Theoretical Computer Science

Minimal cover-automata for finite languages ${ }^{\omega}$

C. Câmpeanu, N. Sântean, S. Yu*
Department of Computer Science, Middlesex College, University of Western Ontario, London, Ontario, N6A 5B7, Canada

Abstract

A cover-automaton A of a finite language $L \subseteq \Sigma^{*}$ is a finite deterministic automaton (DFA) that accepts all words in L and possibly other words that are longer than any word in L. A minimal deterministic finite cover automaton (DFCA) of a finite language L usually has a smaller size than a minimal DFA that accept L. Thus, cover automata can be used to reduce the size of the representations of finite languages in practice. In this paper, we describe an efficient algorithm that, for a given DFA accepting a finite language, constructs a minimal deterministic finite cover-automaton of the language. We also give algorithms for the boolean operations on deterministic cover automata, i.e., on the finite languages they represent. (C) 2001 Elsevier Science B.V. All rights reserved.

Keywords: Finite languages; Deterministic finite automata; Cover language; Deterministic cover automata

1. Introduction

Regular languages and finite automata are widely used in many areas such as lexical analysis, string matching, circuit testing, image compression, and parallel processing. However, many applications of regular languages use actually only finite languages. The number of states of a finite automaton that accepts a finite language is at least one more than the length of the longest word in the language, and can even be in the order of exponential to that number. If we do not restrict an automaton to accept the exact given finite language but allow it to accept extra words that are longer than the longest word in the language, we may obtain an automaton such that the number of states is significantly reduced. In most applications, we know what is the maximum

[^0]length of the words in the language, and the systems usually keep track of the length of an input word anyway. So, for a finite language, we can use such an automaton plus an integer to check the membership of the language. This is the basic idea behind cover automata for finite languages.

Informally, a cover-automaton A of a finite language $L \subseteq \Sigma^{*}$ is a finite automaton that accepts all words in L and possibly other words that are longer than any word in L. In many cases, a minimal deterministic cover automaton of a finite language L has a much smaller size than a minimal DFA that accept L. Thus, cover automata can be used to reduce the size of automata for finite languages in practice.

Intuitively, a finite automaton that accepts a finite language (exactly) can be viewed as having structures for the following two functionalities:
(1) checking the patterns of the words in the language, and
(2) controlling the lengths of the words.

In a high-level programming language environment, the length-control function is much easier to implement by counting with an integer than by using the structures of an automaton. Furthermore, the system usually does the length-counting anyway. Therefore, a DFA accepting a finite language may leave out the structures for the length-control function and, thus, reduce its complexity.

The concept of cover automata is not totally new. Similar concepts have been studied in different contexts and for different purposes. See, for example, $[1,5,3,8]$. Most of previous work has been in the study of a descriptive complexity measure of arbitrary languages, which is called "automaticity" by Shallit et al. [8]. In our study, we consider cover automata as an implementing method that may reduce the size of the automata that represent finite languages.

In this paper, as our main result, we give an efficient algorithm that, for a given finite language (given as a deterministic finite automaton or a cover automaton), constructs a minimal cover automaton for the language. Note that for a given finite language, there might be several minimal cover automata that are not equivalent under a morphism. We will show that, however, they all have the same number of states.

2. Preliminaries

Let T be a set. Then by $\# T$ we mean the cardinality of T. The elements of T^{*} are called strings or words. The empty string is denoted by λ. If $w \in T^{*}$ then $|w|$ is the length of x.

We define

$$
T^{l}=\left\{w \in T^{*}| | w \mid=l\right\}, T^{\leqslant l}=\bigcup_{i=0}^{l} T^{i}, \quad \text { and } \quad T^{<l}=\bigcup_{i=0}^{l-1} T^{i} .
$$

If $T=\left\{t_{1}, \ldots, t_{k}\right\}$ is an ordered set, $k>0$, the quasi-lexicographical order on T^{*}, denoted \prec, is defined by $x \prec y$ iff $|x|<|y|$ or $|x|=|y|$ and $x=z t_{i} v, y=z t_{j} u$, $i<j$, for some $z, u, v \in T^{*}$ and $1 \leqslant i, j \leqslant k$. Denote $x \preccurlyeq y$ if $x \prec y$ or $x=y$.

We say that x is a prefix of y, denoted $x \preccurlyeq_{p} y$, if $y=x z$ for some $z \in T^{*}$.
A deterministic finite automaton (DFA) is a quintuple $A=\left(\Sigma, Q, q_{0}, \delta, F\right)$, where Σ and Q are finite nonempty sets, $q_{0} \in Q, F \subseteq Q$ and $\delta: Q \times \Sigma \rightarrow Q$ is the transition function. We can extend δ from $Q \times \Sigma$ to $Q \times \Sigma^{*}$ by

$$
\begin{aligned}
& \bar{\delta}(s, \lambda)=s \\
& \bar{\delta}(s, a w)=\bar{\delta}(\delta(s, a), w) .
\end{aligned}
$$

We usually denote $\bar{\delta}$ by δ.
The language recognized by the automaton A is $L(A)=\left\{w \in \Sigma^{*} \mid \delta\left(q_{0}, w\right) \in F\right\}$. For simplicity, we assume that $Q=\{0,1, \ldots, \# Q-1\}$ and $q_{0}=0$ and $\# \Sigma=k$. In what follows we assume that δ is a total function, i.e., the automaton is complete.
Let l be the length of the longest word(s) in the finite language L. A DFA A such that $L(A) \cap \Sigma^{\leqslant l}=L$ is called a deterministic finite cover-automaton (DFCA) of L. Let $A=(Q, \Sigma, \delta, 0, F)$ be a DFCA of a finite language L. We say that A is a minimal DFCA of L if for every DFCA $B=\left(Q^{\prime}, \Sigma, \delta^{\prime}, 0, F^{\prime}\right)$ of L we have $\# Q \leqslant \# Q^{\prime}$.

Let $A=(Q, \Sigma, \delta, 0, F)$ be a DFA. Then
(a) $q \in Q$ is said to be accessible if there exists $w \in \Sigma^{*}$ such that $\delta(0, w)=q$,
(b) q is said to be useful (coaccessible) if there exists $w \in \Sigma^{*}$ such that $\delta(q, w) \in F$.

It is clear that for every DFA A there exists an automaton A^{\prime} such that $L\left(A^{\prime}\right)=L(A)$ and all the states of A^{\prime} are accessible and at most one of the states is not useful (the sink state). The DFA A^{\prime} is called a reduced DFA.

