
On Weakly Ambiguous Finite Transducers

Nicolae Santean and Sheng Yu

University of Western Ontario, London, ON N6A 5B8, Canada,
Department of Computer Science

Abstract. By weakly ambiguous (finite) transducers we mean those
transducers that, although being ambiguous, may be viewed to be
at arm’s length from unambiguity. We define input-unambiguous (IU)
and input-deterministic (ID) transducers, and transducers with finite
codomain (FC). IU transductions are characterized by nondeterministic
bimachines and ID transductions can be represented as a composition
of sequential functions and finite substitutions. FC transductions are
recognizable and can be expressed as finite unions of subsequential func-
tions. We place these families along with uniformly ambiguous (UA) and
finitely ambiguous (FA) transductions in a hierarchy of ambiguity. Fi-
nally, we show that restricted nondeterministic bimachines characterize
FA transductions. Perhaps the most important aspect of this work con-
sists in defining nondeterministic bimachines and describing their power
by linking them with weakly ambiguous finite transducers (IU and FA).

1 Overview

Arguably one of the most intriguing machines that realize rational transductions
are the bimachine, designed by Schutzenberger ([11]) and studied, among others,
by Eilenberg who stated their importance in [3, §11.7, Theorem 7.1, p. 321]. A
bimachine is a compact representation of the composition of a left and a right
sequential transducer, and it characterizes the family of rational functions. A few
variations of the original design have been studied in [9], where it has been shown
that the scanning direction of its two reading heads does not matter. A natural
question which has not been addressed so far is “what family of transductions
are realized by bimachines that operate nondeterministically?”. We show that
these machines characterize the family of transductions that can be written as a
composition of a rational function and a finite substitution. They are equivalent
to the so-called input-unambiguous transducers (IU), which are close relatives
of the classical unambiguous transducers. We also show that nondeterministic
bimachines can “simulate” (i.e., they give a representation of) rational relations
with finite codomain (FC). Surprisingly, we prove that FC transductions belong
strictly to the family of recognizable relations and that they can be written as
a finite union of subsequential functions. We notice that nondeterministic bi-
machines are a compact representation of the composition of a left sequential
transducer and a right input-deterministic (ID) transducer - which is a close
relative of the classical right sequential transducer. Finally, we define restricted

nondeterministic bimachines to be those which do not reset themselves at each
computation step. Surprisingly, we observe that this restriction increases their
representation power, allowing them to characterize the entire family of finitely
ambiguous (FA) rational relations. Basically, the reset/no-reset dichotomy re-
veals the difference between IU and FA families. Thus, by investigating the com-
putational power of nondeterministic bimachines, we have been led to a study
of various degrees of weak ambiguity in finite transducers.

The paper is structured as follows. In Section 2 we introduce transducers and
ambiguity. We give a normalized form for IU transducers and we characterize ID
transductions. Theorem 1 states the connection between IU and ID transduc-
tions by means of right sequential functions. In Section 3 we build a hierarchy
of ambiguity by introducing FA, UA and FC transductions and by establish-
ing their mutual relations. Since FC is a newly introduced family, we give a
Mezei-like characterization of FC transductions, thus proving their recognizabil-
ity (Theorem 2) and leading to a representation as a finite union of subsequential
functions. Section 4 holds the most important results of the paper: theorems 3, 4
and 5. We define several types of nondeterministic bimachines, show that some
types are equivalent and characterize the family of IU transductions, and reveal
that restricted nondeterministic bimachines characterize FA transductions. All
the proofs are omitted and can be found in [10].

2 Input-Unambiguous and Input-Deterministic

Finite Transducers

In the following we assume known basic notions of automata theory ([5], [8],
[13]). By DFA and NFA we understand deterministic and nondeterministic finite
automata, and by ǫ-free NFA we understand NFA with no ǫ-transitions, where
ǫ denotes the empty word.

