
International Journal of Foundations of Computer Science

c© World Scientific Publishing Company

ON THE EXISTENCE OF LOOKAHEAD DELEGATORS
FOR NFA

BALA RAVIKUMAR

Department of Computer Science, Sonoma State University
Rohnert Park, CA 94928, USA

and

NICOLAE SANTEAN∗

School of Computer Science, University of Waterloo
Waterloo, ON N2L 3G1, Canada

Received (received date)
Revised (revised date)

Communicated by Editor’s name

ABSTRACT

We investigate deterministically simulating (i.e., solving the membership problem
for) nondeterministic finite automata (NFA), relying solely on the NFA’s resources (states
and transitions). Unlike the standard NFA simulation, involving an algorithm which
stores at each step all the states reached nondeterministically while reading the input, we
consider deterministic finite automata (DFA) with lookahead, which choose the “right”
NFA transitions based on a fixed number of input symbols read ahead. This concept,
known as lookahead delegation, arose in a formal study of web services composition and
its subsequent practical applications. Here we answer several related questions, such as
“when is lookahead delegation possible?” and “how hard is it to find a delegator with a
given lookahead buffer size?”. In particular, we show that only finite languages have the
property that all their NFA have delegators. This implies, among others, that delegation
is a machine property, rather than a language property. We also prove that the existence
of lookahead delegators for unambiguous NFA is decidable, thus partially solving an open
problem. Finally, we show that finding delegators (even for a given buffer size) is hard
in general, and is more efficient for unambiguous NFA, and we give an algorithm and a
compact characterization for NFA delegation in general.

Keywords: Deterministic NFA simulation; Lookahead delegator; Unambiguous NFA.

1. Introduction

Finite automata models are ubiquitous in a wide range of applications. The
well–known classical applications of automata involve parsing, string matching and
sequential circuits. Recently, formal models based on finite automata have been

∗Corresponding author: email nsantean@cs.uwaterloo.ca .

1

applied in service–oriented computing, a newly emerging framework to harness the
power of the World Wide Web [1]. One basic computational problem that arises in
this framework is automated service composition [3]. Informally, this problem can be
described as follows: an activity automaton is a finite state acceptor that accepts a
sequence of tasks (each represented by an input symbol). Automated composition
involves breaking down such sequence of tasks and assigning them to individual
activity automata. Formally, a system of finite automata 〈A;A1, A2, ..., Ak〉 is said
to be composable if every string w accepted by the DFA A can be written as a
shuffle product of strings w1, ..., wt where each wi is accepted by Aj for some j.
This formal framework for e–services composition was introduced by [1] and has
recently been studied extensively by a number of scientists in [8, 6, 9, 3, 4] etc.

A requirement more stringent than composability is the existence of k–lookahead
delegators (or k–delegators for brevity), which is defined as follows. Given a system
〈A1, A2, ..., Ak〉 of DFA or even NFA, let A′ be the “shuffle–product” of the system.
Informally, a DFA A is said to be k–delegator for A′ if the states of A are a subset of
the states of A′. Further, based on the current state and the next k–input symbols,
the transition table of A makes a deterministic choice among the possible choices
of the NFA in such a way that if (and only if) the input string is accepted by
A′, the simulation of A will also result in an accepting state. For a given NFA, a
basic question is whether it has a k–delegator for some integer k. One can also ask
whether an NFA has a k–delegator for a given k.

k–Delegators were first introduced informally in [2] in the study of e–services
composability. In the same paper it was established that the existence of k–
delegators is decidable for a given k. However, the complexity of this problem was
not addressed. Moreover, the problem of deciding the existence of a k–delegator
for some k was left as an open problem. In this work, we address these and some
related questions, without re-addressing the implications of our results in e–service
applications.

The main results of this work can be summarized as follows. First, we define
delegation as a property which can be viewed both as a language and as a machine
property. When viewed as a language property, we characterize the family of regular
languages whose all NFA have delegators. Since this family turns out to be that
of finite languages, we adopt the second point of view, that of delegation as a
machine property. We consider the complexity of determining if a given NFA has a
k–delegator, and we formulate three versions of this problem. The first one involves
a fixed k, the second one includes k (in unary) as part of the input and the third one
involves determining if a k–delegator exists for some arbitrary k. When the input
is restricted to unambiguous NFA (i.e., NFA which accept words by at most one
computation), the first problem is shown to have a polynomial time algorithm, the
second one is shown to be in co–NP and the third one is shown to be in PSPACE.
When the input may be an ambiguous NFA, even the first version is shown to be
PSPACE–complete. We then provide an algorithm for the second problem in the
general case, that is more efficient than the brute–force algorithm. This algorithm
also leads to a simple necessary and sufficient condition for the existence of a k–

2

delegator, for some arbitrary k. Although the decidability of the third problem in
the general case is still unsolved, our characterization provides a promising approach
towards its resolution. We conclude with some open problems and directions for
future work.

