
Fundamenta Informaticae 72 (2006) 1–28 1

IOS Press

Nondeterministic Bimachines and
Rational Relations with Finite Codomain

Nicolae Santean
�

and Sheng Yu

Computer Science Department

University of Western Ontario

London, ON N6A 5B8, Canada

nic@csd.uwo.ca; syu@csd.uwo.ca

Abstract. Bimachines are important conceptual tools used for the characterization of rational word
functions (realized by single-valued transducers). Despite the attention received in the past, these
sequential machines are far from being exhaustively studied. A natural question which has not been
addressed so far is what family of transductions are realized by bimachines that operate nondetermin-
istically. We show that these machines characterize input-unambiguous (IU) rational transductions,
i.e., those transductions that can be written as a composition of rational functions and finite sub-
stitutions. Two more families of rational transductions are defined and related in a natural way to
IU transductions: input-deterministic transductions and rational transductions with finite codomain
(FC). We have shown that FC transductions are recognizable and that they can be expressed as finite
union of subsequential functions. Moreover, they can be realized by nondeterministic bimachines.
Finally, we have defined the so called restricted nondeterministic bimachines and shown that, sur-
prisingly, they are more powerful than nondeterministic bimachines: they characterize exactly the
family of finitely ambiguous rational transductions.

Keywords: Finite transducer, unambiguous automaton, nondeterministic bimachine, rational func-
tion, finite substitution

1. Introduction

The interest in finite (or otherwise) transducers dates back to the early days of Automata Theory. The
reason why today there does not exist an established “Theory of Transductions” is that transducers can

�
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arguably be viewed as a generalization of the concept of automata – in the classical sense. Despite this
view, transducers lack the deserved exposure in literature. In the past, there have been just a handful
of attempts to systematically approach the topic, as for example the work of Eilenberg ([10]) or Berstel
([2]). However, since the 60’s, many sporadic results on finite and pushdown transducers have been
communicated, becoming part of a rich folklore that is waiting to be organized as a stand-alone theory.
To mention just a few, we recall the major early work of Schutzenberger (for example, [26], [25], [27],
or [28]), the work of McKnight, Elgot and Nivat ([15], [11] and [19]); then, in the late 70’s, the work of
Choffrut ([5], [6], or [7]), in the 80’s the work of Culik, Berstel, and Reutenauert ([9], [3], [20], [21]),
or more recently, the work of Mohri ([16], or [17]). Most recent developments in the area can be found
in [4], [1], [13] [8], [18] and other traceable sources. A classical viewed on transducers can be grasped
from [14] and a methodical study of the topic can be found in [23].

Why transducers? In the classical theory, automata are viewed as acceptors, or devices that define
formal languages. In other words, an automaton is a finite specification of a language. However, in most
practical matters, the mere acceptance (or rejection) of words that belong (or do not belong) to a language
is limitative. Most of the time we are interested in processing these words in different ways, and this is
what transducers do. Simplistically, transducers can be viewed as automata that write a “trace” of their
computation on an output tape. This trace can be designed, for example, to represent a processing of the
input word. We say that the transducer is performing a translation, or a transduction. With respect to the
type of the underlying automaton, we have different types of transducers: pushdown, finite, and these
can be single-valued, sequential, subsequential, etc. Arguably the most popular transducers are the finite
ones (finite automata with output) which enjoy a plethora of nice algebraic properties. However, it is in
our perception that the hierarchy of rational transductions/relations (those realized by finite transducers)
is still too coarse, and new types of finite transducers are yet to be discovered.

Arguably one of the most intriguing machines that realize rational transductions are the bimachine,
designed by Schutzenberger ([26]) and studied, among others, by Eilenberg who stated their importance
in [10,

�
11.7, Theorem 7.1, p. 321]. A bimachine is a compact representation of the composition of a left

and a right sequential transducer, and it characterizes the family of rational functions. A few variations
of the original design have been studied in [24], where it has been shown that the scanning direction of
its two reading heads does not matter. In this paper we study another variation on the same theme, that
is, a bimachine that operate nondeterministically. We show that these machines characterize the family
of transductions that can be written as a composition of a rational function and a finite substitution.
They are equivalent to the so-called input-unambiguous transducers (IU), which are close relatives of the
classical unambiguous transducers. We do also show that nondeterministic bimachines can “simulate”
(i.e., they give a representation of) rational relations with finite codomain (FC). Surprisingly, we prove
that FC transductions belong strictly to the family of recognizable relations and that they can be written
as a finite union of subsequential functions. We noticed that nondeterministic bimachines are a compact
representation of the composition of a left sequential transducer and a right input-deterministic transducer
– which is a close relative of the classical right sequential transducer. Finally, we have defined restricted
nondeterministic bimachines, those who do not reset themselves at each computation step. Surprisingly,
we observed that this restriction increases their representation power, allowing them to characterize the
entire family of finitely ambiguous (FA) rational relations. Basically, the reset/no-reset dichotomy reveals
the difference between IU and FA families.

The paper is structured as following. In the first section we recall a few basic notions (as finite trans-
ducers and rational/recognizable transductions) and introduce a few notations. In Section 3 we define
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input-unambiguous (IU) transducers and study their properties. We place the family of IU transductions
among other already known families in Section 4. It is in this section where we also study rational
transductions with finite codomain. In Section 5 we define various types of nondeterministic bimachines
and we give an important characterization of IU transductions: they are exactly those realized by nonde-
terministic bimachines. Finally, in Section 6, we define restricted nondeterministic bimachines and we
prove that they characterizes the family of finitely ambiguous rational relations. A few comments and
further work are underlined in the last section.

2. Preliminaries

In the following we assume known basic notions of automata theory ([12], [29]). By DFA and NFA we
understand deterministic and nondeterministic finite automata, and by � -free NFA we understand NFA
with no � -transitions, where � denotes the empty word.

The notion of ambiguity for automata relates to the number of possible successful computations
performed by an automaton for a given input. For example, a DFA is unambiguous, whereas an NFA can
have various degrees of ambiguity, including zero.

Definition 2.1. An � -NFA
�

is unambiguous (UNFA) if each word is the label of at most one successful
computation in

�
.

Let � be an alphabet,
�������
	 � 	��	�����	���� be an � -free UNFA and for any ��� � denote

������� � 	����! �#"��
$%�'&(�)�*�)	����,+ �.-�0/2143

It is easy to check the following property:

576 	�89$ � �  :& �)�*��(	 6 �;+<� ��� �*�=	�8>�?&A@#B(3
(1)

In the following we may encounter C2D2E2F automata, i.e., finite automata whose transitions are labelled
with words rather than letters or � . This extension is useful, making easier to use properties of finite
automata when dealing with transducers.

By a finite transducer over the alphabets � and G we understand an automaton over the product
of free monoids � �IH G �

. In other words, a transducer is a finite automaton whose transition labels
are elements of � ��H G �

, with the meaning that the first component of the label is an input word and
the second component is an output word. Transducers can also be viewed as two-tape automata, where
both components of a transition label are viewed as an input pair of words. It is well known that finite
transducers realize J>D4KML4N(OMDACQPRN4JAS.J>TAC2D4KML4N(O�U (see for example [23,

�
IV.1.2, p. 566]), denoted byV�W2X � � �YH G � �

, or simply
V�W2X

when the alphabets are understood.
Formally, a transducer is a tuple Z �[���
	 � 	 G 	�\]	��(�4	���� , where

�
is a set of states, � 	 G are

alphabets,
���

is an initial state,
�

is a set of final states and
\

is a ^RL�O_L(K>T set of transitions which are
elements in

� H � �`H G ��H �
. The transduction (binary word relation) realized by Z will be denoted

by
& Z &7 � �`a G �

and is defined similarly to the language accepted by an b �`� . The transducer Z is
OMN4J�c7DACAL�EAT2S if the following conditions hold:

1.
\ � � H � �ed " � 1(� H � G0d " � 1(� H � ;
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2.
�:�#"�� � 1 , � � -�.�� ;

3.
� � 	�� 	�� 	��4�!$ \���� -�.� � 	 � -�.�� .