3. Similarity sequences and similarity sets

In this section, we describe the L-similarity relation on Σ^{*}, which is a generalization of the equivalence relation $\equiv_{L}\left(x \equiv_{L} y: x z \in L\right.$ iff $y z \in L$ for all $\left.z \in \Sigma^{*}\right)$. The notion of L-similarity was introduced in [5] and studied in [3] etc. In this paper, L-similarity is used to establish our algorithms.

Let Σ be an alphabet, $L \subseteq \Sigma^{*}$ a finite language, and l the length of the longest $\operatorname{word}(\mathrm{s})$ in L. Let $x, y \in \Sigma^{*}$. We define the following relations:
(1) $x \sim_{L} y$ if for all $z \in \Sigma^{*}$ such that $|x z| \leqslant l$ and $|y z| \leqslant l, x z \in L$ iff $y z \in L$;
(2) $x \nsim L_{L} y$ if $x \sim_{L} y$ does not hold.

The relation \sim_{L} is called similarity relation with respect to L.
Note that the relation \sim_{L} is reflexive, symmetric, but not transitive. For example, let $\Sigma=\{a, b\}$ and $L=\{a a b, b a a, a a b b\}$. It is clear that $a a b \sim_{L} a a b b$ (since $a a b w \in L$ and $a a b b w \in L$ if $|a a b b w| \leqslant 4$, i.e. $w=\lambda$) and $a a b b \sim_{L} b a a$, but $a a b \varkappa_{L}$ baa (since for $w=b$ we have $a a b b \in L, b a a b \notin L$ and $|b a a b|=|a a b b| \leqslant 4)$.

The following lemma is proved in [3]:
Lemma 1. Let $L \subseteq \Sigma^{*}$ be a finite language and $x, y, z \in \Sigma^{*},|x| \leqslant|y| \leqslant|z|$. The following statements hold:
(1) If $x \sim_{L} y, x \sim_{L} z$, then $y \sim_{L} z$.
(2) If $x \sim_{L} y, y \sim_{L} z$, then $x \sim_{L} z$.
(3) If $x \sim_{L} y, y \propto_{L} z$, then $x \propto_{L} z$.

If $x \nsim L_{L} y$ and $y \sim_{L} z$, we cannot say anything about the similarity relation between x and z.

Example 2. Let $x, y, z \in \Sigma^{*},|x| \leqslant|y| \leqslant|z|$. We may have
(1) $x \sim_{L} y, y \sim_{L} z$ and $x \sim_{L} z$, or
(2) $x \varkappa_{L} y, y \sim_{L} z$ and $x \varkappa_{L} z$.

Indeed, if $L=\{a a, a a a, b b b, b b b b, a a a b\}$ we have (1) if we choose $x=a a, y=b b b$, $z=b b b b$, and (2) if we choose $x=a a, y=b b a, z=a b b a$.

Definition 3. Let $L \subseteq \Sigma^{*}$ be a finite language.
(1) A set $S \subseteq \Sigma^{*}$ is called an L-similarity set if $x \sim_{L} y$ for every pair $x, y \in S$.
(2) A sequence of words $\left[x_{1}, \ldots, x_{n}\right]$ over Σ is called a dissimilar sequence of L if $x_{i} \nsim L x_{j}$ for each pair $i, j, 1 \leqslant i, j \leqslant n$ and $i \neq j$.
(3) A dissimilar sequence $\left[x_{1}, \ldots, x_{n}\right]$ is called a canonical dissimilar sequence of L if there exists a partition $\pi=\left\{S_{1}, \ldots, S_{n}\right\}$ of Σ^{*} such that for each $i, 1 \leqslant i \leqslant n, x_{i} \in S_{i}$, and S_{i} is a L-similarity set.
(4) A dissimilar sequence $\left[x_{1}, \ldots, x_{n}\right]$ of L is called a maximal dissimilar sequence of L if for any dissimilar sequence $\left[y_{1}, \ldots, y_{m}\right]$ of $L, m \leqslant n$.

Theorem 4. A dissimilar sequence of L is a canonical dissimilar sequence of L if and only if it is a maximal dissimilar sequence of L.

Proof. Let L be a finite language. Let $\left[x_{1}, \ldots, x_{n}\right]$ be a canonical dissimilar sequence of L and $\pi=\left\{S_{1}, \ldots, S_{n}\right\}$ the corresponding partition of Σ^{*} such that for each i, $1 \leqslant i \leqslant n, S_{i}$ is an L-similarity set. Let $\left[y_{1}, \ldots, y_{m}\right]$ be an arbitrary dissimilar sequence of L. Assume that $m>n$. Then there are y_{i} and $y_{j}, i \neq j$, such that $y_{i}, y_{j} \in S_{k}$ for some $k, 1 \leqslant k \leqslant n$. Since S_{k} is a L-similarity set, $y_{i} \sim_{L} y_{j}$. This is a contradiction. Then, the assumption that $m>n$ is false, and we conclude that $\left[x_{1}, \ldots, x_{n}\right]$ is a maximal dissimilar sequence.

Conversely, let $\left[x_{1}, \ldots, x_{n}\right]$ a maximal dissimilar sequence of L. Without loss of generality we can suppose that $\left|x_{1}\right| \leqslant \cdots \leqslant\left|x_{n}\right|$. For $i=1, \ldots, n$, define

$$
X_{i}=\left\{y \in \Sigma^{*} \mid y \sim_{L} x_{i} \quad \text { and } \quad y \notin X_{j} \quad \text { for } j<i\right\} .
$$

Note that for each $y \in \Sigma^{*}, y \sim_{L} x_{i}$ for at least one $i, 1 \leqslant i \leqslant n$, since $\left[x_{1}, \ldots, x_{n}\right]$ is a maximal dissimilar sequence. Thus, $\pi=\left\{X_{1}, \ldots, X_{n}\right\}$ is a partition of Σ^{*}. The remaining task of the proof is to show that each $X_{i}, 1 \leqslant i \leqslant n$, is a similarity set.