By a finite transducer over the alphabets X and Y we understand a finite au-
tomaton over the product of free monoids X∗×Y ∗. In other words, a transducer
is a finite automaton whose transition labels are elements of X∗ × Y ∗, with the
meaning that the first component of the label is an input word and the second
component is an output word. It is well known that finite transducers realize
rational word relations (see for example [8, §IV.1.2, p. 566]), denoted by
Rat(X∗ × Y ∗), or simply Rat when the alphabets are understood. By RatF we
understand the family of rational functions.

Formally, a transducer is a tuple T = (Q, X, Y, E, q0, F), where Q is a set of
states, X, Y are alphabets, q0 is an initial state, F is a set of final states and E is a
finite set of transitions which are elements of Q×X∗×Y ∗×Q. The transduction
(binary word relation) realized by T will be denoted by |T |: X∗ → Y ∗ and is
defined similarly to the language accepted by an NFA. The transducer T is
normalized if the following conditions hold:

1. E ⊆ Q × (X ∪ {ǫ})× (Y ∪ {ǫ})× Q ;
2. F = {qf}, qf 6= q0 ;

3. (p, x, α, q) ∈ E ⇒ p 6= qf , q 6= q0 .

It is known that any rational transduction is realized by a normalized finite
transducer and that any transducer can algorithmically be normalized.

By a useful state (or transition, path, loop, etc.) in a transducer we un-
derstand a state (or transition, path, loop, etc.) which is used in at least one
successful computation. By an ǫ-input loop we understand a loop (in the tran-
sition graph) whose transitions have only ǫ-input labels.

The notion of ambiguity for automata (and transducers) relates to the num-
ber of possible successful computations performed by an automaton for a given
input. For example, a DFA is unambiguous, whereas an NFA can have various
degrees of ambiguity.

Definition 1. An ǫ-NFA A is unambiguous (UNFA) if each word is the label of
at most one successful computation in A.

Let T = (Q, X, Y, E, q0, F) be a finite transducer. The input automaton of
T is the finite automaton A = (Q, X, δ, q0, F), where δ is given by

∀x ∈ X∗ : q ∈ δ(p, x) ⇔ ∃α ∈ Y ∗ : (p, x, α, q) ∈ E, where p, q ∈ Q .

If the transducer is normalized, then its input automaton is an ǫ-NFA, otherwise
it may be a lazy NFA (its transitions are labelled with words rather than letters
or ǫ.).

Definition 2. A finite transducer T is called input-unambiguous (IU, for
short) if its input automaton is unambiguous (i.e., an UNFA).

Notice that a transducer can still have different successful paths with same input
labels and nevertheless be input-unambiguous. One such situation is depicted in
Figure 1. Notice also the difference between this definition and the classical

b

a b

a

b/β

b/γ

b/δ

a/β

a/α

b/ψ

Fig. 1. An IU transducer and its input automaton.

definition of unambiguous transducers ([1, p. 114]).

Remark 1. In our formalism, we imply that an IU transducer cannot have useful
ǫ-input loops, in the same way as an unambiguous automaton cannot have useful
ǫ-loops.

An IU transduction is a transduction realized by an IU transducer. Given
an arbitrary IU transducer, there exists an equivalent IU transducer in normal
form, in the sense mentioned at the begining of Section 2. Indeed, the standard
normalization algorithm (see for example [1, §III.6, Corollary 6, p. 79]) does not
change the degree of ambiguity of a transducer.

We recall that a trim transducer has only useful states. Without loss of
generality, we follow the convention that if the initial state of a transducer is
also final then the pair (ǫ, ǫ) is realized by the transducer. This convention has
a theoretical explanation which we choose to ignore here, due to its interference
with the definition of ambiguity and normalization.

