separates {ν(x)}x∈X∗ , then τ can be uniformized by an algebraic function.
(ii) If in addition L is unambiguous, then τ is uniformized by an unambiguous

algebraic function.

Proof We uniformize ν by an unambiguous rational function ν′ and prove that the
new composition τ ′ = h ◦ IL ◦ ν′ is an algebraic uniformization for τ . It is clear that
τ ′ is an algebraic function. It remains to prove that dom(τ ) = dom(τ ′). Assume by
contrary that there exists a word u ∈ dom(τ ) \ dom(τ ′). Since the domain of h is Z∗,
it follows that ν′(u) �∈ L, as the only possible reason for which u �∈ dom(τ ′). But since
L separates {ν(x)}x∈X∗ , and since ν′(u) ∈ ν(u), we infer that ν(u) �∈ L. This further
implies that u �∈ dom(τ ) – a contradiction. Hence we have proven that τ ′ is an alge-
braic uniformization of τ . For the second implication, we have that IL is in UAlgF, by
the fact that L is unambiguous. Then τ ′ ∈ RatF ◦ UAlgF ◦ RatF = UAlgF. ��
Corollary 3 Let X and Y be disjoint alphabets, and consider the factorization of τ

as in Theorem 5 (iii): τ = πY

(
ν ∩ E(

Y, S(Γ )
))

. Then τ can be uniformized by an

unambiguous algebraic function if E(
Y, S(Γ )

)
separates {ν(x)}x∈X∗ .

Proof We apply the previous result. It suffices to observe that E(
Y, S(Γ )) is an unam-

biguous context-free language. ��
Let us interpret the conditions of Theorem 6/Corollary 3. Let A be a PDA or PDT

with acceptance by final state, and let A′ be the NFA obtained from A by keeping
only the input label/symbol for each transition (i.e., we simply discard all the stack
operations and output symbols if dealing with a transducer). A and A′ have exactly
the same transition graph (except the labels): their edges and vertices are in bijective
correspondence.

Definition 8 We say the A has a fair stack if and only if for any word w in the
domain of A the following property holds:

for any successful computation path in A′ that recognizes w there corresponds a
successful computation path in A, that follows exactly the same transitions as in A′.

In other words, if w is in the domain of A (i.e., it is accepted by A), then all the
successful paths for w in A′ and A coincide (in A, the stack does not crash any of these
paths ). Notice that the definition does not mention anything about the words that are
not in the domain of A (we are not interested in the rejected words).
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Fig. 11 Pushdown transducer that has a uniformization and does not satisfy Theorem 6

Lemma 1 An algebraic transduction satisfies the conditions of Theorem 6/Corollary 3
if and only if it is realized by a PDT with fair stack.

Proof The proof is straightforward. ��
Example 1 The transducer (PDT) in Fig. 11 represents the transduction τ = {(aa, 00),
(aa, 11)}, hence aa is a word in its domain. For this word, the corresponding NFA
(in the same figure) has a successful computation: s0t1s1t2s2, where t1 and t2 are
used to denote the exact transitions that are followed in the computation path (see
the figure). However, this path is not successful in the PDT, since the transition t2
attempts to pop a B from the stack, and the previous transition t1 has pushed an A
onto the stack. This implies that the transducer does not have a fair stack. Notice that
despite this fact, the transducer accepts a trivial uniformization, a fact which shows
that Theorem 6/Corollary 3 give a condition for uniformization that is sufficient but
not necessary.

It is in our intention to continue the study of fair stack pushdown machines; however,
this work is beyond the scope of the present paper. In particular, if we denote by
fsCF the family of context-free languages that are accepted by fsPDA (PDA with fair
stack), we leave as an open question whether

CF = fsCF

or not (we believe that the equality does not hold). Notice that if the equality holds,
then Theorem 6 becomes an uniformization theorem for algebraic transductions in
general. If the equality does not hold, then such uniformization still remains an open
problem. Notice also that the “fair stack” property does not reduce pushdown ma-
chines to a trivial status; for example, there exist a PDA with fair stack for {aibi/i ≥ 0}
and for other CF languages that are not regular. In this matter, more needs to be
investigated.

Example 2 In the following, we give a simple example of obtaining an uniformiza-
tion for an algebraic transduction–as application of Corollary 3. Let us consider the
pushdown transducer A, given in Fig. 12. This transducer has a fair stack, hence we
can use the constructive proof of Theorem 6 in order to algorithmically obtain an
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Fig. 12 Pushdown transducer that satisfies the conditions of Theorem 6

uniformization for its corresponding transduction. Denote by τ the algebraic trans-
duction realized by A, and observe that

τ = {(aibj, 0k)/0 ≤ k ≤ j ≤ i, j even} ∪
∪ {(aibj, 1k)/0 ≤ k ≤ j ≤ i, j odd} .