We assume the contrary, i.e., for some $i, 1 \leqslant i \leqslant n$, there exist $y, z \in X_{i}$ such that $y \nsim_{L} z$. We know that $x_{i} \sim_{L} y$ and $x_{i} \sim_{L} z$ by the definition of X_{i}. We have the following three cases: (1) $\left|x_{i}\right|<|y|,|z|$, (2) $|y| \leqslant\left|x_{i}\right| \leqslant|z|$ (or $|z| \leqslant\left|x_{i}\right| \leqslant|y|$), and (3) $\left|x_{i}\right|>|y|,|z|$. If (1) or (2), then $y \sim_{L} z$ by Lemma 1. This would contradict our assumption. If (3), then it
is easy to prove that $y \nsim x_{j}$ and $z \nsim x_{j}$, for all $j \neq i$, using Lemma 1 and the definition of X_{i}. Then we can replace x_{i} by both y and z to obtain a longer dissimilar sequence $\left[x_{1}, \ldots, x_{i-1}, y, z, x_{i+1}, \ldots, x_{n}\right]$. This contradicts the fact that $\left[x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right]$ is a maximal dissimilar sequence of L. Hence, $y \sim z$ and X_{i} is a similarity set.

Corollary 5. For each finite language L, there is a unique number $N(L)$ which is the number of elements in any canonical dissimilar sequence of L.

Theorem 6. Let S_{1} and S_{2} be two L-similarity sets and x_{1} and x_{2} the shortest words in S_{1} and S_{2}, respectively. If $x_{1} \sim_{L} x_{2}$ then $S_{1} \cup S_{2}$ is a L-similarity set.

Proof. It suffices to prove that for an arbitrary word $y_{1} \in S_{1}$ and an arbitrary word $y_{2} \in S_{2}, y_{1} \sim_{L} y_{2}$ holds. Without loss of generality, we assume that $\left|x_{1}\right| \leqslant\left|x_{2}\right|$. We know that $\left|x_{1}\right| \leqslant\left|y_{1}\right|$ and $\left|x_{2}\right| \leqslant\left|y_{2}\right|$. Since $x_{1} \sim_{L} x_{2}$ and $x_{2} \sim_{L} y_{2}$, we have $x_{1} \sim_{L} y_{2}\left(\right.$ Lemma 1(2)), and since $x_{1} \sim_{L} y_{1}$ and $x_{1} \sim_{L} y_{2}$, we have $y_{1} \sim_{L} y_{2}$ (Lemma 1(1)).

4. Similarity relations on states

Let $A=(Q, \Sigma, \delta, 0, F)$ be a DFA and $L=L(A)$. Then it is clear that if $\delta(0, x)=\delta(0, y)$ $=q$ for some $q \in Q$, then $x \equiv_{L} y$ and, thus, $x \sim_{L} y$. Therefore, we can also define similarity as well as equivalence relations on states.

Definition 7. Let $A=(Q, \Sigma, \delta, 0, F)$ be a DFA. We define, for each state $q \in Q$,

$$
\operatorname{level}(q)=\min \{|w| \mid \delta(0, w)=q\},
$$

i.e., level (q) is the length of the shortest path from the initial state to q.

If $A=(Q, \Sigma, \delta, 0, F)$ is a DFA, for each $q \in Q$, we denote $x_{A}(q)=\min \{w \mid \delta(0, w)$ $=q\}$, where the minimumis taken according to the quasi-lexicographical order, and $L_{A}(q)=\left\{w \in \Sigma^{*} \mid \delta(q, w) \in F\right\}$. When the automaton A is understood, we write x_{q} instead of $x_{A}(q)$ and L_{q} instead $L_{A}(q)$. The length of x_{q} is equal to level (q), therefore $\operatorname{level}(q)$ is defined for each $q \in Q$.

Definition 8. Let $A=(Q, \Sigma, \delta, 0, F)$ be a DFA and $L=L(A)$. We say that $p \equiv_{A} q$ (state p is equivalent to q in A) if for every $w \in \Sigma^{*}, \delta(p, w) \in F$ iff $\delta(q, w) \in F$.

Definition 9. Let $A=(Q, \Sigma, \delta, 0, F)$ be a DFCA of a finite language L. Let level $(p)=i$ and $\operatorname{level}(q)=j, m=\max \{i, j\}$. We say that $p \sim_{A} q$ (state p is L-similar to q in A) if for every $w \in \Sigma^{\leqslant l-m}, \delta(p, w) \in F$ iff $\delta(q, w) \in F$.

Lemma 10. Let $A=(Q, \Sigma, \delta, 0, F)$ be a DFCA of a finite language L. Let $x, y \in \Sigma \leqslant l$ such that $\delta(0, x)=p$ and $\delta(0, y)=q$. If $p \sim_{A} q$ then $x \sim_{L} y$.

Fig. 1. If $x \sim_{L} y$ then we do not have always that $\delta(0, x) \sim_{A} \delta(0, y)$.

Proof. Let $\operatorname{level}(p)=i$ and $\operatorname{level}(q)=j, m=\max \{i, j\}$, and $p \sim_{A} q$. Choose an arbitrary $w \in \Sigma^{*}$ such that $|x w| \leqslant l$ and $|y w| \leqslant l$. Because $i \leqslant|x|$ and $j \leqslant|y|$ it follows that $|w| \leqslant l-m$. Since $p \sim_{A} q$ we have that $\delta(p, w) \in F$ iff $\delta(q, w) \in F$, i.e. $\delta(0, x w) \in F$ iff $\delta(0, y w) \in F$, which means that $x w \in L(A)$ iff $y w \in L(A)$. Hence $x \sim_{L} y$.

Lemma 11. Let $A=(Q, \Sigma, \delta, 0, F)$ be DFCA of a finite language L. Let level $(p)=i$ and level $(q)=j, m=\max \{i, j\}$, and $x \in \Sigma^{i}, y \in \Sigma^{j}$ such that $\delta(0, x)=p$ and $\delta(0, y)$ $=q$. If $x \sim_{L} y$ then $p \sim_{A} q$.

Proof. Let $x \sim_{L} y$ and $w \in \Sigma^{\leqslant l-m}$. If $\delta(p, w) \in F$, then $\delta(0, x w) \in F$. Because $x \sim_{L} y$, it follows that $\delta(0, y w) \in F$, so $\delta(q, w) \in F$. Using the symmetry we get that $p \sim_{A} q$.

Corollary 12. Let $A=(Q, \Sigma, \delta, 0, F)$ be a DFCA of a finite language L. Let level $(p)=i$ and $\operatorname{level}(q)=j, m=\max \{i, j\}$, and $x_{1} \in \Sigma^{i}, y_{1} \in \Sigma^{j}, x_{2}, y_{2} \in \Sigma^{\leqslant l}$, such that $\delta\left(0, x_{1}\right)=\delta\left(0, x_{2}\right)=p$ and $\delta\left(0, y_{1}\right)=\delta\left(0, y_{2}\right)=q$. If $x_{1} \sim_{L} y_{1}$ then $x_{2} \sim_{L} y_{2}$.