Lemma 1. Any IU transduction τ : X∗ → Y ∗ with τ(ǫ) = ǫ or τ(ǫ) = ∅
is realized by a trim IU transducer T = (Q, X, Y, E, q0, F) which satisfy the
following conditions:

(i) E ⊂ Q × X × Y ∗ × Q;
(ii) if τ(ǫ) = ǫ then F = {q0, qf}, else F = {qf}, and qf 6= q0;
(iii) (p, x, α, q) ∈ E ⇒ q 6= qf , p 6= q0.

One can notice that it is decidable whether a finite transducer is IU or not.
The decision can be reduced to whether an ǫ-NFA is UNFA or not.

In the following we recall sequential transducers and functions in order to
draw a parallel with ID transducers which will be defined in the following. A
(left) sequential transducer is a tuple T ′ = (Q, X, Y, δ, λ, q0), where Q, X
and Y are as usual and δ : Q × X → Q and λ : Q × X → Y ∗ are partial
functions (transition and output functions) with a same domain (dom(δ) =
dom(λ)), that are extended in the usual way. This transducer is a particular
finite transducer that has all its states final and has the transition set given by
E = {(q, x, λ(q, x), δ(q, x))/(q, x) ∈ dom(δ)}. This type of transducers represents
a subfamily of rational functions: sequential functions. A right sequential

transducer is a sequential transducer that reads its input and writes its output
from right to left. It is known that any rational function can be written as a
composition of a left and a right sequential function ([1]).

Definition 3. An input-deterministic (ID) transducer is a tuple T =
(Q, X, Y, δ, ω, q0) where X, Y are alphabets, Q is a finite set of states, and

δ : Q × X → Q, and ω : Q × X → FP(Y ∗)

are partial functions with the same domain, denoting the transition and the out-
put function. (FP(Y ∗) denotes all finite parts of Y ∗)

In other words, an ID transducer is similar to a sequential transducer, with the
exception that reading an input letter leads to a finite number of output choices.
Notice that a transducer is ID if and only if its input automaton is deterministic
– hence justifying its name. As usual we define the family of ID transductions
to be the family of all transductions that are realized by ID transducers.

Lemma 2. A transduction is ID if and only if it is the composition of a sequen-
tial transduction and a finite substitution.

Theorem 1. Let τ : X∗ → Y ∗ be a transduction with τ(ǫ) = ǫ. Then τ is an IU
transduction if and only if there exist a right sequential function µ : X∗ → Z∗

and an ID transduction ν : Z∗ → Y ∗ such that τ = ν ◦ µ. Moreover, µ can be
chosen to be total and length preserving.

Intuitively, in the above decomposition the sequential transducer represents the
set of unique successful paths of the unambiguous transducer, whereas the ID
transducer represents the nondeterminism of the output process.

It is also worth mentioning that a transduction is IU if and only if it is
the composition of a left sequential function and a “right” ID transducer, fact
that can be proven similar to Theorem 1. Here, by a right ID transducer we
understand a transducer that scans the input from right to left and writes the
output from right to left as well. It is apparent by now the similarity between
this characterization and the characterization of rational functions by right and
left sequential functions.

3 A Hierarchy of Ambiguity

In order to place IU and ID transductions into a proper context, in the following
we recall two known families of rational transductions: finitely and uniformly
ambiguous.

Definition 4. A rational transduction τ : X∗ → Y ∗ is finitely ambiguous

(FA) if | τ(u) |< ℵ0, ∀u ∈ X∗. We say that τ is uniformly ambiguous (UA) if
there is a constant N such that | τ(u) |< N, ∀u ∈ X∗.

These families of transductions have been studied and used in various application
in the past ([4], [6]). For example, it is known that an UA rational transduction
can be written as a finite union of rational functions ([6]), and one can easily
decide whether a rational transduction is in FA (this is equivalent to detecting
non-trivial ǫ-input loops in a finite transducer). However, we are not aware of
whether it is decidable if a rational transduction is in UA or not. Next we aim
at finding the relationship between all these families of rational word relations.

Corollary 1.

IU ⊂ FA .