2. The Delegation Problem

In the following we assume known basic notions of automata theory (see, for
example, [5] and [13]). Notation–wise, an NFA is a tuple M = (Q, Σ, δ, q0, F) with
Q a finite set of states, Σ an alphabet, δ : Q × Σ → 2Q a transition function, q0

an initial state, and F ⊆ Q a set of final states. M is trim if each of its states is
useful: accessible (there exists a computation from the initial state and ending in
it) and co-accessible (there exists a computation starting from it and ending in
some final state). If δ is a function (as opposed to a relation), then M becomes a
DFA (deterministic finite automaton). We say that two automata are equivalent if
they recognize the same language. In the following we denote by ε the empty word,
by Σk the set of all words of length k over Σ (and by Σ≤k the set of all words of
length at most k), by pref(L) the set of all prefixes of words in a language L, and
by prefk(L) the set pref(L) ∩ Σk.

By a DFA with k–lookahead buffer we understand a DFA A = (Q, Σ, f, q0, F)
with f : Q×Σ≤k → Q, which operates as follows. A has a buffer with k cells which
initially contains the first k symbols of the input word (or, if the word has fewer
symbols, the entire word). At each computation step, A consumes one input symbol
and stores the following k symbols of the input tape in its buffer. When the buffer
reaches the end of the word, the computation continues with partial buffer content
(consisting of words shorter than k) till it becomes empty, when the computation
stops. The acceptance criterion is as for classical automata. The function f decides
the next state based on the current state of A and its buffer content. It is easy to
see that DFA with k–lookahead buffer are equivalent with standard DFA: one can
view the buffer content as part of automaton’s internal state.

We begin with the definition of a k–delegator, equivalent with, however different
from, that provided in [2] – for the reason of improving the formalism.
Definition 1 An NFA M = (Q, Σ, δ, q0, F) has a k–delegator if there exists an
equivalent DFA with k–lookahead buffer A = (Q, Σ, f, q0, F) such that f(q, a1 . . . ah)
∈ δ(q, a1) for all (q, a1 . . . ah) in the domain of f .

We say that A is a k–delegator for M or, when the context makes it clear, we
denote f in the above definition to be a k–delegator for M (implying that there
exists a DFA with k–lookahead as in the definition, with f its transition function).
Indeed, M and A share the same resources (states and transitions) and the pair
(M , f) uniquely identifies the k–delegator A for M .

It is clear that any DFA M has a 1–delegator: simply choose f in the above
definition as being the transition function of M . There are also NFA that can have
a 1–delegator. On the other hand, for any given k, there exist NFA that have
k–delegators, but not (k − 1)–delegators, as Figure 1 shows.

3

0

0

. . .

. . .

0 0

0

0

k−1

k−1

q

p

qk

pk

q1

q2

p2

0

1

Figure 1: An NFA which has a k–delegator, but no (k − 1)–delegators.

The following example shows that there are NFA that do not have a k–delegator
for any k.
Example 1 Consider the NFA M in Figure 2, for the language L of all words
w ∈ {0, 1}∗ in which some pair of successive occurrences of 1’s has an odd number
of 0’s in between them. It is easy to see that M does not have a k–delegator for any

0, 10, 1

11

0

0

q3q2q1q0

Figure 2: An NFA which has no k–delegator for any k.

positive integer k.
The NFA in Figure 3 is an unambiguous NFA (i.e., any word is the label of at

most one successful computation), and yet, it has no k–delegator for any k.

q4q3

1

1

0

0

q2q1

0

0

q0

Figure 3: An unambiguous NFA which has no k–delegator for any k.

Lemma 1 We restrict our study to trim ε–free NFA, since an ε–NFA has no k–
lookahead delegators for some/any integer k if and only if its ε–free equivalent (con-
sidering the standard ε–removal) has the same property.
Proof. It suffices to notice that a delegator f which follows an ε–transition does
not “consume” the input, hence its buffer remains unchanged. Consequently, the

4

ε–closure and ε–removal (as shown in Figure 4) can be performed on f in order to
obtain a delegator for the ε–free equivalent NFA. 2

f(q1, a1 . . . ak)

f(q1, a1 . . . ak) f(q2, a1 . . . ak)

a1

a1

ε q3q2q1

Figure 4: The ε–removal for a k–delegator.

The basic idea in Definition 1 is that if an NFA M has a k–delegator A (or
equivalently, f), then given as input for the delegator the sequence of buffer content

x1

x2

...
xk

x2

x3

...
xk+1

 ...

xn−k+1

xn−k+2

...
xn

xn−k+2

xn−k+3

...
#

 ...

#
#
...
#

 ,

A simulates M by entering a sequence of states of the NFA in such a way that if
there is an accepting computation in M for the string x1x2...xn (i.e., a sequence
of states leading to an accepting state) then A goes through one such sequence of
states leading to acceptance as well. Notice that A is not required to check that
the input is in the “correct format”, that is, it does not check that each successive
“super symbol”, consisting of a buffer of k symbols from the original alphabet, is
obtained by subsequently dequeuing one symbol from the buffer and enqueuing a
new symbol. Furthermore, notice that when the right–end of the input string is
reached, a padding symbol # is added to the buffer content in order to keep the
buffer always filled (always containing k symbols). We will show later that padding
of the input is just a matter of formalism, and will be ignored most of the time.
Therefore, when a delegator f exists, we are mainly interested in its restriction to
Q × Σk, and from now on we consider f : Q × Σk → Q. An intuitive justification
for this is that when the buffer is not completely filled, we know that the end of the
word has been reached, and is trivial to delegate the last part (less than k steps) of
the computation (i.e., it is trivial to find the extension of f to Q× Σ≤k).