It is known that any rational transduction is realized by a normalized finite transducer and that any
transducer can algorithmically be normalized.

Example 2.1. In Figure 1 are depicted two finite transducers which both realize the function

5
	�� B� �;�����R� � � W � 	���� 	 �����?8�� 	 	� � 	�� X�� � �(�!���"��3
The transducer Z$# is the normalization of Z .

%'&)(%'&)(
%'&)(

%'&)* %'&)*
%'&)*

� Z!# �

%'&)(%'&)(

%'&)*
� Z �

%'&)(

%'&)*
%'&)*

%'&)*
%'&)(
%'&)(

Figure 1. The normalization of transducer T.

By a +�U�T2^,+7C state (or transition, path, loop, etc.) in a transducer we understand a state (or transi-
tion, path, loop, etc.) which is used in at least one successful computation. By an �.- L�O0/0+>K#C2N)N1/ we
understand a loop (in the transition graph) whose transitions have only � -input labels.

We recall that a recognizable set in a monoid is a set defined by an action over that monoid (see, for
example, [23, p. 252]). Recall also that a subset of the direct product of two monoids (also a monoid)
is recognizable if and only if it can be written as a finite union of blocks (a block is a direct product of
two recognizable sets). This characterization is known as Mezei’s characterization of recognizable sets
in direct product monoids. In the following, by

V �32�� � �
H G � �
we understand the set of recognizable

transductions over the alphabets � and G , i.e., the family of recognizable subsets of � �YH G �

.

3. Input-Unambiguous Finite Transducers

It is often useful to see a finite transducer as a pair of automata with the same transition graph, but with
different transition labels (in some sense, one may say that these automata are transition-synchronized).
If we remove the output labels of a transducer we obtain one automaton (the L�O0/0+>K#D1+>K>N�c7D4K>N(O ), and if
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we strip the input labels we obtain the other automaton (the N1+>K /0+>K�D1+>K>N�c7D4K>N(O ). Of our interest is the
former, as defined in the following.

Definition 3.1. Let Z � ���
	 � 	 G 	�\]	����4	���� be a finite transducer. The L�O0/0+>K�D1+>K>N�c7D4K>N(O of Z is the
finite automaton

�0�����
	 � 	��	����4	���� , where
�

is given by

5 � $ � �  ��$ �)� � 	���� ��� � $ G �  M� � 	�� 	�� 	��4�!$ \]	
where

� 	��
$ �
3
If the transducer is normalized, then its input automaton is an � -NFA, otherwise it is a lazy NFA.

Definition 3.2. A finite transducer Z is called L�O0/0+>K - +)OMD�c��_L��,+MN1+�U (IU, for short) if its input automaton
is unambiguous (i.e., an UNFA).

Notice carefully that a transducer can still have different successful paths with a same input labels and
nevertheless be input-unambiguous. A such situation is depicted in Figure 2. Notice also the difference

�

��	��


�	���

�	��


�	���

Figure 2. IU transducers (left) and their unambiguous input automata (right).

between this definition and the classical definition of +)OMD�c��_L��,+MN1+�U K)J>D(O�U(S,+�4T4J7U . Conform [2], an un-
ambiguous transducer is a transducer such that any input word is the input label of at most one successful
computation. The following example clarifies this point.

Example 3.1. In Figure 3 we denote by
� 	�� 	��,	��

arbitrary words in G �

. The transducer is IU despite
the fact that it has more than one successful computation triggered by the input

W �
. However, it is not

unambiguous in the sense of [2,
�
IV.4, p. 114]. More clearly, an IU transducer is a small variation from

the classical definition of unambiguous transducer, that is, we allow the existence of transitions as those
labelled

��� �
and

��� �
in Figure 3. At this early stage one can already anticipate that a such transducer

realizes the composition of a rational function and a finite substitution. However, we choose to derive
this observation as a consequence of the equivalence of IU transducers and nondeterministic bimachines
– proven later, in Section 5.



6 N. Santean and S. Yu / Nondeterministic Bimachines and Rational Relations

(
* (
*

*�&�� ( &��
( &�� ( &��

*�&��

Figure 3. Another IU transducer and its input automaton.

Remark 3.1. An IU transducer cannot have useful � -input loops, in the same way as an unambiguous
automaton cannot have useful � -loops. This impossible situation is depicted in Figure 4, where it is clear
that the input

6 8
triggers in the input automaton an infinite number of different successful computations.

. . .

� �
	�	�	� �
	�	�	

 �
	�	�	

Figure 4. An IU transducer can not have loops as above.

An IU transduction is a transduction realized by an IU transducer. In the following, we give a useful
normalization of IU transducers. First notice that given an arbitrary IU transducer, there exists an equiv-
alent IU transducer in normal form, in the sense mentioned at page 3. Indeed, the standard normalization
algorithm (see for example [2,

�
III.6, Corollary 6, p. 79]) does not alter the degree of ambiguity of a

transducer.
Recall that a K)JMLc#K)J>D(O�U(S,+�4T4J has only useful states. Without loosing generality, we follow the

convention that if the initial state of a transducer is also final then the pair
� � 	 � � is realized by the

transducer. This convention has a theoretical explanation which we choose to ignore here, due to its
interference with the definition of ambiguity and normalization.

Lemma 3.1. Any IU transduction
  � �9a G �

with
;� � � � � or

;� � � � /
is realized by a trim IU

transducer Z �����
	 � 	 G 	�\]	����4	���� which satisfy the following conditions:

(i)
\��.� H � H G �YH �

;

(ii) if
;� � � � � , then

� �#"����(	�� � 1 , else
� �#"�� � 1 , and

� � -�.�� ;
(iii)

� � 	�� 	�� 	��4�=$ \�� � -�.� � 	 � -�.�� .
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Proof:
We first tackle the case where

;� � � �0/ . Let Z �����
	 � 	 G 	�\]	��(��	 "�� � 1(� be a trim and normalized (in the
sense mentioned at page 3) IU transducer with

& Z &4� 
. In the following we transform Z into a transducer

obeying the conditions of the lemma by removing the � -input transitions of Z without changing the non-
ambiguity of the input automaton, as following:

1. �.- L�O0/0+>K 2C2NRU3+>J>T : if
� � 	 � 	�� 	��4� and

�*�)	 � 	�� 	��2� are transitions in
\

then we add the transition� � 	 � 	�� � 	��2� to
\

. Since the transducer has no � -input loops (see Remark 3.1), the process eventu-
ally stops.

An important observation at this point (after the closure) is that, since
;� � �Y� /

, Z cannot have
transitions of type

�*����	 � 	�� 	�� � � , with
�

an arbitrary word in G �

.

2. ^RL�OMDAC�U�K>D4K>T 4N�c�/MT(O�U�D4KML4N(O : for each pair of transitions
����	 W 	�� 	 ���

and
� � 	 � 	�� 	�� � � we add the

transition
����	 W 	�� � 	�� � � . After all pairs have been processed, we remove all transitions

� � 	 � 	�� 	�� � �
(recall that

� � has no output transitions). This process allows us to avoid the addition of extra final
states, and is depicted in Figure 5.

 � �

��� ����� �

��� �����

. . .

��� ����� �

	�
�

��

���

��� �����

Figure 5. Final state compensation for � -input removal.