This is a direct consequence of Remark 1: since an IU transducer has no ǫ-input
loops, any input word can trigger a finite number of words to be written on the
output tape. It affirms that the transductions realized by IU transducers are in
FA, however they are not necessarily in UA. Indeed, the following example shows
an IU transducer which realizes a transduction that is not uniformly ambiguous.

Example 1. The transducer in Figure 2 realizes the transduction τ given by:

∀n ≥ 1 : τ(an) =

{

⋃n
i=1

{xi}, if n is even
⋃n

i=1
{yi}, otherwise

,

a/y, a/ǫ

a/y, a/ǫ

a/x, a/ǫ

a/x, a/ǫ

a/x

a/y

Fig. 2. An IU transducer whose transduction is not UA.

which clearly is not UA, however it is IU. On the other hand, not all rational
transductions which are UA are necessarily IU. The transduction

τ = {(an, xn)/n ≥ 1} ∪ {(an, yn)/n ≥ 1} (1)

(with a, x, y different letters) is UA (notice that it is written as a union of two
rational functions), however it is not IU. Indeed, a transducer T realizing τ must
have two successful computations for each input word an: one outputting xn and
the other yn, for all integers n. If these two successful computations coincide in
the input automaton of T , then in T must exist a successful computation which
“shuffles” x and y on the output tape, hence T cannot be IU.

Definition 5. A rational transduction τ : X∗ → Y ∗ is with finite codomain

(FC) if | τ(X∗) |< ℵ0.

Obviously, it is decidable whether a rational transduction is in FC or not (it is
equivalent to deciding whether the output automaton of a transducer accepts a
finite language or not).

Lemma 3. A rational transduction τ : X∗ → Y ∗ is in FC if and only if it can
be written as

τ =
⋃

i∈I

[Li × Ri] ,

where I is finite, {Li}i∈I are disjoint regular languages and {Ri}i∈I are finite
languages.

One consequence of this lemma is the connection between transductions
with finite codomain and subsequential transductions. Recall that a (left)
subsequential transducer T ′ is a sequential transducer T = (Q, X, Y, δ, λ, q0)
(as defined in Section 2) together with a terminal output function ρ : Q → Y ∗,
that realizes the rational function | T ′ | (w) =| T | (w)ρ(δ(q0, w)). It is known
that there exist rational functions that can not be realized by either sequential
or subsequential transducers. For more on the topic consult [1, §IV.2].

Corollary 2. Any FC transduction can be written as a finite union of subse-
quential functions.

In order to reveal the recognizability of FC transductions we recall that a rec-
ognizable set in a monoid is a set defined by an action over that monoid (see,
for example, [8, p. 252]). Recall also that a subset of the direct product of two
monoids (also a monoid) is recognizable if and only if it can be written as a finite
union of blocks (a block is a direct product of two recognizable sets). This char-
acterization is known as Mezei’s characterization of recognizable sets in direct
product monoids (see [3, Proposition 12.2, p. 68, and the note at p. 75]). Then,
the recognizability of FC is a consequence of Lema 3. In the following, by Rec
we understand the set of recognizable transductions over the alphabets X and
Y , i.e., the family of recognizable subsets of X∗ × Y ∗.

Theorem 2.

FC ⊂ Rec ∩ IU .

Notice that obviously FC ⊂ UA. Notice also that FC and the family of rational
functions overlap, but are incomparable.

Remark 2. Although both FC and ID are included in IU, there is no relation of
inclusion between FC and ID. For example, the transduction µ : {a}∗ → {a}∗

given by

∀n ≥ 1 : µ(an) =

n
⋃

i=1

{ai}

is in ID but not in FC; whereas the transduction ν : {a}∗ → {a, b}∗ given by

∀n ≥ 1 : ν(an) =

{

a, if n is even

b, otherwise

is in FC (and in RatF, incidentally) but not in ID. Consequently, we may also
infer that both FC and ID are strictly included in IU.