Thus, by using delegators, the nondeterminism can be avoided at the cost of
reading ahead a constant number of input symbols; whereas the cost of determiniz-
ing an NFA is high. A delegator has the same size (number of states) as the initial
NFA, whereas an equivalent DFA may be exponentially larger. Furthermore, in
many applications, such as the automated service composition model, deterministic
behaviour must be achieved without altering the structure of the model, by relying
on metadata. This can not be achieved by determinization.
Remark 1 Notice that “delegation” can also be used as a measure of NFA nonde-
terminism. If an NFA M has an m–delegator and M ′ has an n–delegator, with m,n

being the smallest such integers, and if n > m then the cost of deterministically sim-
ulating M ′ is greater than that for M . In this sense, M ′ is “more nondeterministic”

5

than M . This hints at viewing k–delegation as what may be called k–unambiguity.
It is clear that every regular language L is accepted by an NFA that has a 1–

delegator, namely a DFA for L. On the other hand, it may be the case that for
some regular languages, every associated NFA may have a k–delegator for some k.
The next definition is intended to characterize such regular languages.
Definition 2 Let L be a regular langauge.

(i) L is said to be weakly delegable if for any NFA M for L, there exists a k

such that M has a k–delegator.

(ii) L is said to be strongly delegable if there exists a k such that for every
NFA M for L, M has a k–delegator.

The next result shows that the classes of regular languages that are weakly
delegable and strongly delegable coincide. Let M be an NFA and let p be a state
of M . By Lp we will denote the language accepted by M if p is chosen as the start
state of M (with no other change to its definition).
Theorem 1 The following statements are equivalent:

(1) L is finite.

(2) L is strongly delegable.

(3) L is weakly delegable.

Proof. (1) ⇒ (2) Let m be the length of the longest string in L. It is easy
to see that any NFA for L can be “m–simulated” using a DFA, hence it has an
m–delegator.

(2) ⇒ (3) is obvious from the definition.
(3) ⇒ (1) We prove the contrapositive, namely, if L is not finite then there exists

an NFA M ′ for L that does not have a k–delegator for any k. Let M be a DFA for
L. We assume that M is trim, that is, it does not have any useless states. Thus,
M may be incomplete. Since L is infinite, M has at least one cycle.

First we consider the simpler case, in which some accepting state lies in a cycle.
Fix one such cycle containing the states p1, p2, ..., pr. Thus, one of the states in
the set {p1, p2, ..., pr} is an accepting state. Let Li be the set of labels on the
transition from pi to p(i+1) mod r. We define an NFA M ′ as follows. We start with
M and remove the states p2, ..., pr. Then, we add 4r states q1, ..., q2r and s1, ...,
s2r, and add transitions to these states in such way, that for all states qj , qr+j , sj

and sr+j , the equality Lqj ∪ Lqr+j ∪Lsj ∪ Lsr+j = Lpj holds.
For all j ∈ {1, . . . , r} we consider all transition labels of Lj and add them to

transitions from qj to qj+1, from qj+r to q(j+r+1) mod 2r, from sj to sj+1, and from
sj+r to s(j+r+1) mod 2r. Next, we add the labels of L1 to transitions from p1 to q2

as well as to s2. Finally, for each transition in M from pj to any state not in the
cycle, we add in M ′ transitions with the same label from qj , qr+j , sj and sr+j to
that state. A transition in M from a state not in the cycle to a state pj in the cycle
is replaced in M ′ by the transitions from that state to each state qj , qr+j , sj and

6

sr+j . Finally, consider a transition in M from pj to pt where t 6= (j + 1) mod r.
In M ′ we replace the transition by a corresponding transition from qj to qt, from
qr+j to qr+t as well as from sj to st and from sr+j to sr+t. The accepting states in
M ′ are chosen as follows. The accepting states of M that have not been removed
will continue to be accepting states. Among the added states, accepting states are
determined as follows: If pi was an accepting state in M , then qi as well as sr+i will
be chosen accepting states in M ′. This construction is reflected on a small scale in
Figure 5. Notice that if M ′ is in state p1 after reading some input symbols, then by

s3

s2

s1

p2p1

a

a
b

b

a

ap1

q4

q3

q2

q1

s4

c

c

a

bc d

d

d

d

d

c

c

c

b

a

a

b

Figure 5: A cycle in M and its corresponding twin cycles in M ′.

reading a and looking ahead at the next k−1 symbols does not suffice for predicting
which transition should be followed. Indeed, from state p1 both words a(ba)2k and
a(ba)2k+1 lead to acceptance in M ; however, if a hypothetical k–delegator for M ′

commits to any particular transition from p1 on input a, then one of these two
words would lead to a failing computation. It can be shown that L(M ′) = L and
that M ′ does not have a k–delegator for any k. The details are straightforward.