3. �.- L�O0/0+>K.K)J>D(O�U2L(KML4N(O 4N�c�/MT(O�U�D4KML4N(O : for any combination of transitions
� � 	 � 	�� 	��4� , �*�)	 W 	�� 	��2�

with
W $ � we add the transition

� � 	 W 	�� � 	��2�
to
\

.

4. �.- L�O0/0+>K.J>T�c7N��>DAC : we remove all transitions
� � 	 � 	�� 	��4� and we perform a trimming.

Notice that the removal at step 4 eliminates any input ambiguity possibly induced in the previous steps.
One can easily check that the obtained transducer is trim and IU, and verifies the conditions of the lemma.

The case when
;� � �!� � is solved similarly, by discarding all � -input transitions between

�2�
and

� � ,
after step 1. Then, at the end we set the initial state to be also final. ��

Remark 3.2. Notice that it is decidable whether a finite transducer is IU or not. The decision can be
reduced to whether an � -NFA is UNFA or not. For completeness, we give here a simple proof.
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Proof:
Let Z be a finite transducer and denote by

� � ���
	 � 	��	��(��	����
the input automaton of Z . We define a

relation among the states of
�

, as following. We say that
�

and
�

are U2L �7CAL�O �MU , denoted by
��� �

, if
and only if there exists a word

�
such that

� 	�� $��)�*�(�(	����
. In other words,

�
and

�
are siblings if there

exist two computations with the same label and ending in
�

and
�
, respectively. Notice that this relation

is reflexive, symmetric but not transitive. Notice also that this relation can algorithmically be computed.
Indeed, if we perform a standard set construction (as in the NFA determinization) any two states which
belong to a same U3+0/MT4J 4N(OR^RL��,+>J>D4KML4N(O are siblings, and only those.

For each state
�

, denote by
V��

the language obtain by setting
�

to be the initial state in
�

. Then
�

is
unambiguous if and only if for each two different sibling states

�
and

�
, we have

V�� + V�� �#/
. Clearly,

this condition is algorithmically computable. ��

4. A Hierarchy of Ambiguity

In order to put IU transductions into a proper context, in the following we recall two known families of
rational transductions: finitely and uniformly ambiguous.

Definition 4.1. A rational transduction
e � �.a G �

is ^RL�O_L(K>TAC�F�D�c��_L��,+MN1+�U (FA) if
& ;� 6 �?&	�


 ��	 576 $ � �

. We say that


is +)O_L�^AN4J�c_C�F0D�c��_L��,+MN1+�U (UA) if there exist a constant b such that& ;� 6 �?&�� b 	 576 $ � �

.

These families of transductions have been studied in the past. For example, it is known that an UA ra-
tional transduction can be written as a finite union of rational functions, and it is decidable whether a
rational transduction is in FA (this is equivalent to detecting non-trivial � -input loops in a finite trans-
ducer). However, we are not aware of whether it is decidable if a rational transduction is in UA or
not.

Next we aim at finding the relationship between these families of rational word relations.

Corollary 4.1. �� � �`� 3

Proof:
It is a direct consequence of Remark 3.1: since an IU transducer has no � -input loops, any input word
can trigger a finite number of words to be written on the output tape. ��

Corollary 4.1 affirms that the transductions realized by IU transducers are in FA. However, they are not
necessarily in UA. Indeed, the following example shows an IU transducer Z which realizes a transduction
that is not uniformly ambiguous.

Example 4.1. The transducer in Figure 6 realizes the transduction


given by:

5
	�� B� ;� W � � � ��� ���� � "3� � 14	���� 	 �����������;	
� ���� � "�� � 14	! �"$#���%$&'���(��	

which clearly is not UA, however it is IU.
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�	��� � �	� 

�	��� � �	� 

�	��
 � �	� 

�	��
 � �	� 

�	��


�	���

Figure 6. An IU transducer whose transduction is not UA.

On the other hand, not all rational transductions which are UA are necessarily IU. The transduction9�#")� W � 	�� � �=& 	 � B�1 d ")� W � 	(� � �=& 	 � B�1
(2)

(with
W 	�� 	(�

different letters) is UA (notice that it is written as a union of two rational functions), however
it is not IU. Indeed, a transducer Z realizing


must have two successful computations for each input wordW �

: one outputting
� �

and the other
� �

, for all integers n. If these two successful computation coincide
in the input automaton of Z , then in Z must exist a successful computation which “shuffles”

�
and

�
on

the output tape, hence Z can not be IU.
To the families of transductions discussed so far (FA, UA, and IU) we add a new one, that of rational

transductions with finite codomain.

Definition 4.2. A rational transduction
  � � a G �

is with finite codomain (FC) if
& ;� � � �?& � 
 �

.

Notice that the condition is equivalent to saying that there exist a constant b such that
5 8�$ ;� � � �� � � 8>� @ b , where by

� � 8>�
we understand the C2T(O �2K�� of the word

8
, i.e., the number of its letters (accord-

ingly,
� � � � ���

).
Obviously, it is decidable whether a rational transduction is in FC or not (it is equivalent to deciding

whether the output automaton of a transducer accepts a finite language or not).

Lemma 4.1. A rational transduction
  � � a G �

is in FC if and only if it can be written as9����	��
� � � H V ��� 	

where � is finite,
" � � 1 �	��
 are disjoint regular languages, and

" V � 1 �	��

are finite languages.

Proof:
The “if” part of the proof is trivial, since


is recognizable, hence it is rational, and in addition it has a

finite image. We prove the remaining implication.
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Let
  � �`a G �

be a transduction in FC. This implies that
& ;� � � �?& � 
 �

, and consider
;� � � �=�

" � � 	?3?3?3�	�� � 1 � G �

, with
�

integer. Let Z �e���
	 � 	 G 	�\]	����4	 "�� � 1(� be a trim, normalized finite trans-
ducer realizing


. Since

Q$ ���
, the output of any loop in Z is the empty word, since otherwise the

output image of Z would be infinite (in other words, the output automaton of Z accepts a finite language,
i.e., it can have only � -loops). A view of how the transition graph of Z may look like is depicted in
Figure 7.

� �����

� ���

	�
	��

	�	�	 � 

	�	�	 � 

Figure 7. The transition graph of a normalized FC transducer.

By a U2Lc�/7C2T#U3+� 4TRU)U(^,+7C 4N�c�/0+>K>D4KML4N(O (
�"� 2

, for short) in Z we understand a computation, from
the initial state to the final state, in which no state is repeating. If the initial state of Z is also final, we
consider

�*����	 � 	 � 	����� to be a
�"� 2

as well. It is clear that Z (or any other transducer) can perform only
a finite number of such computations. Denote by

"	� � 	?3?3?3�	
���`1 the set of
�"� 2

in Z . Since the loops
in Z output only the empty word (by a previous observation) and since Z is normalized, it is clear that� � 	?3?3?3�	
��� output, together, exactly

" � � 	?3?3?3�	�� � 1 , i.e., the entire image of


.
In the following, we U�T �2J>T �AD4K>T � � 	?3?3?3�	
��� from each other (by viewing them as paths in the tran-

sition graph) and attach to each of them copies of the loops which they initially had. The process has an
awkward formalization, therefore we choose to rather illustrate it in Figure 8.

In Figure 8 (A), we have a transducer with two simple successful paths: one with input-label
6 828 #

and the other with input label
6 828 # # . The transducer outputs the words

� � �
and

� � � # , which are exactly
the outputs of the simple successful computations. We proceed by segregation and we obtain two trans-
ducers, each with only one

�"� 2
. They are depicted in Figure 8 (B) and (C), and they were obtained by

considering each simple successful computation alone, and attaching to it all the loops which it initially
had attached.