Example 13. If x_{1} and y_{1} are not minimal, i.e. $\left|x_{1}\right|>i$, but $p=\delta\left(0, x_{1}\right)$ or $\left|y_{1}\right|>j$, but $q=\delta\left(0, y_{1}\right)$, then the conclusion of Corollary 12 is not necessarily true.

Let $L=\{a, b, a a, a a a, b a b\}$, so $l=3$. A DFCA of L is shown in Fig. 1 and we have that $b \sim_{L} b a b$, but $b \varkappa_{L} a(b a \notin L, a a \in L$ and $|b a|=|a a| \leqslant 3)$.

Corollary 14. Let $A=(Q, \Sigma, \delta, 0, F)$ be a $D F C A$ of a finite language L and $p, q \in Q$, $p \neq q$. Then $x_{p} \sim_{L} x_{q}$ iff $p \sim_{A} q$.

If $p \sim_{A} q$, and $\operatorname{level}(p) \leqslant \operatorname{level}(q)$ and $q \in F$ then $p \in F$.
Lemma 15. Let $A=(Q, \Sigma, \delta, 0, F)$ be a DFCA of a finite language L. Let $s, p, q \in Q$ such that level $(s)=i$, level $(p)=j$, level $(q)=m, i \leqslant j \leqslant m$. The following statements are true:
(1) If $s \sim_{A} p, s \sim_{A} q$, then $p \sim_{A} q$.
(2) If $s \sim_{A} p, p \sim_{A} q$, then $s \sim_{A} q$.
(3) If $s \sim_{A} p, p \varkappa_{A} q$, then $s \varlimsup_{A} q$.

Proof. We apply Lemma 1 and Corollary 14.

Lemma 16. Let $A=(Q, \Sigma, \delta, 0, F)$ be a DFCA of a finite language L. Let level $(p)=i$, level $(q)=j$, and $m=\max \{i, j\}$. If $p \sim_{A} q$ then $L_{p} \cap \Sigma^{\leqslant l-m}=L_{q} \cap \Sigma^{\leqslant l-m}$ and $L_{p} \cup L_{q}$ is a L-similarity set.

Proof. Let $w \in L_{p} \cap \Sigma^{\leqslant l-m}$. Then $\delta(p, w) \in F$, and $|w| \leqslant l-m$. Since $p \sim_{A} q$, we have $\delta(p, w) \in F$; so $w \in L_{q} \cap \Sigma^{\leqslant l-m}$.

Lemma 17. Let $A=(Q, \Sigma, \delta, 0, F)$ be a DFCA of a finite language L. If $p \sim_{A} q$ for some $p, q \in Q, i=\operatorname{level}(p), j=\operatorname{level}(q)$ and $i \leqslant j, p \neq q, q \neq 0$. Then we can construct a DFCA $A^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, 0, F^{\prime}\right)$ of L such that $Q^{\prime}=Q-\{q\}, F^{\prime}=F-\{q\}$, and

$$
\delta^{\prime}(s, a)= \begin{cases}\delta(s, a) & \text { if } \delta(s, a) \neq q, \\ p & \delta(s, a)=q\end{cases}
$$

for each $s \in Q^{\prime}$ and $a \in \Sigma$. Thus, A is not a minimal DFCA of L.
Proof. It suffices to prove that A^{\prime} is a DFCA of L. Let l be the length of the longest $\operatorname{word}(\mathrm{s})$ in L and assume that $\operatorname{level}(p)=i$ and $\operatorname{level}(q)=j, i \leqslant j$. Consider a word $w \in \Sigma^{\leqslant l}$. We now prove that $w \in L$ iff $\delta^{\prime}(0, w) \in F^{\prime}$.

If there is no prefix w_{1} of w such that $\delta\left(0, w_{1}\right)=q$, then clearly $\delta^{\prime}(0, w) \in F^{\prime}$ iff $\delta(0, w) \in F$. Otherwise, let $w=w_{1} w_{2}$ where w_{1} is the shortest prefix of w such that $\delta\left(0, w_{1}\right)=q$. In the remaining, it suffices to prove that $\delta^{\prime}\left(p, w_{2}\right) \in F^{\prime}$ iff $\delta\left(q, w_{2}\right) \in F$. We prove this by induction on the length of w_{2}. First consider the case $\left|w_{2}\right|=0$, i.e., $w_{2}=\lambda$. Since $p \sim_{A} q, p \in F$ iff $q \in F$. Then $p \in F^{\prime}$ iff $q \in F$ by the construction of A^{\prime}. Thus, $\delta^{\prime}\left(p, w_{2}\right) \in F^{\prime}$ iff $\delta\left(q, w_{2}\right) \in F$. Suppose that the statement holds for $\left|w_{2}\right|<l^{\prime}$ for $l^{\prime} \leqslant l-\left|w_{1}\right|$. (Note that $l-\left|w_{1}\right| \leqslant l-j$.) Consider the case that $\left|w_{2}\right|=l^{\prime}$. If there does not exist $u \in \Sigma^{+}$such that $u \leqslant_{p} w_{2}$ and $\delta(p, u)=q$, then $\delta\left(p, w_{2}\right) \in F-\{q\}$ iff $\delta\left(q, w_{2}\right) \in F-\{q\}$, i.e., $\delta^{\prime}\left(p, w_{2}\right) \in F^{\prime}$ iff $\delta\left(q, w_{2}\right) \in F$. Otherwise, let $w_{2}=u v$ and u be the shortest nonempty prefix of w_{2} such that $\delta(p, u)=q$. Then $|v|<l^{\prime}$ (and $\delta^{\prime}(p, u)=p$). By induction hypothesis, $\delta^{\prime}(p, v) \in F^{\prime}$ iff $\delta(q, v) \in F$. Therefore, $\delta^{\prime}(p, u v) \in F^{\prime}$ iff $\delta(q, u v) \in F$.

Lemma 18. Let A be a DFCA of L and $L^{\prime}=L(A)$. Then $x \equiv_{L^{\prime}} y$ implies $x \sim_{L} y$.
Proof. Let l be the length of the longest word(s) in L. Let $x \equiv_{L^{\prime}} y$. So, for each $z \in \Sigma^{*}, x z \in L^{\prime}$ iff $y z \in L^{\prime}$. We now consider all words $z \in \Sigma^{*}$, such that $|x z| \leqslant l$ and $|y z| \leqslant l$. Since $L=L^{\prime} \cap \Sigma^{\leqslant l}$ and $x z \in L^{\prime}$ iff $y z \in L^{\prime}$, we have $x z \in L$ iff $y z \in L$. Therefore, $x \sim_{L} y$ by the definition of \sim_{L}.