Consider now the case when the cycle containing p1, p2, ..., pr does not have an
accepting state. Since M is trim, there are states in this cycle which have transitions
to some states that do not belong to the cycle (in order to have successful paths, the
states in the cycle should be connected with some final states). Assume that one
such state is pj , with j ∈ {1, . . . , r} and that the set of labels of transitions from pj

to states not in the cycle is denoted by out(pj). This state will play the role similar
to that of the final states in the previous construction. Without loss of generality,
we assume that j 6= 1. We construct an automaton M ′ as before, with the following
exception: the states sj and q(j+r) mod 2r have no transitions to states which do
not belong to the cycle (however, s(j+r) mod 2r and qj do have such transitions with
labels in out(pj)). This modification is reflected in Figure 6. M ′ does not have a
k–delegator for a reason similar to that in the previous construction: committing
to a transition out of p1 would discriminate among paths using an even versus odd

7

out(pj)

s(r+j) mod 2r

q(r+j) mod 2r

out(pj)

sj

qj

p1

Figure 6: The construction for a cycle with no final states.

number of states pj . The details are straightforward. 2

In the following section we investigate machine properties related to the existence
of k–delegators, as a preamble to the algorithmic approach on NFA delegation.

3. Basic Results on NFA Delegation

Let M = (Q, Σ, δ, q0, F) be a trim NFA and q ∈ Q, a ∈ Σ such that δ(q, a) =
{q1, . . . , qt} with t > 1 (q has nondeterministic transitions on input a). As usual,
by Lq we understand the language obtained by setting q to be initial state in M .
Notation–wise, we denote by av a word that starts with a and whose suffix obtained
by removing a is v, and by v−1Lq the set {u | ∃w ∈ Lq s.t. vu = w}. By the notation
A\B we understand a set-difference.
Definition 3 With the above notations, we say that q is av–blind if δ(q, a) =
{q1, . . . , qt}, t > 1, and for all i ∈ {1, . . . , t} the following inequality holds:

(⋃

j∈{1,...,t},j 6=i

v−1Lqj

)
\ v−1Lqi 6= ∅ .

This definition has the following delegation–related interpretation: if M has reached
an av–blind state, then reading ahead w from the input tape does not suffice for
deterministically choosing a certain next transition: each transition can potentially
lead to non–acceptance for a word (extension of av) that should be accepted by M .
Definition 4 With the above notations, we denote the blindness of q (or, the
language of blind words for q) as being the language Bq = {w ∈ Σ∗ | q is w–blind} .

Example 2 In Figure 1, Bq1 = {0i | 1 ≤ i ≤ k − 1}, and in Figure 3, Bq0 = 10∗.
Lemma 2 State blindness is regular and effectively computable. If Bq is finite for
some q ∈ Q, then for every w ∈ Bq, |w| ≤ (4|Q|

2
+ 1)|Σ| .

Proof. Let M = (Q, Σ, δ, q0, F) be a trim NFA and q ∈ Q. We construct a DFA
Mq that accepts the language Bq and show that the number of states in Mq is at

8

most (4|Q|
2

+ 1)|Σ|. Then, if Bq is finite, the length of the longest string accepted
by Mq must be bounded by (4|Q|

2
+ 1)|Σ|, and the claim will follow. The details

behind the construction of the DFA Mq are as follows.
For a symbol a ∈ Σ, let δ(q, a) = {q1, q2, ..., qt}. By definition, w = aa2...ak is

in Bq if and only if for each i ∈ {1, . . . , t}, the following condition holds:
(⋃

j∈{1,2,...,t}, j 6=i

(a2a3...ak)−1Lqj

)
\ (a2a3...ak)−1Lqi

6= ∅ .

Denote by Bq,a,i the language of all words a2 . . . ak (with arbitrary k) which verify
the above relation. We construct a DFA Mq,a,i to accept Bq,a,i as follows. The states
of this DFA are of the form 〈S1, S2〉, where S1, S2 ⊂ Q. The transition function δ′ of
Mq,a,i is essentially that of the cross–product of the “subset construction” DFA for
M with itself. More precisely, δ′(〈S1, S2〉, a) = 〈S3, S4〉 where S3 = {q | q ∈ δ(p, a)
for some p ∈ S1} and similarly S4 = {q | q ∈ δ(p, a) for some p ∈ S2}. The
start state of the DFA is chosen to be 〈{qi}, {q1, ..., qi−1, qi+1, ..., qt}〉 and the set of
accepting states is F ′ = {〈S1, S2〉 |

(⋃
q∈S2

Lq

) \ (⋃
q∈S1

Lq

) 6= ∅}.
It can be checked that the above DFA Mq,a,i accepts the language Bq,a,i. The

number of states in Mq,a,i is upper–bounded by 4|Q| (the square of the number
of subsets of Q). Next, we construct a DFA Mq,a accepting the language Bq,a =⋂

i∈{1,...,t}Bq,a,i. The size of Mq,a is upper–bounded by 4|Q|
2
, since t ≤| Q |.