After the segregation we obtain  transducers Z � 	?3?3?3	 Z � , each corresponding to a
�"� 2

in Z . It is
clear that

& Z & �
�
���� �

& Z � & 	

and that each transducer Z � outputs a single word
� � $ " � � 	?3?3?3	�� � 1 . Clearly,  ���

. Denote by� � 	?3?3?3���� the input automata of Z � 	?3?3?3�	 Z � , and by � � 	?3?3?3�	 � � their accepted languages. We define
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( B )
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�����
� 
� �

����� ���

����� ���

�����
� 
� �

����� ���

����� ���

����� ���

	 � � ��
 �

	 � � ��
 �
	���

	 � ��


	���

	 � ��


	���

�����
� 
� �

����� ���

Figure 8. The segregation of simple successful paths.

an equivalence over d
���� � � � as follows:

6�� 8 � 5 ��	��]$ "2B(	?3?3?3�	  1  6 $ � � 	�89$ ��� � " 6 	�8R1 � � � + ��� 3
It is easy to see that

�
is an equivalence of finite index, and each of its equivalence classes is an intersec-

tion of some regular languages in
" � � 	?3?3?3�	 � ��1 . For example, in Figure 9 we depict a situation where

 ���
and

2 � 	?3?3?3	�2�� are the equivalence classes of
�

. Clearly,
� �  .

The equivalence
�

is computable, in the sense that for each equivalence class we can construct a
finite automaton which accepts it. Denote by

2 � 	?3?3?3	�2�� the equivalence classes of
�

. To each of these
equivalence classes we assign a finite set of words from

" � � 	?3?3?3�	�� � 1 as following. Given a class
2 � , let" ��� � 	?3?3?3�	 ���� 1 be the maximal set of languages from

" � � 	?3?3?3�	 � �`1 such that
2 � � ��� � +������ + ���� . Then

to
2 � we assign the set

�"� X � 2 � �  �#"� � � 	?3?3?3	�� �� 1 , where recall that
� � is the unique output of transducer

Z � . Then, it is easy to check that  ����
�
� � �

2 � H �"� X � 2 � � � 	
expression which verifies the conditions of the lemma. ��
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���
���

���

��� ��	� �

� 	

��


���

� 


Figure 9. Example of equivalence classes for  , when ����� .

Corollary 4.2.
��� � V �32�� � ��H G � ��3

Proof:
It is a consequence of Lemma 4.1 and Mezei’s characterization of recognizable sets. ��

Theorem 4.1.
��� � �� 3

Proof:
Let


be a rational transduction with finite codomain. By Lemma 4.1,


can be written as9� ��	��
 � � H V � 	

where � is finite,
" � � 1 �	��
 is a family of disjoint regular languages and

" V � 1 �	��

is a set of finite languages.

The transducer in Figure 10 is IU and realizes


. We have denoted � � "2B(	?3?3?3�	 � 1
. The transition

� �����

� ��� � ��� ���

� � ���

. . . . . . .

Figure 10. An IU transducer realizing a given rational transduction with finite codomain.

labelled � � V � stands for a finite set of transitions labelled � � � , for each
�.$ V � . The “block” labelled

� � � � denotes a DFA which accepts � � and is transformed into a transducer by outputting � . Since the
languages

" � � 1 ���� � are disjoint, input ambiguity can not occur. ��
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Corollary 4.3. Any FC transduction can be written as a finite union of subsequential functions.

Proof:
This is another consequence of Lemma 4.1. The transducer constructed in the proof of Theorem 4.1,
and shown in Figure 10, is equivalent to a “union” of subsequential transducers. Indeed, we take each
machine denoted by � � � � and we duplicate it as many times as the cardinality of

V �
is. Each such

machine will have output associated to every final states, all outputs equal to one word in
V �

. These are
the required subsequential transducers. ��

Notice that obviously FC
�

UA. Notice also that FC and the family of rational functions overlap,
but are incomparable. We then give in Figure 11 a hierarchy describing different levels of ambiguity, in
which we recall the following nomenclature:

1.
� D4K : the family of rational word relations (realized by finite transducers);

2. ��� : the family of finitely ambiguous rational relations (the image of an input word is finite);

3. ��� : the family of rational relations realized by input-unambiguous finite transducers (we give an-
other machine-characterization later in this paper);

4. ��� : the family of uniformly ambiguous rational relations (there exists a constant which upper
bounds the cardinal of the image of any input word);

5. �	� : the family of rational transductions with finite codomain;

6.
� D4K
� : the family of rational functions, realized by bimachines ([2, p. 123]), or equally, by unam-
biguous transducers;

FA

UA

IU

RatF

Rat

FC

Figure 11. Different degrees of ambiguity.
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5. Nondeterministic Bimachines

In the following we consider all input-unambiguous transducers to be trim and normalized according to
Lemma 3.1. We are now aiming at giving a bimachine-characterization of IU.

Definition 5.1. A �_Lc7D  �_L�OMT � �����
	��=	 � 	 G 	����=	���� 	���(	 �7��	��!� over � and G is composed of

– two finite sets of states
�

and
�

,

– a finite input alphabet � and a finite output alphabet G ,

– two partial next state functions
�	�� A� H � a �

and
���� � H � a �=	

– two initial states
��� $%�

and
�7� $
�

,

– and a partial output function
�  A� H � H � a G �

.

The next-state functions are extended to operate on words as following:

� 5 ��$%� and
� $
�� ����=�*�)	 � � �.� and

���=� � 	 ��� � �
;

� 5 ��$%�
	 � $
�=	 W $ � and
� $ �� :

���=�*�)	�� W � �0���=� ��� �*�)	�����	 W �
and

���=� W � 	 ��� �0��� � W 	����=� � 	 ������3
Notice that function

���
“reads” its argument word in reverse. We consider a similar extension of the

output function:

� 5 ��$%� and
� $
�� �� �*�)	 � 	 ��� � � ;

� 5 ��$%�
	 � $
�=	 W $ � and
� $ �� :

� �*�)	�� W 	 ��� ��� �*�)	�� 	���� � W 	 ������� � ��� �*�)	�����	 W 	 ����3
The partial word function realized by

�
is a function

���Q � � a G �

, defined by
���=� ��� ��� �*����	�� 	 �7���

if
�

is defined in
�*����	�� 	 �7���

and is undefined otherwise. Notice that always
���=� � � � � 3

In essence, a bimachine is composed of two partial automata without final states (more precisely, all
states act as final) and an output function. Indeed,

���
	 � 	����=	���� will denote the C2T2^2K9D1+>K>N�c7D4K>N(O of�
and

���=	 � 	����!	 �7��� its JML�� �>KID1+>K>N�c7D4K>N(O . The bimachine
�

operates as illustrated in Figure 12 and
explained in the following.

The symbols on the input tape are considered from left to right, starting with the leftmost one. For
each considered symbol the bimachine performs a computation step yielding some output written on an
output tape. In Figure 12, the current computation step considers some symbol

W
as the current symbol

and a factorization of the input word as
� � W ��� . First, both left and right automata are reset to their initial

states. Then the left automaton scans
� � from left to right, reaching an internal state

� # . In the same time,
the right automaton scans the subword

���
from right to left, reaching an internal state

� # . At this point,
the bimachine applies the output function

�
to the arguments

� # , W and
� # and writes the result on the

output tape. Next, the current position advances one position to the right and the process is repeated. The
final output is the concatenation of the output for each step, as sequentially written on the output tape.
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��� ���*

���

��� �	�*

��
 �	


current position

���

Left
Automaton

Right
Automaton

. . . writes ��� ����� *����	� � on the output tape, where ����� ��� � ��
�������� and �	��� ��� � �������	
��

Figure 12. Computations in a bimachine.