Corollary 19. Let $A=(Q, \Sigma, \delta, 0, F)$ be a DFCA of a finite language L, $L^{\prime}=L(A)$. Then $p \equiv_{A} q$ implies $p \sim_{A} q$.

Corollary 20. A minimal DFCA of L is a minimal DFA.

Proof. Let $A=(Q, \Sigma, \delta, 0, F)$ be a minimal DFCA of a finite language L. Suppose that A is not minimal as a DFA for $L(A)$, then there exists $p, q \in Q$ such that $p \equiv_{L^{\prime}} q$, then $p \sim_{A} q$. By Lemma 17 it follows that A is not a minimal DFCA, contradiction.

Remark 21. Let A be a DFCA of L and A a minimal DFA. Then A may not be a minimal DFCA of L.

Example 22. We take the DFAs:

Automaton A

Automaton B

Fig. 2. Minimal DFA is not always a minimal DFCA.

The DFA A in Fig. 2 is a minimal DFA and a DFCA of $L=\{\lambda, a, a a\}$ but not a minimal DFCA of L, since the DFA B in Fig. 2 is a minimal DFCA of L.

Theorem 23. Any minimal DFCA of L has exactly $N(L)$ states.
Proof. Let $A=(Q, \Sigma, \delta, 0, F)$ be DFCA of a finite language L, and $\# Q=n$.
Suppose that $n>N(L)$. Then there exist $p, q \in Q, p \neq q$, such that $x_{p} \sim_{L} x_{q}$ (because of the definition of $N(L))$. Then $p \sim_{A} q$ by Lemma 14. Thus, A is not minimal, a contradiction.

Suppose that $N(L)>n$. Let $\left[y_{1}, \ldots, y_{N(L)}\right]$ be a canonical dissimilar sequence of L. Then there exist $i, j, 1 \leqslant i, j \leqslant N(L)$ and $i \neq j$, such that $\delta\left(0, y_{i}\right)=\delta\left(0, y_{j}\right)=q$ for some $q \in Q$. Then $y_{i} \sim_{L} y_{j}$. Again a contradiction.

Therefore, we have $n=N(L)$.

5. The construction of minimal DFCA

The first part of this section describes an algorithm that determines the similarity relations between states. The second part is to construct a minimal DFCA assuming that the similarity relation between states is known.

An ordered DFA is a DFA where $\delta(i, a)=j$ implies that $i \leqslant j$, for all states i, j and letters a. Obviously for such a DFA \#Q-1 is the sink state.

5.1. Determining similarity relation between states

The aim is to present an algorithm which determines the similarity relations between states.

Let $A=(Q, \Sigma, \delta, 0, F)$ a DFCA of a finite language L. Define $D_{-1}(A)=\{s \in Q \mid \delta(s, w)$ $\notin F$, for all $\left.w \in \Sigma^{*}\right\}$; for each $s \in Q$ let $\gamma_{s}(A)=\min \{w \mid \delta(s, w) \in F\}$, and $D_{i}(A)=\{s \in Q$ $\left|\left|\gamma_{s}\right|=i\right\}$, for each $i=0,1, \ldots$, where minimum is taken according to the quasi-lexicographical order. If the automaton A is understood then we write D_{i} and γ_{s} instead of $D_{i}(A)$ and respectively $\gamma_{s}(A)$.

Lemma 24. Let $A=(Q, \Sigma, \delta, 0, F)$ be a $D F C A$ of a finite language L, and $p \in D_{i}$, $q \in D_{j}$. If $i \neq j, i, j \geqslant 0$ then $p \nsim q$.

Proof. We can assume that $i<j$. Then obviously $\delta\left(p, \gamma_{p}\right) \in F$ and $\delta\left(q, \gamma_{p}\right) \notin F$. Since $l \geqslant\left|x_{p}\right|+\left|\gamma_{p}\right|, l \geqslant\left|x_{q}\right|+\left|\gamma_{q}\right|$, and $i<j$, it follows that $\left|\gamma_{p}\right|<\left|\gamma_{q}\right|$. So, we have that $\left|\gamma_{p}\right| \leqslant \min \left(l-\left|x_{p}\right|, l-\left|x_{q}\right|\right)$. Hence, $p \nsim q$.

Lemma 25. Let $A=(Q, \Sigma, 0, \delta, F)$ be an ordered $D F A$ accepting $L, p, q \in Q-D_{-1}$, and either $p, q \in F$ or $p, q \notin F$. If for all $a \in \Sigma, \delta(p, a) \sim_{A} \delta(q, a)$, then $p \sim_{A} q$.

Proof. Let $a \in \Sigma$ and $\delta(p, a)=r$ and $\delta(q, a)=s$. If $r \sim_{A} s$ then for all w such that $|w|<l-\max \left\{\left|x_{A}(s)\right|,\left|x_{A}(r)\right|\right\}, x_{A}(r) w \in L$ iff $x_{A}(s) w \in L$. Using Lemma 10 we also have: $x_{A}(q) a w \in L$ iff $x_{A}(s) w \in L$ for all $w \in \Sigma^{*},|w| \leqslant l-\left|x_{A}(s)\right|$, and $x_{A}(p) a w \in L$ iff $x_{A}(r) w \in L$ for all $w \in \Sigma^{*},|w| \leqslant l-\left|x_{A}(r)\right|$.

Hence $x_{A}(p) a w \in L$ iff $x_{A}(q) a w \in L$, for all $w \in \Sigma^{*},|w| \leqslant l-\max \left\{\left|x_{A}(r)\right|,\left|x_{A}(s)\right|\right\}$. Because $\left|x_{A}(r)\right| \leqslant\left|x_{A}(q) a\right|=\left|x_{A}(q)\right|+1$ and $\left|x_{A}(s)\right| \leqslant\left|x_{A}(p) a\right|=\left|x_{A}(p)\right|+1$, we get $x_{A}(p) a w \in L$ iff $x_{A}(q) a w \in L$, for all $w \in \Sigma^{*},|w| \leqslant l-\max \left\{\left|x_{A}(p)\right|,\left|x_{A}(q)\right|\right\}-1$.