Then, a DFA for aBq,a has one extra state, and the DFA for Bq =
⋃

a∈Σ aBq,a

will have a size upper–bounded by (4|Q|
2

+ 1)|Σ| (by aBq,a we understand the set
{av | v ∈ Bq,a}). This completes the proof. 2

Remark 2 One may notice that if the blindness of a state q of M is finite, then
q may potentially be used in some k–lookahead delegator for M , with k sufficiently
large. Indeed, denoting k−1 to be the length of a longest word in Bq, one can observe
that a buffer content of size k allows a delegator to make deterministic decisions on
which transition from q should be followed. The reason is that for any buffer content
w, with | w |≥ k, the state q is not w–blind . Consequently, the “interesting” states
are those with infinite blindness.
Lemma 3 For any state q, Bq is prefix–closed, except for the empty word.
Proof. It suffice to prove that if a state q is auv–blind then it is au–blind as
well. Let δ(q, a) = {q1, . . . , qt}, and assume by contradiction that q is not au–blind.
Then, there exists an index i ∈ {1, . . . t} such that u−1Lqi ⊇

⋃
j 6=i u−1Lqj . But

since q is auv–blind, there exists z ∈ Σ∗ such that uvz ∈ ⋃
j 6=i Lqj and uvz 6∈ Lqi .

This contradicts the previous statement, through the word vz. 2

The following corollary gives a sufficient condition for the existence of lookahead
delegators.
Corollary 1 If an NFA M has all its states finitely blind, then it accepts a looka-
head delegator.
Proof. One can construct a k–lookahead delegator, with k greater than the
maximum length of the words belonging to any blind language of a state in M .
This is a generalization of Remark 2. 2

9

Definition 5 A state q is k–blind if there exists a word w ∈ Σk such that q is
w–blind.

The following result is a reflection of Lemma 3.
Corollary 2 If a state q of an NFA A is k–blind, k ≥ 2, then it is l–blind for all
l ∈ {1, . . . , k − 1}.
Proof. The details are straightforward. 2

The following result provides a necessary condition for the existence of NFA
delegators.
Corollary 3 If the initial state of an NFA is infinitely blind then the NFA has no
k–lookahead delegator for any integer k.
Proof. (sketch) Suppose the automaton accepts a k–lookahead delegator despite
the fact that its initial state q0 is infinitely blind. We choose a word w = av

with | w |> k such that q0 is w–blind. Observe that w ∈ pref(L), where L is
the language accepted by the NFA. Let δ(q0, a) = {q1, . . . , qt} and assume that
the input word has w as a prefix. In this case, the lookahead delegator must
commit deterministically (regardless on what follows after w) to one transition, say,
(q0, a, qi), with i ∈ {1, . . . , t}. But by the definition of av–blindness, we know that
there exist a word z ∈ Σ∗ such that avz ∈ L and δ(qi, vz) does not contain any
final state. This word is rejected by the delegator, despite the fact that it belongs
to the language.

Here we have silently used the fact that if q0 is | w |–blind, then it must be also
k–blind, since k <| w |. This fact ensured the existence of z. 2

Remark 3 Notice that, by Lemma 2, the conditions in Corollary 1 and Corollary 3
are testable. Notice also that a k–lookahead delegator for an NFA M must have
k ≥ r, where r is the smallest integer such that the initial state of M is not r–blind.
Definition 6 A delegator for M , f : Q × Σk → Q is trim if all its “predictions”
(or, delegations) are used in some successful computations (f needs not be defined
everywhere).

The following results will be used in proving the correctness of Algorithm 1 in
Section 4.2, which computes k–delegators.
Lemma 4 If f : Q× Σk → Q is a trim delegator for M , then

f(p, av) = q ⇒
(
∀b ∈ Σ s.t. vb ∈ pref(Lq) : f(q, vb) 6= ∅

)
.

Proof. Assume that f(p, av) = q, and take vb ∈ pref(Lq). There exists a word z

such that vbz ∈ Lq. Since f is trim, there exists a word x such that, while reading
xav, the delegator reaches deterministically p while holding av in its buffer. Observe
now that xavbz ∈ L and the only way for the delegator to accept it is to make a
choice for f(q, vb). 2

Corollary 4 If f : Q× Σk → Q is a trim delegator for M , then

f(p, av) = q ⇒
(
∀b ∈ Σ s.t. vb ∈ pref(Lq) : vb 6∈ Bq

)
.

10

Corollary 5 If f : Q × Σk → Q is a trim delegator for M , and if v1 . . . vk ∈ Bq

for some state q ∈ Q then f(p, av1 . . . vk−1) 6= q for all p ∈ Q, a ∈ Σ.
Proof. Suppose there exists p ∈ Q such that f(p, av1 . . . vk−1) = q.
By Lemma 4, f(q, v1 . . . vk−1b) 6= ∅, for all b ∈ Σ such that v1 . . . vk−1b ∈ pref(Lq).
But v1 . . . vk−1vk ∈ Bq ⊆ pref(Lq), which implies that f(q, v1 . . . vk) must be de-
fined despite the fact that q is v1 . . . vk– blind. This is a contradiction. 2

In the following we give another definition (hence, another formalism) for NFA
delegation, equivalent to Definition 1. By LM we understand the language accepted
by M .
Definition 7 Let M = (Q, Σ, δ, q0, F) be an NFA. A DFA D with k–lookahead
buffer is a delegator for M if

1. LM = LD ,

2. M and D have identical transition graphs with the exception of labels, which
are in the following relation:

For each transition δ(q, a) = {q1, . . . , qt} in M , as depicted in Figure 7.A,
there correspond t lookahead transitions in D, as shown in Figure 7.B, with
the following properties: (a) for all i ∈ {1, . . . , t} the language Li has words
of length less than k; and (b) for all i, j ∈ {1, . . . , t} with i 6= j we have
aLi ∩ aLj = ∅.