This process is formally expressed by5 �0� W � 3?3?3 W � $ �� (where
W � $ � 	 5 � $ "2B(	?3?3?3�	 	 1 ) :

� �*�)	�� 	 ��� ��� �*�)	 W � 	����=� W � 3?3?3 W � 	 ������� � ��� �*�)	 W � ��	 W ��	����=� W�� 3?3?3 W � 	 �����M3?3?3
3?3?3 � � ���=�*�)	 W � 3?3?3 W �2��� ��	 W � 	 ����3

Bimachines are of great theoretical importance since they are specifically designed to characterize
the family of rational word functions, as the following result shows:

Theorem 5.1. [10, Volume A,
�
11.7, Theorem 7.1, p. 321] Let � 	 G be finite alphabets and

�  � �Ya
G �

be a partial word function with
� � � �
� � . Then

�
is rational if and only if it is realized by some

bimachine over � and G .

However, to our knowledge, so far there have been no attempts to study nondeterministic bimachines. We
distinguish 3 components of a bimachine which are candidate to nondeterminization: the left and right
automata and the output function. According to this, we define the following new types of bimachines:

1. ��� 	�2c : with finitely nondeterministic output (at each “step” the bimachine nondeterministically
writes a word on the output tape, choosing from a finite set of choices);

2. ��! �2c : with nondeterministic transitions (the two underlying automata are nondeterministic: � -
NFA);

3. "���! �2c : with left nondeterministic transitions (only the “left automaton” is nondeterministic);

4.
� ��! �2c : with right nondeterministic transitions (only the “right automaton” is nondeterministic);

5. ��! 	�2c : with both nondeterministic transitions and finitely nondeterministic output;

and we denote by FNO, NT, LNT, etc. the families of transductions realized by these types of bimachines.
On a note of caution, one must pay attention to the way in which the output functions of nondeter-

ministic bimachines are extended. For example, following the notations at page 14, if
�

was a FNObm,
then the extended output function (denoted here by

�
) would be given by
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� 5 ��$%� and
� $
�� � �*�)	 � 	 ��� �#" � 1 ;

� 5 ��$%�
	 W $ � and
� $
�� � �*�)	 W 	 ��� ��� �*�)	 W 	 ���

;

� 5 ��$%�
	 W $ � 	 � $
�=	
and

� $ �� :

� �*�)	�� W 	 ��� � � �*�)	�� 	���� � W 	 ����� �Y� ���=�*�)	�����	 W 	 ����	
where the concatenation is viewed as a language concatenation.

If
�

was an NTbm, we would “extend”
�

as following:

� 5 ��$%� and
� $
�� � �*�)	 � 	 ��� � � ;

� 5 � $ �
	 W $ � and
� $ �  � �*�)	 W 	 ���

nondeterministically writes on the output tape
� ����	 W 	 �(�

,
where

��$ ��� �*�)	 � ��	 �.$ ���=� � 	 ��� , and we follow the usual convention that
�0$e�	�=�*�)	 � � and� $ ���=� � 	 ��� ;

� 5 �]$ �
	 W $ � 	 � $ �=	
and

� $ �� :
� �*�)	�� W 	 ���

nondeterministically writes on the output tape� �*�)	�� 	 �(� �Y����	 W 	 ���
, where

��$ ���=�*�)	����
and

�`$ ���=� W 	 ���
.

It is important to observe that at each computation step of an NTbm
�

, both the left and the right
automata of

�
are “reset” to their initial state. This point is made clear in Figure 13. While reading

� � ,

� �

Automaton
Right

Automaton
Left

���� � ���

� � � ����
	

� �

��
	 	 � � � ���
�
	 � � � � ��

���� �

Figure 13. NTbm behavior: each computation step involves a “reset”.

the left automaton reaches the state
�
, through the computation (path) labelled

� � . However, in the next
computation step, the left automaton reads

� � W and performs a computation labelled
� � W that may not

overlap with the previous computation (more precisely, the computation labelled
� � W is not prefixed by

the computation labelled
� � ). This is due to the fact that the left automaton is reset to the initial state

before reading
� � W (it does not continue the computation from

�
while reading

W
).

A natural question which arises is what kind of transductions are realized by each of these types of
nondeterministic bimachines. In the following we attempt to answer this intriguing question. We first
prove that these bimachines are equally powerful.



N. Santean and S. Yu / Nondeterministic Bimachines and Rational Relations 17

Theorem 5.2.
� b � � b Z � � b Z � V b Z � b Z � 3

In other words, it does not matter which component of the bimachine is nondeterministic. For this reason,
we are allowed to employ the term OMN(ORSAT4K>T4J�c�L�O_LAU�KML  �_Lc7D  �_L�OMT in a generic sense.

Proof:
We prove the equality

� b � � � b Z , the others being left to the reader.
We first prove that

� b � � � b Z . Let
� � ���
	��=	 � 	 G 	����=	���� 	���(	 �7��	��!� be a

� b � �  , i.e., a
bimachine as in Definition 5.1, with the exception that the output function

�
is defined as

�  A� H � H � a���� � G � ��	
where by

��� � G � �
we understand the set of all finite languages over G (the set of ^RL�O_L(K>T /MD4J)K7U of

G �

). When this bimachine scans some input, for each computed triplet
�*�)	 W 	 ��� $ � H � H �

it
nondeterministically chooses a word in

� �*�)	 W 	 ���
and writes it on the output tape. In other words, at

each “writing”, the bimachine has a finite number of choices for the word to be written on the output
tape. We define an equivalent bimachine

��� # 	��=	 � 	 G 	�� � � 	����!	�� #� 	 �7�(	�� # � in � b Z �  as following.

1. We first set
� #  ��� and

� � � �0��� .
In the following, �>F J>T1/7C2D )L�O � D U�K>D4K>T �9$ � #_P7L(K��#K��MT U�T4K#N2^ OMT�P U�K>D4K>TRU " � � 	?3?3?3	�� � 1
we understand to add for each input transition into q identical input transitions into all

� � 	?3?3?3�� � ,
for each output transition from

�
identical output transitions from all

� � 	?3?3?3�	�� � and finally to
remove

�
and all its adjacent transitions. (if

�
had loop transitions, we would process them differ-

ently: we would attach these loops to each of
� � 	?3?3?3	�� � ).

2. For every state
��$%�

perform the following:

Set � � � /
. For each tuple

�*�)	 W 	 ��� $ � H � H �
with

& � �*�)	 W 	 ���I& �eB
, denote

� �*�)	 W 	 �����
"8 � � 	?3?3?3�	�8

�
� 1 and add to � � a set of new states: � �  � � � d "��

�
� 	?3?3?3�	��

�
� 1 . Then replace (in

the sense previously described)
�

by the set of new states � � and set
� # �*� � � 	 W 	 ���9� 8 � �

for all� $ "2B(	?3?3?3�	 � 1
, and this for all states

�
which have been processed.

3. If in the previous step the start state
�(�

has not been replaced, then set
� #� � ��

. Otherwise, if
���

has been replaced by a set � � of new states then add a new start state
� #� and set

� � � �*� #� 	 � � � � � .
Notice that the right automaton has not been changed and the left automaton has become an � -NFA, with� -transitions present only among the output transitions of

� #� , eventually. Notice also that
� # has become

a partial function mapping
� H � H �

into G �

.
Let an input word

6 W 8
be with

6 	�89$ � �

and
W $ � . One can carefully check that we have in

�
the

computations
��� �*���	 6 �=� �

,
���=� 8M	 �7���!���

and
� �*�)	 W 	 ���=�'"� � 	?3?3?3�	�� � 1 L�^�D(ORS�N(O7C�F L�^ we have

in
� # the computations

� � � �*� #� 	 6 ��� "�� � � 	?3?3?3	��
�
� 1 and

� # �*� � � 	 W 	 ���I� � �
for all

�
$ "2B(	?3?3?3�	 � 1
. This

proves the equivalence of the two bimachines.