In Figure 3 we present a hierarchy describing different levels of ambiguity,
where by dots we denote the areas where we have provided examples, including
the following three:

FC \ (RatF ∪ ID) : τ1(a
n) =

{

{x, y}, if n is even

z, otherwise
,

FA \ (UA ∪ IU) : τ2(a
n) = {ǫ} ∪

⋃n
i=1

xi ∪
⋃n

i=1
yi ,

(UA ∩ IU) \ (ID ∪ RatF ∪ FC) : τ3(a
n) =

{

{x, y}, if n is even

zn, otherwise
.

.

.
. .

.

.

.

IU

UA

FA

ID

FC

Rat

RatF

Fig. 3. Different degrees of ambiguity (dots represent examples).

4 Nondeterministic Bimachines

In the following we consider all input-unambiguous transducers to be trim and
normalized according to Lemma 1. We are now aiming at giving a bimachine-
characterization of IU.

Definition 6. A bimachine B = (Q, P, X, Y, δQ, δP , q0, p0, ω) over X and Y is
composed of

two finite sets of states Q and P ,
a finite input alphabet X and a finite output alphabet Y ,
two partial next state functions

δQ : Q × X → Q and δP : X × P → P ,

two initial states q0 ∈ Q and p0 ∈ P ,
and a partial output function ω : Q × X × P → Y ∗.

The next-state functions are extended to operate on words as follows:

– ∀q ∈ Q and p ∈ P : δQ(q, ǫ) = q and δP (ǫ, p) = p;
– ∀q ∈ Q, p ∈ P, a ∈ X and w ∈ X+:

δQ(q, wa) = δQ(δQ(q, w), a) and δP (aw, p) = δP (a, δP (w, p)).

Notice that function δP “reads” its argument word in reverse. We consider a
similar extension of the output function:

– ∀q ∈ Q and p ∈ P : ω(q, ǫ, p) = ǫ;

– ∀q ∈ Q, p ∈ P, a ∈ X and w ∈ X+:

ω(q, wa, p) = ω(q, w, δP (a, p))ω(δQ(q, w), a, p).

The partial word function realized by B is a function fB : X∗ → Y ∗, defined
by fB(w) = ω(qo, w, p0) if ω is defined in (q0, w, p0) and is undefined otherwise.
Notice that fB(ǫ) = ǫ for any bimachine B. In essence, a bimachine is composed
of two partial automata without final states (more precisely, all states act as final)
and an output function. Indeed, (Q, X, δQ, q0) will denote the left automaton

of B and (P, X, δP , p0) its right automaton.
Bimachines are of great theoretical importance since they are specifically

designed to characterize the family of rational word functions. To our knowledge,
so far there has been no attempts to study nondeterministic bimachines. We
distinguish 3 components of a bimachine which are candidate to nondeterminism:
the left and right automata and the output function. According to this, we define
the following new types of bimachines:

1. FNObm : with finitely nondeterministic output (at each “step” the bimachine
nondeterministically writes a word on the output tape, choosing from a finite
set of choices);

2. NTbm : with nondeterministic transitions (the two underlying automata are
nondeterministic: ǫ-NFA);

3. LNTbm : with left nondeterministic transitions (only the “left automaton” is
nondeterministic);

4. RNTbm : with right nondeterministic transitions (only the “right automaton”
is nondeterministic);

5. NTObm : with both nondeterministic transitions and finitely nondeterministic
output;

and we denote by FNO, NT, LNT, etc. the families of transductions realized by
these types of bimachines.

It is important to observe that at each computation step of an NTbm B,
both the left and the right automata of B are “reset” to their initial state.
This point is made clear in Figure 4. While reading w1, the left automaton
reaches the state q, through the computation(path) labelled w1. However, in
the next computation step, the left automaton reads w1a and performs the
computation labelled w1a that may not overlap with the previous computation
(more precisely, the computation labelled w1a is not necessarily prefixed by the
computation labelled w1). This is due to the fact that the left automaton is reset
to the initial state before reading w1a (it does not continue the computation from
q while reading a).