(B)(A)

q

q1

q2

qt

q1

q2

q

qt

a

a

aL1

aL2

aLt

. . .
a

. . .

Figure 7: Transitions in an NFA and its delegator.

In the previous definition we allow Li to be ∅, with the meaning that a transition
labeled a∅ = ∅ is “non–existent”, i.e., the delegator chooses to never use it.

Notice that the second condition of Definition 7 implies that D is a deterministic
lookahead automaton. Indeed, D operates as following: if a state q is reached and
a word av is in the lookahead buffer, the automaton searches for av in all languages
aLi. If it finds it, i.e., av ∈ aLi for some i, it will choose the corresponding transition
labeled aLi and will advance in the next state qi.

11

Corollary 6 With the above notations, if M has a lookahead delegator, then it has
one such that for every state q ∈ Q and every letter a ∈ Σ, we have Bq ∩ aLi =
∅, ∀i ∈ {1, . . . , t}.
Proof. Let q be a state in M and a be a symbol with δ(q, a) = {q1, . . . , qt},
t > 1. Suppose that the corresponding transitions in a delegator D for M are
(q, aL1, q1), . . . , (q, aLt, qt). If for some i ∈ {1, . . . , t} we have av ∈ Bq ∩ aLi, then
one can easily observe that the delegator can never use the transition (q, av, qi) since
q is av–blind. Hence, one can safely remove av from the language aLi. 2

This corollary gives a “normal form” for lookahead delegators, by discarding
label information that is never used.

We now have sufficient tools for investigating algorithmic aspects related to NFA
delegation.

4. Complexity of Determining if a k–Delegator Exists

We consider the following computational problems.

Problem 1. Let k be a fixed integer (not part of the input).
Input: An NFA M .
Output: “YES” if and only if M has a k–delegator, “NO” otherwise.

Problem 2.
Input: An NFA M and an integer k (in unary).
Output: “YES” if and only if M has a k–delegator, “NO” otherwise.

Problem 3.
Input: An NFA M .
Output: “YES” if and only if M has a delegator, “NO” otherwise.

As in the previous sections, we assume that M is trim. Recall the result in Lemma 2,
which turns out to be useful in addressing the complexity of the above problems: for
a state q of an NFA M , the language Bq, of blind words for q, is regular and (4|Q|

2
+

1)|Σ| provides an upper–bound on the state complexity of Bq. In the following
section we first tackle the special case when the input NFA is unambiguous. The
subsequent section will deal with the general case of NFA that may be ambiguous.

4.1. The Case of Unambiguous NFA

In this subsection we show that in the case of an unambiguous NFA as input,
Problem 1 is in P, Problem 2 is in co–NP, and Problem 3 is in PSPACE. Recall that
in an unambiguous NFA any word is the label of at most one successful computation
(otherwise, the NFA is called ambiguous).
Remark 4 We leave for further work to answer the question whether Problem 2
is co–NP–complete and Problem 3 is PSPACE–complete for unambiguous NFA.
We begin with a definition, which turns out to be very useful in providing charac-
terizations for NFA delegation in the unambiguous case, and necessary conditions
for the general case.

12

Definition 8 Let M = (Q, Σ, δ, q0, F) be an NFA, and let q ∈ Q and w ∈ Σ∗. A
pair (q, w) is said to be crucial for M if the following holds: There exist strings x

and y such that

1. xwy is in L(M), and

2. every accepting computation of xwy reaches state q after reading the input x.

Then, the following lemmas hold for unambiguous NFA.
Lemma 5 If M is unambiguous, then for every state q and for every string w ∈
pref(Lq), the pair (q, w) is crucial.
Proof. Since M is assumed to be trim, every state q ∈ Q is useful, i.e., there
exists a string x such that q ∈ δ(q0, x) and a string y such that δ(q, wy) ∩ F 6= ∅.
Existence of another accepting computation of the string xwy that does not reach
the state q after reading x would imply that there are two accepting computations
for the string xwy contradicting the fact that M is unambiguous. 2

Lemma 6 Let M be an unambiguous NFA, q be a state of M and w ∈ Σk for
some integer k. If (q, w) is crucial for M and if q is w–blind, then M cannot have
a k–delegator.
Proof. (sketch) By definition, there exist strings x and y such that xwy ∈ L(M)
and the unique accepting computation on the string xwy reaches q after reading
the prefix x. Suppose M has a k–delegator. Let D be a k–delegator(simulator) for
M , as defined in Definition 7. It is clear that the state reached by D on reading the
prefix x of the input string xwy is q. Now D will not able to continue the simulation
from the state q since it is w–blind. 2

Lemma 7 An unambiguous NFA M has a k–delegator if and only if for every state
q of M there exists no string w of length greater than or equal to k such that q is
w–blind.
Proof. “⇒” Let M have a k–delegator. Suppose there is a state q and a string
w of length greater than or equal to k such that q is w–blind. It is clear that
w ∈ pref(Lq); and by the above lemmas, M cannot have a k–delegator – fact
which contradicts the hypothesis.