We now prove that
� b � � � b Z . Let

� �����
	��=	 � 	 G 	����=	����!	����	 �7�(	��!� be a � b Z bimachine, i.e., a
bimachine as in Definition 5.1, with the exception that the left automaton is an � -NFA. The operation of
such bimachine is obvious: everything works as in the standard bimachine, with the exception that at each
step we must consider more than one configuration (i.e., argument of the output function), since the com-
putations of the left automaton are nondeterministic. The idea for constructing an equivalent

� b � � 
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is to proceed by the determinization of the left automaton, moving the nondeterminism to the output
function. We construct an equivalent

� b � bimachine
� # ����� #_� � ��� ��	��=	 � 	 G 	�� � � 	�� � 	 "����14	 �7�(	�� # �

as follows.
We consider the extended function

� ��  � ��� � H � � a � ��� �
in the standard way and define

1.
� #  � "�� �� �*���	����
&>� $ � � 1

, i.e.,
� # is a set of subsets of states of

�
, namely of those subsets

each containing all the states which are reached nondeterministically, starting from the initial state
and reading some input;

2.
5 � $ � # 	 5 W $ �  � � � � � 	 W � � � � � � � �� �*�)	 W �

(notice that
� ��

takes into consideration �
transitions as well);

3.
5 � $%� # 	 W $ � 	 � $
�� � # � � 	 W 	 ��� � � � � � � �*�)	 W 	 ��� – which is obviously finite.

Then the left automaton of
� # is deterministic, the output function

� # is nondeterministic with a finite
number of choices, hence

� # is a FNO bimachine.
Let

6 W 8 $ � �

be an input with
6 	�8 $ � �

and
W $ � . In the bimachine

�
we have

� �� �*��(	 6 ���"�� � 	?3?3?3�	�� � 1 , �)� 8M	 �7��� ���
and

� �*� � 	 W 	 ��� � 8 �
, for

� $Q"2B(	?3?3?3�	 � 1 L�^�D(ORS�N(O7C�F L�^ in the bimachine� # we have
� � � � "����14	 6 � ���

and
� # ��� 	 W 	 ��� �#"8 � 	?3?3?3	�8 � 1 . This proves the bimachine equivalence.

��

It has been shown in [24] that the scanning direction of the reading heads of a deterministic bimachine
does not count. It is natural to question whether this property still holds for nondeterministic bimachines.

Theorem 5.3. The parsing direction of the reading heads of a nondeterministic bimachine does not
matter.

I.e., convergent, left sequential, right sequential, and divergent nondeterministic bimachines have equal
power.

Proof:
The idea of the proof is to use

� b � bimachines and adapt the proof in [24, Theorem 16, p. 135] to the
nondeterministic case. The details are left to the reader. ��

We are now ready to state one of the main results of this paper, namely a bimachine characterization
of input-unambiguous rational transductions.

Theorem 5.4. A transduction


with
;� � � � � is IU rational L�^�D(ORS�N(O7C�F L�^ it is realized by a non-

deterministic bimachine.

Proof:
We first prove the implication to the right (only if). For that we follow an idea similar to, but nevertheless
different from, the proof that deterministic bimachines characterize rational functions – as found in [2,
Theorem 5.1, p.125].

Let


be realized by Z � ���
	 � 	 G 	�\]	�����	 "���(	�� � 1(� : a trim, IU, finite transducer normalized accord-
ing to Lemma 2. Notice that this transducer does not have � -input transitions, since the input labels of its
transitions are letters of the alphabet � .
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By a computation in Z , denoted by � �*�)	 6 	�� 	 ��� , we understand a computation which starts in
�

and ends in
�

while reading
6

from the input tape and writing
�

on the output tape. Based on relation
(1) at page 3, which holds for every � -free UNFA, we infer that for all

6 	�8 $ � �

, if there exist two
computations in Z : � �*��(	 6 	�� 	 ����	 � � � 	�8M	�� 	�� � ��	
then

�
is uniquely determined by

6
and

8
. Define the following subsets of

�
:

–  �  �#"�� & � ��$ G �  � �*��(	 6 	�� 	 ��� is a valid computation in Z 14	
–
� 	  �#"�� & � � $ G �  � � � 	�8M	�� 	�� � � is a valid computation in Z 14	

–
�  �#"  � 1 � ��� �

	��. �#" � 	 1 	 ��� � (clearly, both are finite).

The
� b � bimachine equivalent to Z is

� ��� � 	�� 	 � 	 G 	����=	��
	 	 "����14	 "�� � 14	��!� , where the left and right
automata and the output function are defined as following:

1.
� � 	 � 	����=	 "����1(� is the C2T2^2K#D1+>K>N�c7D4K>N(O , where

���=�  	 W �  � �
� ��� "�� &A�*�)	 W 	 ��� $ \I14	

2.
�� 	 � 	��
	 	 "�� � 1(� is the JML�� �>K�D1+>K>N�c7D4K>N(O , where

�
	 � W 	 �
�  � �
� ��� "�� &>� � 	 W 	��4� $ \I14	

3.
�  � H � H � a � � � G � �

is the N1+>K /0+>K0^,+)O�(KML4N(O , given by
� �  	 W 	 �
�  �#" � &>� �
	 � W 	 �
��+  	 W 	�� 	 �0+<���=�  	 W ���!$ \I1 3

In the relation defining
�

, we have used that
& �#+ �
� �  	 W �?&;@ B

and
& �
	 � W 	 �
� +  &�@ B

(from
a previous observation), and we followed the convention of identifying a singleton set with its
element.

The operation of
�

is depicted in Figure 14, where the left automaton reads
6

, the right automaton reads8
and

�
nondeterministically writes one of

" � � 	?3?3?3	�� � 1 on the output tape (the input word is
6 W 8 �

).
For proving the other implication, consider a FNO bimachine

� � ���
	��=	 � 	 G 	�� �=	����!	����	 �7�(	��!� .
We construct the finite transducer Z ����� H � d "�� #� 14	 � 	 G 	�\]	�� #� 	���� , given by

–
� #� is a new state, the initial state of Z ;

–
�� �#")�*�)	 �7���=&(��$%��1

is the set of final states;

– the finite set of transitions
\

is given by:

5 � $
�� ���� #� 	 � 	 � 	��*���	 ������$ \ , and5 W $ � , if
���=�*�)	 W � �.� # and

���=� W 	 ��� � � # , then5 � $ � �*�)	 W 	 ���  ����*�)	 � # ��	 W 	�� 	��*� # 	 �����`$ \]3
Notice that

\
is finite for the reason that

& � �*�)	 W 	 ���?& � 
 �
, which holds by the fact that

�
is a

FNO bimachine.
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Figure 14. Bimachine construction.

It can easily be checked that Z realizes the same transduction as
�

. It remains to prove that Z is IU. Let6 � W � 3?3?3 W � be a word in the domain of the transduction realized by Z , with
W � 	?3?3?3	 W � $ � . In

�
,

assume that
���=�*��(	 W � �!��� � , . . . ,

���=�*� � ��� 	 W � � �#� � and that
���=� W � 	 �7��� � � � , . . . ,

���=� W � 	 � � ��� � � � � .
Then, in the input automaton of Z there exist the following successful computation:

� #� W � 3?3?3 W ��� �*��(	 � � � W � 3?3?3 W ��� ����� � �*� � ��� 	 � � � W ��� �*� � 	 �7���3
Moreover, due to the determinism of

�	�
and

���
and also to the construction of Z , this is the unique

successful computation of the input automaton of Z when it reads
6

. Notice that we can have, for
example,

���=�*��(	 W � � �0� � , ���=� � � ��� 	 W � � � � � and, say,
���=����	 W � � ��� � for some

�]$ �=	�� -� � � ��� . That
would imply input-nondeterministic transitions in Z :

�*���(	 � � � W � � �*� � 	 � � ��� � and
�*���	 � � � W � � �*� � 	��2� .