Since $a \in \Sigma$ is chosen arbitrary, we conclude that $x_{A}(p) w \in L$ iff $x_{A}(q) w \in L$, for all $w \in \Sigma^{*},|w| \leqslant l-\max \left\{\left|x_{A}(p)\right|,\left|x_{A}(q)\right|\right\}$, i.e. $x_{A}(p) \sim_{A} x_{A}(q)$. Therefore, by using Lemma 11, we get that $p \sim_{A} q$.

Lemma 26. Let $A=(Q, \Sigma, 0, \delta, F)$ be an ordered $D F A$ accepting L such that $\delta(0, w)$ $=s$ implies $|w|=\left|x_{s}\right|$ for all $s \in Q$. Let $p, q \in Q-D_{-1}$. If there exists $a \in \Sigma$ such that $\delta(p, a) \nsim{ }_{A} \delta(q, a)$, then $p \not \varkappa_{A} q$.

Proof. Suppose that $p \sim_{A} q$. Then for all $a w \in \Sigma^{l-m}, \delta(p, a w) \in F$ iff $\delta(q, a w) \in F$, where $m=\max \{\operatorname{level}(p)$, level $(q)\}$. So $\delta(\delta(p, a), w) \in F$ iff $\delta(\delta(q, a), w) \in F$ for all $w \in \Sigma^{l-m-1}$. Since $\left|x_{\delta(p, a)}\right|=\left|x_{p}\right|+1$ and $\left|x_{\delta(q, a)}\right|=\left|x_{q}\right|+1$ it follows by definition that $\delta(p, a) \sim_{A} \delta(q, a)$. This is a contradiction.

Our algorithm for determining the similarity relation between the states of a DFA (DFCA) of a finite language is based on Lemmas 25 and 26. However, most of DFA (DFCA) do not satisfy the condition of Lemma 26. So, we shall first transform the given DFA (DFCA) into one that does.

Let $A=\left(Q_{A}, \Sigma, \delta_{A}, 0, F_{A}\right)$ be a DFCA of L. We construct the minimal DFA for the language $\Sigma^{\leqslant l}, B=\left(Q_{B}, \Sigma, \delta_{B}, 0, F_{B}\right)\left(Q_{B}=\{0, \ldots, l, l+1\}, \delta_{B}(i, a)=i+1\right.$, for all $i, 0 \leqslant i \leqslant l, \delta_{B}(l+1, a)=l+1$, for all $\left.a \in \Sigma, F_{B}=\{0, \ldots, l\}\right)$. The DFA B will have exact $l+2$ states.

Now we use the standard Cartesian product construction (for details see, e.g., [2]) for the DFA $C=\left(Q_{C}, \Sigma, \delta_{C}, q_{0}, F_{C}\right)$ such that $L(C)=L(A) \cap L(B)$, (taking the automata in this order) and we eliminate all inaccessible states. Obviously, $L(C)=L$ and C satisfies the condition of Lemma 26.

Lemma 27. For the DFA C constructed above, if $\delta_{C}((0,0), w)=(p, q)$, then $|w|=q$.
Proof. We have $\delta_{C}((0,0), w)=(p, q)$, so $\delta_{B}(0, w)=q$ therefore $|w|=q$.
Lemma 28. For the DFA C constructed above we have $(p, q) \sim_{C}(p, r)$.
Proof. If $p \in D_{-1}(A)$, the lemma is obvious. Suppose now that $p \notin D_{-1}$ and $q \leqslant r$. Then $r \leqslant l$ so $\delta_{B}(q, w) \in F_{B}$ and $\delta_{B}(r, w) \in F_{B}$ for $w \in \Sigma^{\leqslant l-r}$. It follows that $\delta_{C}((p, q), w) \in F_{C}$ iff $\delta_{C}((p, r), w) \in F_{C}$, i.e. $(p, q) \sim_{C}(p, r)$.

Lemma 29. For the DFA C constructed above we have that ($\# Q-1, l+1-i) \sim_{C}$ $\alpha, \alpha \in D_{j}, j=i, \ldots, l, 0 \leqslant i \leqslant l$.

Proof. We have that $\delta_{C}((\# Q-1, l+1-i), w) \notin F_{C}$ for all $w \in \Sigma^{*}, \delta_{C}(\alpha, w) \notin F_{C}$ for $|w|<j$. It is clear that $\operatorname{level}((\# Q-1, l+1-i)=l+1-i$ and $\operatorname{level}(\alpha) \leqslant l-j \leqslant l-i$. Let $w \in \Sigma^{\leqslant(l-(l+1-i))}=\Sigma^{\leqslant i-1}$. Since both $\delta_{C}(\alpha, w) \notin F_{C}$ and $\delta_{C}((\# Q-1, l+1-i), w) \notin F_{C}$ it follows the conclusion.

Now we are able to present an algorithm, which determines the similarity relation between the states of C. Note that Q_{C} is ordered by that $\left(p_{A}, p_{B}\right)<\left(q_{A}, q_{B}\right)$ if $p_{B}<q_{B}$ or $p_{B}=q_{B}$ and $p_{A}<q_{A}$. Attaching to each state of C is a set of similar states. For $\alpha, \beta \in Q_{C}$, if $\alpha \sim_{C} \beta$ and $\alpha<\beta$, then β is stored in the set of similar states for α.

We assume that $Q_{A}=\{0,1, \ldots, n-1\}$ and A is reduced (so $n-1$ is the sink state of A).
(1) Compute $D_{i}(C),-1 \leqslant i \leqslant l$.
(2) Initialize the similarity relation by specifying:
(a) For all $(n-1, p),(n-1, q) \in Q_{C},(n-1, p) \sim_{C}(n-1, q)$.
(b) For all $(n-1, l+1-i) \in Q_{C},(n-1, l+1-i) \sim_{C} \alpha$ for all $\alpha \in D_{j}(C), j=i, \ldots, l$, $0 \leqslant i \leqslant l$.
(3) For each $D_{i}(C),-1 \leqslant i \leqslant l$, create a list List $_{i}$, which is initialized to \emptyset.
(4) For each $\alpha \in Q_{C}-\left\{(n-1, q) \mid q \in Q_{B}\right\}$, following the reversed order of Q_{C}, do the following:
Assuming $\alpha \in D_{i}(C)$.
(a) For each $\beta \in \operatorname{List}_{i}$, if $\delta_{C}(\alpha, a) \sim_{C} \delta_{C}(\beta, a)$ for all $a \in \Sigma$, then $\alpha \sim_{C} \beta$.
(b) Put α on the list List $_{i}$.

By Lemma 24 we need to determine only the similarity relations between states of the same $D_{i}(C)$ set. Step 2(a) follows from Lemma 28, 2(b) from Lemma 29 and Step 4 from Lemma 15.