“⇐” It follows immediately from Corollary 1 and its proof. 2

Lemma 8 Let M = (Q, Σ, δ, q0, F) be an unambiguous NFA, k be an arbitrary
integer, and let Q1, Q2 ⊆ Q with Q1 ∩ Q2 = ∅ and Q1 ∪ Q2 ⊆ δ(q0, w) for some
word w ∈ Σ∗. Then testing whether

(⋃

q ∈ Q1

Lq

)
\

(⋃

q ∈ Q2

Lq

)
6= ∅

can be done in polynomial time.
Proof. The basic idea for such a polynomial time algorithm is due to Stearns and
Hunt [11], that containment and equivalence problems are polynomial time decid-
able for unambiguous NFA. Their approach was to use linear recurrence equations
for designing an efficient algorithm for this problem. Here we use a simpler (but
essentially equivalent) approach based on the transfer matrix technique.

13

We first show that containment problem for unambiguous NFA is solvable in
polynomial time. For an unambiguous NFA M = (Q, Σ, δ, q0, F), let us define a
|Q| × |Q| matrix TM as follows. We label the states of M as {1, 2, ..., |Q|}. If there
are k transitions from state i to state j, then set TM [i, j] = k. Denote by v the
column vector v = [v1, v2, ..., v|Q|] where vi is 1 if i is an accepting state and 0
otherwise. Denote also by u the row vector [u1, u2, ..., u|Q|] where ui is 1 if i is the
start state and 0 otherwise. Now, it is easy to check that the number of strings of
length m (for any integer m) accepted by M is given by uTm

Mv. It is clear that,
for a given m, the entries of Tm

M can be computed using O(|Q|3log m) arithmetic
operations by the “repeated squaring” technique. Note also that the bit–size of
the integers in the matrix Tm

M is bounded by O(mc) bits for some constant c –
proving that the claim of polynomial time bound is “genuine”, i.e., it holds in the
bit complexity model as well. In summary, the number of strings of length m

accepted by an unambiguous NFA M can be computed in time complexity that is
a polynomial in |M | and log m.

Now let M1 and M2 be two unambiguous NFA. We show, using Stearns and
Hunt’s technique, that the containment problem L(M1) ⊆ L(M2) (or its comple-
ment, namely L(M2) \ L(M1) 6= ∅) can be solved in time polynomial in |M1|+|M2|.
The basic idea is to reduce (in polynomial time) the containment problem to the
conditional equivalence problem, which is as follows:

Conditional Equivalence Problem. Given two unambiguous NFA M3 and M4 such
that L(M3) ⊆ L(M4), determine if L(M3) = L(M4).

Since L(M1) ⊆ L(M2) if and only if L(M1) = L(M1) ∩ L(M2), we can choose
M4 = M1 and M3 to be an NFA that accepts L(M1) ∩ L(M2). The standard
“pair construction” [5] for intersection for languages accepted by NFA results in the
size of M3 being bounded by |M1| × |M2| and it is also easy to check that M3 is
unambiguous as well.

In view of the previous reduction, it is enough to show that there exists a
polynomial time algorithm for the conditional equivalence problem for unambiguous
NFA. This algorithm is as follows. For every k ∈ {1, 2, ..., |Q3|×|Q4|} check whether
the number of strings of length k accepted by M3 and M4 agree. Then L(M3) =
L(M4) if and only if the above check succeeds. It is not hard to show that this
check provides a necessary and sufficient condition for the conditional equivalence
problem. From the algorithm based on the transfer matrix technique, this check
can be done in polynomial time and the claim follows.

We conclude the proof by showing that the given problem can be reduced to
the containment problem for unambiguous NFA. Let us define the NFA M1 and
M2 as follows: M1 (M2) is constructed from a copy of M by creating a new start
state n1 (n2) and adding an ε–transition from n1 (n2) to each state in Q1 (Q2).
Finally, we remove the ε–transitions and trim M1 and M2. We now show that
M1 and M2 are unambiguous NFA. We present an argument only for M1, since
a similar argument holds for M2 as well. Suppose M1 is ambiguous. Then there

14

are two accepting computations for some accepting string in M1. Suppose the
two accepting paths branch for the first time at state s. Let the label of the two
successful paths branching from s be y. If s 6= n1, then s is a state in M . Let x

be a string that takes the start state q0 of M to state s. It follows that there are
at least two accepting computations for the string xy in M , contradicting the fact
that it is unambiguous. If s = n1 on the other hand, then it follows that the string
xy can be derived in two ways in M , again a contradiction. Thus M1 (and M2) are
both unambiguous. It is easy to see that L(M1) \ L(M2) 6= ∅ if and only if

(⋃

q ∈ Q1

Lq

)
\

(⋃

q ∈ Q2

Lq

)
6= ∅ ,

and this completes the proof of the lemma. 2

Remark 5 In the following we use the fact that is decidable in polynomial time
whether a given NFA is ambiguous or not. The following nondeterministic algorithm
which uses LOGSPACE tests if an NFA is ambiguous. The input tape of the Turing
machine (which implements the nondeterministic algorithm) contains the encoding
of an NFA M . The machine guesses a string w (over the alphabet of M) one symbol
at a time, and executes two different computations of M on the string w. If both
computations reach accepting states, then M is ambiguous. Since NLOGSPACE is
contained in P, the conclusion follows shortly.