However, only
� � ��� can be reached from

�_�
by the input

W � 3?3?3 W � . This proves the input unambiguity
of Z . ��

By a finite substitution from � to G we understand a function �  � a ��� � G � �
. We extend � to

� �

in a natural way (hence becoming a monoid morphism).

Corollary 5.1. A transduction
0 � � a G �

is IU if and only if there exists a rational function �  
� � a�� �

and a finite substitution �  � �=a���� � G � �
such that

 � ����� .

Proof:
For the implication to the right, we use the representation of IU transductions by FNObm’s. If

�
is

a FNO bimachine with the output function
�  =� H � H � a ��� � G � �

, we transform
�

into
� #  � H � H � a ��� H � H ��� �

, given by

� # �*�)	 W 	 ���! ���*�)	 W 	 ����	
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and we define the substitution �  ��� H � H ��� a ��� � G � �
to be given by � ���*�)	 W 	 �����Y � � �*�)	 W 	 ���

.
Obviously,

� ��� H � H �
and since a classical bimachine realizes a rational function, the conclusion

follows.
The other implication is proven in the reversed way, starting with a bimachine and a finite substitution

and construct a FNObm equivalent to their composition. The details are left to the reader. ��

Remark 5.1. It is decidable whether a nondeterministic bimachine is single-valued (realizes a rational
function).

Proof:
Since functionality is decidable for finite transducers ([27]), in order to decide whether a nondeterministic
bimachine is functional or not it suffices to construct an equivalent IU transducer as in the proof of
Theorem 5.4 and decide its functionality.

Alternatively, we may use the fact that any nondeterministic bimachine can be transformed into a
FNObm, and for such bimachine it suffices to analyze its output function. ��

We next give a necessary condition for a rational transduction to be IU.

Corollary 5.2. A rational transduction
  � ��a G �

is IU only if there exist two constants
�

and b
such that

1.
576 $ � �  :& ;� 6 �?&)@ � ��� � 6 �

;

2.
576 $ � � 	 5 8 $ ;� 6 �  �� � 8>�!@ b � � � 6 ��3

In other words, the number of outputs for a given input of an IU transduction is a linear function of the
length of the input and the length of any output is also a linear function of the length of the input.

Proof:
Consider


being realized by a FNObm, and denote by b the length of the longest output of the bima-

chine in a single step, and by
�

the maximum number of output choices of the bimachine in a single
step. The conclusion follows from the fact that the number of computation steps of a bimachine is exactly
the length of the input word (in a successful computation). ��

The reciprocal of the previous corollary does not hold, as the transduction (2) at page 9 shows: the
transduction is not IU, however it verifies the conditions 1 and 2 of Corollary 5.2.

Remark 5.2. Another surprising consequence of Corollary 5.1 and Theorem 4.1 is that any FC trans-
duction can also be written as a composition of a rational function and a finite substitution.

Definition 5.2. An L�O0/0+>K - SAT4K>T4J�c�L�O_LAU�KML  (ID) transducer is a tuple Z �����
	 � 	 G 	��	��!� where � , G
are alphabets,

�
is a finite set of states, and

�  A� H � a �
	
and

�  )� H � a���� � G � �

are partial functions with the same domain, denoting the transition and the output function.
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In other words, an ID transducer is similar to a sequential transducer, with the exception that reading
an input letter leads to a finite number of output choices. Notice that a transducer is ID if and only if
its input automaton is deterministic – hence justifying its name. As usual, we define the family of ID
transductions to be the family of all transductions that are realized by ID transducers.

Lemma 5.1. A transduction is ID if and only if it is the composition of a sequential transduction and a
finite substitution.

Proof:
The proof is similar to the proof of Corollary 5.1. The details are left to the reader. ��

Remark 5.3. Although both FC and ID are included in IU, there is no relation of inclusion between FC
and ID. For example, the transduction �  >" W 1 � a " W 1 �

given by

5
	�� B� � � W � � � ����� � " W
� 1

is in ID but not in FC; whereas the transduction �
 A" W 1 � a " W 	 � 1 �

given by

5
	�� B� 
�
� W �>� � � W 	 ��� 	 �����������;	� 	  �"$#���%$&'���(�(	

is in FC but not in ID. Consequently, we infer that both FC and ID are strictly included in IU.

Theorem 5.5. Let
  � � a G �

be a transduction with
;� � � � � . Then


is an IU transduction if and

only if there are a right sequential function �  � � a � �

and an ID transduction �
 � �=a G �

such that �
� ��� . Moreover, � can be chosen to be total and length preserving.

Intuitively, the sequential transducer represents the set of unique successful paths of the unambiguous
transducer, whereas the ID transducer represents the nondeterminism of the output process.

Proof:
We prove the implication to the right (only if). According to Theorem 5.4, since


is in IU, there exists

a FNObm
�

which realizes it. Let
��� ���
	 � 	����!	����� be the left automaton and

� � ���=	 � 	����=	 �7�� be
the right automaton of

�
and

�
be its output function. We denote

�  � � H �
, and we transform

�
into

a right sequential transducer, by adding to it an output function
� # , given by

� #  � H � a�� � 	 � # � � 	 W �  ��� W 	 ����3
in other words, we modify

�
to “dump” its computation. We set �  � & � &

where
�

is now a right
sequential transducer.

Next we perform two modifications to the right automaton
�

. First, we change
�

to read symbols
from

�
, and advance its computations according to the “letter component” of the symbols in

�
. For

example, if initially we had
���=�*� � 	 W �=� ��� , we now have

���=�*� � 	�� W 	 ����� � ��� , for all
� $ �

. Secondly,
we add an output function

� # # to
�

, given by

� # #  )� H �.a G � 	 � # # �*�)	�� W 	 �����! ��� �*�)	 W 	 ��� 	
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where recall that
�

was the output function of
�

. then,
�

becomes an ID transducer and we set �
 � & �I&

.
It is easy to see that

 �
� � � and that � is length preserving. Certainly, � can be made total, by making

the DFA
�

total in the first place. We depicted the construction in Figure 15, where by SEQ we denote
the right sequential transducer

�
and by ID we denote the input-deterministic transducer

�
.

. . .

. . .

. . .

� � � ��� � � � 	 � � � � � � 	

� ��� � ��� � � � � � � 	� ����� ��� � � � � 	 � ��� � ��� � � � � � � 	

� � � � � � ��� 	

� �� �

ID

SEQ

Figure 15. A characterization of IU transductions.

Conversely, we recall from Corollary 5.1 that an ID transduction is the composition of a left se-
quential transduction and a finite substitution. We also know that the composition of a right sequential
transducer with a left sequential transducer is a rational function. Therefore, we obtain the composition
of a rational function and a finite substitution, which is exactly an IU transduction, as proven in Corol-
lary 5.1. ��

It is also worth mentioning that a transduction is IU if and only if it is the composition of a left
sequential transduction and a right ID transducer. Here, by a right ID transducer we understand a trans-
ducer that scans the input from right to left and writes the output from right to left as well. It is apparent
by now the similarity between this characterization and the characterization of rational functions by right
and left sequential transductions.