Remark 30. The above algorithm has complexity $\mathrm{O}\left((n \times l)^{2}\right)$, where n is the number of states of the initial DFA (DFCA) and l is the maximum accepted length for the finite language L.

5.2. The construction of a minimal DFCA

As the input to the algorithm, we have the above DFA C and, for each $\alpha \in Q_{C}$, a set $S_{\alpha}=\left\{\beta \in Q_{C} \mid \alpha \sim_{C} \beta\right.$ and $\left.\alpha<\beta\right\}$. The output is $D=\left(Q_{D}, \Sigma, \delta_{D}, q_{0}, F_{D}\right)$, a minimal DFCA for L.

We define the following:
$i=0, q_{i}=0, T=Q_{C}-S_{q_{i}},\left(x_{0}=\lambda\right) ;$
while $(T \neq \emptyset)$ do the following:

$$
\begin{aligned}
& i=i+1 \\
& q_{i}=\min \{s \in T\} \\
& T=T-S_{q_{i}},\left(x_{i}=\min \left\{w \mid \delta_{C}(0, w) \in S_{i}\right\}\right)
\end{aligned}
$$

$m=i$.
Then $Q_{D}=\left\{q_{0}, \ldots, q_{m-1}\right\} ; q_{0}=0 ; \delta_{D}\left(q_{i}, a\right)=q_{j}$ iff $s=\min S_{q_{i}}$ and $\delta_{C}(s, a) \in S_{q_{j}} ;$ $F_{D}=\left\{i \mid S_{i} \cap F_{C} \neq \emptyset\right\}$.

Note that the constructions of x_{i} above are useful for the proofs in the following only, where the min (minimum) operator for x_{i} is taken according to the lexicographical order.

According to the algorithm we have a total ordering of the states $Q_{C}:(p, q) \leqslant(r, s)$ if $(p, q)=(r, s)$ or $q<s$ or $q=s$ and $p<r$. Hence $\delta_{D}(i, a)=j$ iff $\delta_{D}\left(0, x_{i} a\right)=j$. Also, from the construction (i.e. the total order on Q_{C}) it follows that $0=\left|x_{0}\right| \leqslant\left|x_{1}\right| \leqslant \cdots$ $\leqslant\left|x_{m-1}\right|$.

Lemma 31. The sequence $\left[x_{0}, x_{1}, \ldots, x_{m-1}\right]$ constructed above is a canonical L-dissimilar sequence.

Proof. We construct the sets $X_{i}=\left\{w \in \Sigma^{*} \mid \delta(0, w) \in S_{i}\right\}$. Obviously $X_{i} \neq \emptyset$. From Lemma 10 it follows that X_{i} is a L-similarity set for all $0 \leqslant i \leqslant m-1$.

Let $w \in \Sigma^{*}$. Because $\left(S_{i}\right)_{1 \leqslant i \leqslant m-1}$ is a partition of $Q, w \in X_{i}$ for some $0 \leqslant i \leqslant$ $n-1$, so $\left(X_{i}\right)_{0 \leqslant i \leqslant n-1}$ is a partition of Σ^{*} and therefore $\left[x_{0}, x_{1}, \ldots, x_{n-1}\right]$ is a canonical L-dissimilar sequence.

Corollary 32. The automaton D constructed above is a minimal DFCA for L.

Proof. Since the number of states is equal to the number-of-elements of a canonical L-dissimilar sequence, we only have to prove that D is a cover automaton for L. Let $w \in \Sigma^{\leqslant l}$. We have that $\delta_{D}(0, w) \in F_{D}$ iff $\delta_{C}((0,0), w) \in S_{i}$ such that $S_{i} \cap F_{C} \neq \emptyset$, i.e. $x_{i} \sim_{C} w$. Since $|w| \leqslant l, x_{i} \in L$ iff $w \in L$ (because C is a DFCA for L).

6. Boolean operations

We shall use similar constructions as in [2] for constructing DFCA of languages which are a result of boolean operations between finite languages. The modifications are suggested by the previous algorithm. We first construct the DFCA which satisfies the assumption of Lemma 26 and afterwards we can minimize it using the general algorithm. Since the minimization will follow in a natural way we shall present only the construction of the necessary DFCA.

Let $A_{i}=\left(Q_{i}, \Sigma, \delta_{i}, 0, F_{i}\right)$ be a DFCA of the finite languages $L_{i}, l_{i}=\max \left\{\mid w \| w \in L_{i}\right\}$, $i=1,2$.

6.1. Intersection

We construct the following DFA:

$$
A=\left(Q_{1} \times Q_{2} \times\{0, \ldots, l+1\}, \Sigma, \delta,(0,0,0), F\right),
$$

where $l=\min \left\{l_{1}, l_{2}\right\}, \delta((s, p, q), a)=\left(\delta_{1}(s, a), \delta_{2}(p, a), q+1\right)$, for $s \in Q_{1}, p \in Q_{2}, q \leqslant l$, and $\delta((s, p, l+1), a)=\left(\delta_{1}(s, a), \delta_{2}(p, a), l+1\right)$ and $F=\left\{(s, p, q) \mid s \in F_{1}, p \in F_{2}, q \leqslant l\right\}$.

Theorem 33. The automaton A constructed above is a DFCA for $L=L\left(A_{1}\right) \cap L\left(A_{2}\right)$.
Proof. We have the following relations: $w \in L_{1} \cap L_{2}$ iff $|w| \leqslant l$ and $w \in L_{1}$ and $w \in L_{2}$ iff $|w| \leqslant l$ and $w \in L\left(A_{1}\right)$ and $w \in L\left(A_{2}\right)$. The rest of the proof is obvious.

6.2. Union

Assuming that $l_{1} \geqslant l_{2}$, we construct the following DFA: $A=\left(Q_{1} \times Q_{2} \times\{0, \ldots\right.$, $l+1\}, \Sigma, \delta,(0,0,0), F)$, where $l=\max \left\{l_{1}, l_{2}\right\}, m=\min \left\{l_{1}, l_{2}\right\}, \delta((s, p, q), a)=\left(\delta_{1}(s, a)\right.$, $\left.\delta_{2}(p, a), q+1\right)$, for $s \in Q_{1}, p \in Q_{2}, q \leqslant l$, and $\delta((s, p, l+1), a)=\left(\delta_{1}(s, a), \delta_{2}(p, a), l+1\right)$ and $F=\left\{(s, p, q) \mid s \in F_{1}\right.$ or $\left.p \in F_{2}, q \leqslant m\right\} \cup\left\{(s, p, q) \mid s \in F_{1}\right.$ and $\left.m<q \leqslant l\right\}$.