We denote X = {a, b}, Y = {0, 1}, Γ = {Z0, A}, Z = X ∪ Y ∪ Γ̂ , L = E(Y, S(Γ )),
and h = πY . It remains to find ν in the factorization τ = h ◦ IL ◦ ν as in Theorem 6
and Fig. 10. By following the construction depicted in Fig. 15, we obtain the finite
transducer in Fig. 13. This finite transducer represents the following rational relation:

ν(aibj) =

⎧
⎪⎨

⎪⎩

Z0Z0A(AAA)iA
(

A(0 + ε)
)j

, if j even

Z0Z0A(AAA)iA
(

A(1 + ε)
)j

, otherwise,

Fig. 13 Finite transducer for the factorization corresponding to Fig. 12
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whose domain is {aibj/i, j ≥ 0}. We further notice that

(IL ◦ ν)(aibj) =
{

ν(aibj), if j ≤ i

∅, otherwise.

Suppose we have the following uniformization for ν:

ν′(aibj) =
{

Z0Z0A(AAA)iA(AA0)
j
2 , if j even

Z0Z0A(AAA)iAA1(AA1)
j−1

2 , if j odd.

It is easy to see that ν′ indeed uniformizes ν, since it is realized by a finite transducer
obtained from the transducer for ν (Fig. 13) by eliminating several transitions in order
to ensure functionality. Then, ν′ induces an uniformization τ ′ = h ◦ IL ◦ ν′ for τ ,
given by

τ ′ =
{
(aibj, 0

j
2 )

/
0 ≤ j ≤ i, j even

}
∪

{
(aibj, 1

j−1
2 +1)

/
0 ≤ j ≤ i, j odd

}
.

An unambiguous transducer for τ ′ can be obtained by removing from the transducer
A in Fig. 12 the following transitions: in the upper cycle, the lower transition (b, A/

ε : 0) and upper transition (b, A/ε : ε), and in the lower cycle, the lower transition
(b, A/ε : ε) and the upper transition (b, A/ε : 1). One can check that the obtained
transducer is unambiguous and therefore τ ′ is unambiguous.

Corollary 4 Let τ : X∗ → Y∗ be an algebraic transduction realized by an unambig-
uous pushdown transducer with a fair stack. Then τ is functional and there exist an
alphabet Z, a context free language L ⊆ Z∗, a morphism h : Z∗ → Y∗ and a rational
function ν : X∗ → Z∗ such that τ = h ◦ IL ◦ ν.

Proof The diagram in Fig. 14 is a rewriting of the diagram in Fig. 7. We invoke the
construction of ν from τ , as detailed in the proof of Theorem 5. If τ is given by a
PDT T with fair stack, we construct a finite transducer T ′ which realizes τ , as shown
in Fig. 15. It is clear from the construction that, if T is chosen to be unambiguous
(any input word is the label of at most one successful computation in T) then T ′
becomes unambiguous as well, hence ν is actually a rational function. Finally, τ is the
composition of functions, hence it is functional.

Notice that if T did not have a fair stack we could not reach this conclusion since
T ′ would not necessary be unambiguous. ��

It remains for further investigation to find (if there exist) necessary and sufficient
conditions such that an algebraic transduction is uniformized by an unambiguous
algebraic function.

Fig. 14 A companion for the
proof of Corollary 4
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Fig. 15 Transformation of a PDT into a FT

5 The anatomy of pushdown transducers

In the following we define a new family of algebraic transductions, prove that it is a
proper subfamily and characterize it. We further use these transductions to investigate
the algebraic mechanisms behind a pushdown transducer.

Definition 9 Let A = (Q, X, Γ , δ, q0, Z0, F) be a pushdown automaton. The stack
transduction defined by A is the transduction sA : X∗ → Γ ∗, given by

sA(w) = {γ /∃q ∈ F s.t. (q0, w, Z0) � (q, ε, γ )}
In other words, the stack transduction associates an accepted input word with the
“stack residue” left at the end of the computation. Notice that, since there may be
multiple successful computations for a given input, a stack transduction is indeed a
relation and not necessarily a function.

In the following we sometime consider “lazy” PDA, i.e., transducers that have
transitions with words as input labels, rather than letters (or ε). We may do so in the
virtue of the following property: given a lazy PDA A, there exists an equivalent PDA
B (standard) such that sA = sB. Indeed, we may transform each transition in A labeled
with an input word of length greater than one into a chain of transitions (by adding
new states) where we “keep the stack working” by artificially pushing and popping a
special stack symbol.