6. Restricted Nondeterministic Bimachines

In the previous section we have introduced nondeterministic bimachines with a special behavior: at each
computation step, these bimachines perform a “reset”, i.e., they set their underlying automata to be in ini-
tial state. Then a natural question occurs, that is, what would happen if we inhibit the “reset”? This leads
to the definition of another type of nondetrministic bimachine: a J>TRU�K)JML (K>T2SQOMN(ORSAT4K>T4J�c�L�O_LAU�KML 
�_Lc7D  �_L�OMT . At each step, these bimachines are forced to continue their computation from the states
reached at the previous step.
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Definition 6.1. A restricted nondeterministic bimachine (RNTbm) is a bimachine with nondeterministic
transitions (NTbm) and multiple initial states

� � ���
	��=	 � 	 G 	����=	���� 	 � � 	 � � 	��!� , where the output
function is extended as following:

–
5 ��$%�
	 � $
�� � �*�)	 � 	 ��� �#" � 1 ;

–
5 ��� W � 3?3?3 W � $ �� (where

5 � $ "2B(	?3?3?3�	 	 1  W � $ � ),5 �� $ � � 	 �7� $ � � ,
� �*��(	�� 	 �7���

is given by:"�� �*��(	 W � 	 � �2��� ��� �*� � 	 W �(	 � �2� ��M3?3?3�� �*� �2� ��	 W �2��� 	 � � ��� �*� �2��� 	 W � 	 �7��� &� � $ � �� �*��(	 W � ��	?3?3?3�	�� �2��� $ � �� �*� �2� ��	 W �2��� ��	� � $ � �� � W � 	 �7���	?3?3?3�	 � �2��� $ � �� � W �(	 � �2� ���143
Notice that by this behavior, the bimachine still operates nondeterministically. However, the current
states of its automata depend on the previous current states. We will see that, although this seems like
a restriction, RNTbm’s have a greater power than NTbm’s. Notice also that we allow multiple initial
states – for improving the formalism. At the beginning of the operation, a RNT bimachine sets itself
nondeterministically into two initial states corresponding to its left and right automata.

Theorem 6.1. A transduction


with
;� � � � � is in FA if and only if it is realized by a RNTbm.

Proof:
We give a sketch of the proof. Suppose

<$ �`�
. Then


is realized by a transducer Z �����
	 � 	 G 	�\]	��4��	���

with no � -input loops. Moreover, we can assume that Z is normalized according to Lemma 3.1 since
the construction of the lemma works for any transducer with no � -input loops. This implies among others
that

\ $Q� H � H G �`H �
and

� � "���(	�� � 1 . In an initial stage, we modify Z to obey the following
property: � � 	 W 	�� 	��4��	�� � 	 W 	�� 	�� # � $ \ � � � � 	

(3)

where
W $ � ,

� 	���$ G �

,
� 	��)	�� # $ � . Suppose this property does not hold for

�
, and we have a situation

as depicted in Figure 16 (A). In this situation we perform the construction in Figure 16 (B). We duplicate
states and separate transitions in such way that any input label is associated to a same output label across
all outward transitions of every state. The construction holds for the case of the initial state as well: if
the initial state

���
is duplicated, then we obtain a set of initial states, � � .

Notice that the obtained transducer is still normalized, except possibly for multiple initial states.
Then, the RNT bimachine realizing


is
� �����
	 �
	 � 	 G 	��	�=	���� 	 � � 	�� � 	��!� , given by:

5 � $ � d " � 14	��I$ �� 2���=�*�)	���� �#"�� # & � � $ G �  7�*�)	�� 	�� 	�� # � $ \I1 ;
5 � $ � d " � 14	 �%$ �: )���=��� 	 ��� �#"�� # & � ��$ G �  7� � # 	�� 	�� 	 ���!$ \I1 ;
5 �)	 � $%�
	 W $ �  � �*�)	 W 	 ��� � �

if
�*�)	 W 	�� 	 ���=$ \]3

One can show that
�

is equivalent with Z , that is, it realizes


.
For the other implication, given a RNTbm

� �'���
	��=	 � 	 G 	��	�=	���� 	 � � 	 � �!	��!� , it is enough to con-
struct an equivalent transducer. Indeed, if such transducer exists, it certainly realizes a FA transduction,
due to the fact that the image of any input through the bimachine

�
is finite: the number of possible
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Figure 16. Addition of extra states to ensure the property.

output words is bound by a linear function on the length of the input word. Indeed, by Definition 6.1,
the bimachine writes on the output tape only after it consumes an input symbols. Then, we just need to
prove that

�
realizes a rational transduction. Consider the transducer Z ����� H � d "�� #� 14	 � 	 G 	�\]	�� #� 	����

where

–
� #� is a new state having � � � transitions to each state

�*���(	 ���
, with

�� $ � � and
� $
�

;

–
� �#")�*�)	 �7��� &(��$ �
	 �7�Y$ � � 1 ;

–
\ � ")���*�)	 ����	 W 	�� 	��*� # 	 � # ����&�� �*�)	 W 	 � # � � �

and
� # $Q� �� �*�)	 W ��	 � $Q� �� � W 	 � # ��1 , where, as usual,

by
� ��

we understand the function
���

extended to words.

We next ensure that Z accepts
� � 	 � � by setting

� #� to be final as well. Notice that the obtained transducer
has no � -input transitions, except for those emerging from the initial state (which was expected). It can
be shown that the transducer Z is equivalent to

�
. ��

In the following we take a transduction in FA
�

IU and construct a RNT bimachine that realizes it.
By Theorem 5.4, this transduction can not be realized by an NT bimachine.

Example 6.1. Consider the transduction defined on page 99�#")� W � 	�� � �=& 	 � �)1 d ")� W � 	(� � �=& 	 � B�1
(4)

which is in FA but not in IU. This transduction is realized by the normalized transducer in Figure 17 left.
On the right is shown an equivalent transducer (with more than one initial states) that has the property
(3) at page 24.

In Figure 19 we depicted the left and right automata (as given by the construction of Theorem 6.1)
of a corresponding RNT bimachine whose output function is given by the table in Figure 18.
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Figure 17. A normalized transducer realizing � .
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Figure 18. The output function for Example 6.1.

7. Conclusion and Further Work

The goal of this paper has been twofold: to introduce nondeterministic bimachines and to study rational
relations with finite codomain. Nondeterministic bimachines can realize FC relations; however, they can
do better than that: they exactly represent the family of transductions that are the composition of rational
functions and finite substitutions. The transducer counterpart of these machines is the input-unambiguous
transducer, which is a slight variation of the classical notion of unambiguous transducer. FC relations are
recognizable and they have a particular “Mezei representation”, as a finite union of blocks with certain
properties: their left components are disjoint and their right ones are finite. This leads in a natural way to
the representation of FC relations as a finite union of subsequential functions – notice the parallel with
the uniformly ambiguous rational relations, that are finite unions of rational functions.

Nondeterministic bimachines can work in two “modes”: with or without reset. We have proven that
suppressing the reset in between computation steps increases their power: they now characterize the
family of finitely ambiguous transductions.

Along with these lines, further questions can be explored. For example, we still do not have a
decidability result about classifying a rational transduction as being IU or not. Or, since we have proven
that any FC transduction can also be represented as a composition of a rational function and a finite
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Figure 19. The transition graph of a bimachine realizing � .

substitution, it is natural to question whether this representation can efficiently be given. Moreover, a
few important matters which have been addressed here may be studied in more detail. For example, we
believe that the representation of FC transductions as a finite union of subsequential functions requires
further attention. More specifically, since it is a representation and not a characterization, we may study
these finite unions in their own rights.

Finally, we believe that all major rational families of transductions have a “bimachine” counterpart.
In particular, we left for immediate work the study of “ � -RNT” bimachines (i.e., RNT bimachines with � -
advancement) that we believe to characterize the entire family of rational relations. A bimachine-induced
hierarchy of rational relations is our next goal.
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