Theorem 34. The automaton A constructed above is a DFCA for $L=L\left(A_{1}\right) \cup L\left(A_{2}\right)$.
Proof. We have the following relations: $w \in L_{1} \cup L_{2}$ iff $|w| \leqslant m$ and $w \in L_{1}$ or $w \in L_{2}$, or $m<|w| \leqslant l$ and $w \in L_{1}$ iff $|w| \leqslant m$ and $w \in L\left(A_{1}\right)$ or $w \in L\left(A_{2}\right)$, or $m<|w| \leqslant l$ and $w \in L\left(A_{1}\right)$. The rest of the proof is obvious.

6.3. Symmetric difference

Assuming that $l_{1} \geqslant l_{2}$, we construct the following DFA:

$$
A=\left(Q_{1} \times Q_{2} \times\{0, \ldots, l+1\}, \Sigma, \delta,(0,0,0), F\right),
$$

where $l=\max \left\{l_{1}, l_{2}\right\}, m=\min \left\{l_{1}, l_{2}\right\}, \delta((s, p, q), a)=\left(\delta_{1}(s, a), \delta_{2}(p, a), q+1\right)$, for $s \in Q_{1}, \quad p \in Q_{2}, q \leqslant l, \quad$ and $\delta((s, p, l+1), a)=\left(\delta_{1}(s, a), \delta_{2}(p, a), l+1\right)$ and $F=$ $\left\{(s, p, q) \mid s \in F_{1}\right.$ exclusive or $\left.p \in F_{2}, q \leqslant m\right\} \cup\left\{(s, p, q) \mid s \in F_{1}\right.$ and $\left.m<q \leqslant l\right\}$.

Theorem 35. The automaton A constructed above is a $D F C A$ for $L=L\left(A_{1}\right) \Delta L\left(A_{2}\right)$.

Proof. We have the following relations: $w \in L_{1} \Delta L_{2}$ iff $|w| \leqslant m$ and $w \in L_{1}$ xor $w \in L_{2}$, or $m<|w| \leqslant l$ and $w \in L_{1}$ iff $|w| \leqslant m$ and $w \in L\left(A_{1}\right)$ xor $w \in L\left(A_{2}\right)$, or $m<|w| \leqslant l$ and $w \in L\left(A_{1}\right)$. The rest of the proof is obvious.

6.4. Difference

We construct the following DFA:

$$
A=\left(Q_{1} \times Q_{2} \times\{0, \ldots, l+1\}, \Sigma, \delta,(0,0,0), F\right)
$$

where $l=\max \left\{l_{1}, l_{2}\right\}, m=\min \left\{l_{1}, l_{2}\right\}$ and $\delta((s, p, q), a)=\left(\delta_{1}(s, a), \delta_{2}(p, a), q+1\right)$, for $s \in Q_{1}, p \in Q_{2}, q \leqslant l$, and $\delta((s, p, l+1), a)=\left(\delta_{1}(s, a), \delta_{2}(p, a), l+1\right)$. If $l_{1}<l_{2}$ then $F=\left\{(s, p, q) \mid s \in F_{1}\right.$ and $\left.p \notin F_{2}, q \leqslant m\right\}$ and otherwise, $F=\left\{(s, p, q) \mid s \in F_{1}\right.$ and $\left.p \notin F_{2}, q \leqslant m\right\} \cup\left\{(s, p, q) \mid s \in F_{1}\right.$ and $\left.m<q \leqslant l\right\}$.

Theorem 36. The automaton A constructed above is a DFCA for $L=L\left(A_{1}\right)-L\left(A_{2}\right)$.

Proof. We have the following relations: $w \in L_{1}-L_{2}$ iff $|w| \leqslant m$ and $w \in L_{1}$ and $w \notin L_{2}$, or $m<|w| \leqslant l$ and $w \in L_{1}$ iff $|w| \leqslant m$ and $w \in L\left(A_{1}\right)$ and $w \notin L\left(A_{2}\right)$, or $m<|w| \leqslant l$ and $w \in L\left(A_{1}\right)$. The rest of the proof is obvious.

References

[1] J.L. Balcàzar, J. Diaz, J. Gabarrò, Uniform characterisations of non-uniform complexity measures, Inform. and Control 67 (1985) 53-89.
[2] C. Câmpeanu, Regular languages and programming languages, Rev. Roumaine Linguistique - CLTA 23 (1986) 7-10.
[3] C. Dwork, L. Stockmeyer, A time complexity gap for two-way probabilistic finite-state automata, SIAM J. Comput. 19 (1990) 1011-1023.
[4] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley, Reading, MA, 1979.
[5] J. Kaneps, R. Freivalds, Minimal Nontrivial Space Space Complexity of Probabilistic One-Way Turing Machines, in: B. Rovan (Ed.), Proc. Mathematical Foundations of Computer Science, Banská Bystryca, Czechoslovakia, August 1990, Lecture Notes in Computer Science, vol. 452, Springer, New York, 1990, pp. 355-361.
[6] J. Kaneps, R. Freivalds, Running time to recognise non-regular languages by 2-way probabilistic automata, in ICALP'91, Lecture Notes in Computer Science, vol. 510, Springer, New York, 1991, pp. 174-185.
[7] J. Paredaens, R. Vyncke, A class of measures on formal languages, Acta Inform. 9 (1977) 73-86.
[8] J. Shallit, Y. Breitbart, Automaticity I: Properties of a Measure of Descriptional Complexity, J. Comput. System Sci. 53 (1996) 10-25.
[9] A. Salomaa, Theory of Automata, Pergamon Press, Oxford, 1969.
[10] K. Salomaa, S. Yu, Q. Zhuang, The state complexities of some basic operations on regular languages, Theoret. Comput. Sci. 125 (1994) 315-328.
[11] S. Yu, Regular languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Springer, Berlin, 1997.
[12] S. Yu, Q. Zhung, On the State Complexity of Intersection of Regular Languages, ACM SIGACT News 22 (3) (1991) 52-54.

[^0]: This research is supported by the Natural Sciences and Engineering Research Council of Canada grants OGP0041630.

 * Corresponding author.

 E-mail addresses: cezar@csd.uwo.ca (C. Câmpeanu), santean@csd.uwo.ca (N. Sântean), syu@csd.uwo.ca (S. Yu).