Theorem 3.

FNO = NT = LNT = RNT = NTO .

In other words, it does not matter which component of the bimachine is nondeter-
ministic. For this reason, we are allowed to employ the term nondeterministic

bimachine in a generic sense.

w1

Automaton
Right

Automaton
Left

w2w1 ab

w1a
wR2

q

r s

pω(q, a, p)

ω(r, b, s)

wR2 b

Fig. 4. NTbm behavior: each computation step involves a “reset”.

It has been shown in [9] that the scanning direction of the reading heads of
a (deterministic) bimachine does not matter. It is natural to question whether
this property still holds for nondeterministic bimachines.

Corollary 3. The parsing direction of the reading heads of a nondeterministic
bimachine does not matter.

The same statement also applies to restricted nondeterministic bimachines - de-
fined later. It tells that convergent, left sequential, right sequential, and divergent
nondeterministic bimachines all have equal power. This is a consequence of The-
orem 3: one may use FNO bimachines and adapt the proof in [9, T.16, p. 135]
to the nondeterministic case.

We are now ready to state one of the main results of this paper, namely a
bimachine characterization of IU rational transductions.

Theorem 4. A transduction τ with τ(ǫ) = ǫ is IU rational if and only if it
is realized by a nondeterministic bimachine.

Consequence of Lemma 2 and Theorem 1 we obtain another characterization
of IU transductions, that by Theorem 4 becomes a characterization of nondeter-
ministic bimachines as well:

Corollary 4. A transduction τ : X∗ → Y ∗ is IU if and only if there exists a
rational function µ : X∗ → Z∗ and a finite substitution σ : Z∗ → FP(Y ∗) such
that τ = σ ◦ µ.

Notice that it is decidable whether a nondeterministic bimachine is single-
valued (realizes a rational function). Indeed, one can first construct an equivalent
IU transducer whose functionality can be decided ([12], [2]). Notice also that the
number of outputs for a given input of an IU transduction is a linear function
of the length of the input and the length of any output is also a linear function

of the length of the input. The converse does not hold, as the transduction (1)
in Section 3, Example 1 is not IU, however it verifies these conditions. Finally,
a surprising consequence of Corollary 4 and Theorem 2 is that any FC trans-
duction can be represented by a composition of a rational function and a finite
substitution as well.

So far we have introduced nondeterministic bimachines with a special be-
havior: at each computation step, these bimachines perform a “reset”, i.e., they
set their underlying automata to be in initial state. Then a natural question
occurs, that is, “what would happen if we inhibit the reset?”. This leads to
the definition of another type of nondeterministic bimachine: a restricted

nondeterministic bimachine. At each step, these bimachines are forced to
continue their computation from the states reached at the previous step (never-
theless, they remain nondeterministic).

Definition 7. A restricted nondeterministic bimachine (RNTbm) is a bima-
chine with nondeterministic transitions (NTbm) and multiple initial states B =
(Q, P, X, Y, δQ, δP , IQ, IP , ω), where the output function is extended as follows:

- ∀q ∈ Q, p ∈ P : ω(q, ǫ, p) = {ǫ};

- ∀w = a1...an ∈ X+ (where ∀i ∈ {1, ..., n} : ai ∈ X),
∀q0 ∈ IQ, p0 ∈ IP , ω(q0, w, p0) is given by:

{ ω(q0, a1, pn−1)ω(q1, a2, pn−2)...ω(qn−2, an−1, p1)ω(qn−1, an, p0) /
q1 ∈ δ∗Q(q0, a1), ..., qn−1 ∈ δ∗Q(qn−2, an−1),
p1 ∈ δ∗P (an, p0), ..., pn−1 ∈ δ∗P (a2, pn−2) }

Notice that by this behavior, the bimachine still operates nondeterministically.
However, the current states of its automata depend on the previous current
states. Surprisingly, although this seems like a restriction, RNTbm’s have a
greater power than NTbm’s. Notice also that we allow multiple initial states
- for improving the formalism. At the beginning of the operation, a RNT bima-
chine sets itself nondeterministically into two initial states corresponding to its
left and right automata.