We denote by AlgS the family of all stack transductions from X∗ to Γ ∗. Then the
following inclusion holds.

Proposition 2

AlgS ⊂ Alg,

and the inclusion is strict.

Proof For the inclusion, it suffices to remark that given a pushdown automaton, we
can transform it into a pushdown transducer by adding output transitions from every
final state (which becomes non-final) to a new final state with a loop which “dumps”
the stack on an output tape.

To show that the inclusion is strict, we observe that the transduction τ = {(ai, bici)/

i ≥ 0} is algebraic, but is not a stack transduction, as explained in the following.
A pushdown transducer for τ reads a’s from the input tape, and for each a it pushes

a corresponding c onto the stack and it writes a b on the output tape. When the input
is exhausted, it “dumps” the content of the stack on the output tape, by an ε-input
loop. This construction shows that τ is algebraic.
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Suppose there exists a PDA A which realizes τ ; in other words, there exists a PDA
which reads a number i of a’s from the input tape and upon acceptance, its stack
contains the word bici. We claim that this machine can be modified into a PDT that
realizes the relation τ ′ = {(ai, aibici)/i ≥ 0}. This will lead to a contradiction, due to
the fact that τ ′ is not algebraic (by a well-known property of algebraic transducers, of
mapping their domain into a context-free language). We take the PDA A, augment
to it an output tape, and modify its transitions to write on the output tape the symbols
read from the input. We add extra transitions from all final states, such that at the
end of scanning, the transducer “dumps” the contents of its stack on the output tape.
Therefore, while reading ai the transducer writes ai and stores bici in its stack. Then,
at the end of scanning it writes bici (concatenating to the existing ai) to the output
tape. The outcome is a computation for (ai, aibici). ��
Remark 2 AlgS �= AlgS−1; in other words, the family of stack transductions is not
closed under the “inverse” operator. Indeed, take for example the transduction
{(aibi, ε)/i ≥ 0}. This is a stack transduction; however its inverse is not (we could
not produce aibi on a stack, unless we had available a second stack–and then we
would end up with a Turing machine). Nevertheless, AlgS−1 ⊆ Alg since AlgS ⊆ Alg
and Alg is closed under inverse.

Given the stack language S(Γ ) – as defined in the introduction – we define a trans-
duction which “eliminates paired symbols”. In other terms, the transducer will have
S(Γ ) as its domain and for a given word w ∈ S(Γ ), it will output the unique word
γ ∈ Γ ∗ such that w ∼ γ , where ∼ is the restricted Dyck congruence. This is certainly
an algebraic function, and let us denote it by σ : Γ̂ ∗ → Γ ∗, given by

σ(w) = γ , where w ∼ γ , γ ∈ Γ ∗.

Notice that σ itself is a stack transduction.

Theorem 7 A transduction s : X∗ → Γ ∗ is a stack transduction if and only if there
exists a rational transduction ν : X∗ → Γ̂ ∗ such that s = σ ◦ ν.

Proof The diagram for this result is depicted in Fig. 16. For the “only if” part, we are
given a PDA A such that sA = s and we construct a finite transducer for ν, similar to
that in the proof of Theorem 5 (iii). For example, if (p, x, a/α, q) is a transition in A,
in the transducer for ν we have a corresponding transition (p, x : aαR, q). Then, the
transduction σ will both filter out the words which are not in S(Γ ) and will produce
(write on an output tape) the “stack residue”, i.e., what remains in the stack of A upon
acceptance.

For the “if” part, we proceed as following.

1. Let T be a transducer for ν with the initial state q0. First, we augment to Γ (and
Γ , respectively) the new symbol Z0 (and Z0, respectively) and we add to T a new

Fig. 16 A characterization of
stack transductions
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initial state q′
0 and the transition (q′

0, ε : Z0, q0). This will ensure that all output
words start with Z0.

2. We modify each transition of T in such way that any output label will start with a
word in Γ (the new Γ ). We do so in two steps (2 and 3). First, we modify all the
transitions of T as shown in Fig. 17.

3. Secondly, for each output label β of every transition in T, we perform a factoriza-
tion into β = β1 . . . βk such that βi ∈ Γ Γ ∗. In other words, every factor of β starts
with a symbol in Γ and that symbol is the only symbol in Γ which it contains. For
convenience we denote each factor of β as βi = aiαi, to emphasize the letter in Γ .
We then add new states and transitions for each factor of β, as shown in Fig. 18.
The newly obtained transducer realizes a transduction ν′ with the same domain
as ν and which differs from it only by the occurrences of Z0 and Z0. Notice that
this factorization is possible due to the previous transformation which ensures
that each “β” starts with Z0.