Theorem 5. A transduction τ with τ(ǫ) = ǫ is in FA if and only if it is realized
by a RNTbm.

This theorem together with Theorem 4 completes the characterization of nonde-
terministic bimachines: they realize either IU or FA rational transductions, with
respect to whether a reset is or not in place. Notice in Figure 3 the gap between
deterministic bimachines (RatF) and nondeterministic ones (IU, FA).

5 Conclusion and Further Work

The goal of this paper has been twofold: to introduce nondeterministic bima-
chines and to study weakly ambiguous finite transducers. Nondeterministic bi-
machines can realize FC relations; however, they can do better than that: they

exactly represent the family of transductions that are the composition of rational
functions and finite substitutions. The transducer counterpart of these machines
is the input-unambiguous transducer, which is a slight variation of the classi-
cal notion of unambiguous transducer. FC relations are recognizable and they
have a particular “Mezei representation”, as a finite union of blocks with certain
properties: their left components are disjoint and their right ones are finite. This
leads in a natural way to the representation of FC relations as a finite union
of subsequential functions - notice the parallel with the uniformly ambiguous
rational relations, that are finite unions of rational functions. Nondeterministic
bimachines can work in two “modes”: with or without reset. We have proven
that suppressing the reset in between computation steps increases their power:
they now characterize the family of finitely ambiguous transductions. Finally,
we believe that all major rational families of transductions have a “bimachine”
counterpart. In particular, we leave for immediate work the study of “ǫ-RNT”
bimachines (i.e., RNT bimachines with ǫ-advancement) that we believe charac-
terize the entire family of rational relations.

References

1. Jean Berstel. Transductions and Context-Free Languages. B. G. Teubner,
Stuttgart, 1979.

2. Meera Blattner and Tom Head. Single Valued a-Transducers. Journal of Computer
and System Sciences, 15(3):310–327, 1977.

3. Samuel Eilenberg. Automata, Languages and Machines, volume A. Academic
Press, Inc., Orlando, FL, 1974.

4. Eitan M. Gurari and Oscar H. Ibarra. A Note on Finite-Valued and Finitely
Ambiguous Transducers. Mathematical Systems Theory, 16(1):61–66, 1983.

5. John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation - 1st edition. Addison-Wesley Longman Publishing Co.
Inc., Boston, MA, 1979.

6. Emmanuel Roche and Yves Schabes. Introduction to Finite-State Devices in Natu-
ral Language Processing. Technical Report TR-96-13, Mitsubishi Electric Research
Laboratories, 1996.

7. Grzegorz Rozenberg and Arto Salomaa. Handbook of Formal Languages. Springer
Verlag, Berlin Heidelberg New York, 1997.

8. Jacques Sakarovitch. Éléments de Théorie des Automates. Vuibert Informatique,
Paris, 2003.

9. Nicolae Santean. Bimachines and Structurally-Reversed Automata. Journal of
Automata, Languages and Combinatorics, 9(1):121–146, 2004.

10. Nicolae Santean and Sheng Yu. Nondeterministic Bimachines and Rational Re-
lations with Finite Codomain. Technical Report 649, ISBN-10: 0-7714-2552-X,
ISBN-13: 978-0-7714-2552-X, University of Western Ontario, 2005.

11. Marcel-Paul Schützenberger. A Remark on Finite Transducers. Information and
Control, 4(2-3):185–196, 1961.

12. Marcel-Paul Schützenberger. Sur les Relations Rationelles. Lecture Notes in Com-
puter Science, 33:209–213, 1975.

13. Sheng Yu. Regular Languages. In [7], 1:41–110, 1997.