4. Transform all transitions of the new finite transducer into pushdown transitions
as following: a transition (p, x, aα, q) becomes (p, x, a/αR, q). In other words, if
initially the transition was outputting aα on an input x, it now pops a from the
stack and pushes αR.

5. We make each final state non-final. From all these states we add one extra tran-
sition to a new final state, that does nothing else but popping Z0 from the stack
(notice that previously, all computations were ending by pushing Z0 onto the
stack).

Fig. 17 Addition of Z0 and Z0 to all transitions

Fig. 18 Factorization of output labels:β = a1α1 . . . akαk
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One can check now that the obtained PDA realizes σ ◦ ν “in its stack,” hence proving
that s is a stack transduction. ��

There are still several questions about stack transductions left unexplored. For
example, how are the languages of two pushdown automata which realize the same
stack transduction related? We have also not investigated yet closure properties of
stack transductions, and their composition with other types of transductions. Here,
our main purpose is to “dissect” the pushdown automaton into its elementary compo-
nents, among which stack transductions play a major role. Moreover, we can associate
a stack transduction to every pushdown transducer: it is the stack transduction realized
by its input automaton (the automaton obtained by ignoring the output).

Notationwise, for every pushdown transducer T, we denote by T−1 the pushdown
transducer obtained from T by interchanging its input and output labels. For exam-
ple, if in T there exists a transition (p, x, a/α : y, q), in T−1 there is a corresponding
transition (p, y, a/α : x, q). We denote by sT the stack transduction of T and by sT−1

the stack transduction of T−1.

Proposition 3 For every pushdown transducer T, realizing the transduction τ , the fol-
lowing relation holds:

sT−1 ◦ τ = sT .

Proof The key point is to observe that every successful computation of T produces
a triplet (u, γ , v), where u is the input word, v is the output word and γ is the stack
“residue.” Moreover, T−1 produces exactly the same triplets as T, with the first and
the third component interchanged. The tuple (u, γ ) is in sT and the tuple (v, γ ) is in
sT−1 . Then, the conclusion follows shortly. ��
In Fig. 19 we have related different transductions present in a pushdown transducer T:

• τ is the algebraic transduction realized by T;
• σ is the transduction which eliminates matching stack symbols, as previously

defined;
• sT is the stack transduction realized by T and sT−1 is the stack transduction realized

by the transducer T−1 obtained from T by interchanging the input with the output
in every transition;

• ν1 is the rational transduction realized by a finite transducer obtained from T as
following: it has the same set of states (and same initial and final states) as T and
for every transition (p, x, a/α : y, q) in T it has a transition (p, x : aαR, q) (it ignores
the output of T)

Fig. 19 The anatomy of a
pushdown transducer
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• ν2 is the rational transduction realized by a finite transducer obtained from T as
following: it has the same set of states (and same initial and final states) as T and
for every transition (p, x, a/α : y, q) in T it has a transition (p, aαR : y, q).

Then, the following relations hold (the diagram commutes):

• τ = ν2 ◦ IS(Γ ) ◦ ν1,
• sT = sT−1 ◦ τ ,
• σ ◦ ν1 = sT and sT−1 ◦ ν2 = σ .

6 Conclusion

In this paper we have studied several aspects of “context-freeness,” as reflected in
languages and transductions. We have given several representations for both context-
free languages and algebraic transductions and we have succeeded in uniformizing
the latter in particular cases. Finally, we have exposed “under the hood” of pushdown
transducers and exhibited a special case of transductions inherently present in every
pushdown machine: the stack transduction.

Perhaps one of the most significant points made in our work is to show that “heavy”
algebraic results can be obtained by simply manipulating the transition labels of vari-
ous machines. Consequently, we hope to have demystified a few classical results and
to have produced several new, along with some useful techniques.

There are certainly several matters left for further work, and we believe, in general,
that the entire topic of algebraic transductions deserves more vigorous attention from
the research community. In direct relation to the results presented in this paper, we
recall the open problem: it is still not clear how powerful the so-called “fair stack”
pushdown automata and transducers are. Are they as powerful as general pushdown
transducers? If yes, this would have several important consequences – one already
mentioned. Otherwise, if they are proven to represent a strict subfamily of CF lan-
guages and algebraic transductions, then they deserve their own study. Another matter
of further investigation is related to stack transductions, and a few suggestions for fur-
ther work are presented previously. Finally, it is worth trying our techniques on other
related topics – for example, we have already applied successfully these techniques
on a study (pending) of length-preserving rational relations.
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