We are now ready to show the first main result of this subsection.
Theorem 2 Problem 1 can be solved in polynomial time when the input NFA is
unambiguous.
Proof. The input to the problem is a trim unambiguous NFA M = (Q, Σ, δ, q0, F),
and is also given an integer k (in unary). By Lemmas 5 and 6, it is clear that M has
a k–delegator if and only if, for every state q ∈ Q, all strings in Bq have a length
smaller than k. To check this condition, we proceed as follows. For a symbol a ∈ Σ,
let δ(q, a) = {q1, q2, ..., qt}. Recall that w = av2...vk is in Bq if and only if for each
i, the following condition holds:

(⋃

j∈{1,2,...,t}, j 6=i

(v2v3...vk)−1Lqj

)
\ (v2v3...vk)−1Lqi 6= ∅ .

We employ a notation used in the proof of Lemma 2, that the language of all
words v2 . . . vk verifying the above relation is denoted by Bq,a,i. For each pair (q, w)
where w = v1v2...vk, we check whether w 6∈ v1Bq,v1,i as follows. We compute the
sets of states R1 = {p | p is reachable from qi on v2v3...vk}, and R2 = {p | p is
reachable from qj for some j 6= i on v2...vk}. Note that for a given pair (q, w), all
these sets can be constructed in time polynomial in |M |, and use the algorithm of
Lemma 8 to test if (⋃

q ∈ R2

Lq

)
\

(⋃

q ∈ R1

Lq

)
6= ∅ .

If this is true, then we try the next i, with qi from the set δ(q, a). If for all such
i the test succeeds for a particular w, then we return “NO” (we found w ∈ Bq,

15

with | w |= k). Otherwise, we continue with the next string w of length k in
pref(Lq). If we find a successful simulating move for every pair (q, w) where q ∈ Q

and w ∈ prefk(Lq), then the algorithm returns “YES”. It is not hard to check that
the total time complexity of this algorithm is O(|Σ|kP (|M |)) for some polynomial
P and hence for a fixed k, the algorithm runs in polynomial time. 2

The proof of the next theorem follows very closely that of the above theorem so
we will only present a sketch.
Theorem 3 Problem 2 is in co–NP when the input NFA M is unambiguous.
Proof. The algorithm is similar to the above – except that the algorithm will
guess a pair (q, v1 . . . vk) for some q ∈ Q and some string w = v1 . . . vk ∈ Σk and
will check that w ∈ v1Bq,v1,i for every i. Note that the sets R1 and R2 can be
computed in time O(k|M |) and this is why it is crucial to assume that k is given in
unary. The rest of the details are the same. 2

It is not hard to modify the algorithm(s) described previously for Problems 1 and
2 such that it actually constructs the k–delegator in the case of an “YES” answer.

We will finally discuss Problem 3 for unambiguous NFA. The following lemma
is easy to prove.
Lemma 9 An unambiguous NFA M has a delegator if and only if Bq is finite for
every state q of M .
Proof. “⇐” Let l be the length of the longest string in

⋃
q Bq. It is easy to see

that, with k = l − 1, M has a k–delegator.
“⇒” Suppose that M has a k–delegator for some integer k and assume by

contradiction that the conclusion does not hold. Then there exists a state q such
that Bq is infinite. This implies that Bq has a string of length greater than k. Let
w be such a string. Clearly, w is also in pref(Lq). Since M is unambiguous, by
Lemma 5, (q, w) is crucial. This leads to a contradiction. 2

Theorem 4 Problem 3 is decidable in PSPACE for unambiguous NFA.
Proof. Given an unambiguous NFA M , it is enough to check that Bq is finite for
every state q of M . Since we can explicitly construct a DFA for each language Bq

and since finiteness of a regular language is decidable, the conclusion follows.
To show that the problem is in PSPACE, we have to show that finiteness of

each Bq can be tested in PSPACE. One way to show this is by showing that the
complement problem is in PSPACE (since PSPACE is closed under complement.)
Recall that in Lemma 2, we described a construction of the DFA for Bq,a,i. Instead
of constructing this DFA explicitly, the algorithm guesses a string τ of length r and
it checks whether τ is in Bq,a,i for each a ∈ Σ and each i. Note that τ cannot be
explicitly written down since it would require exponential space to do so. Instead, r

= |τ | is written in binary, and the successive symbols of τ are guessed, followed by
the check whether τ is in Bq,a,i. Finally, it is checked whether r > 4|Q|

2
. Using the

fact that [if a DFA M with m states accepts a string of length m or more then L(M)
is infinite], it follows that the algorithm described above verifies “NO” instances
correctly. The above algorithm is a nondeterministic polynomial space algorithm,
but since NPSPACE = PSPACE, and since PSPACE is closed under complement,
the above algorithm can be readily converted into a PSPACE algorithm. 2

16

4.2. The Case of Ambiguous NFA

In this section, we describe an algorithm for Problem 1 in the general case,
namely the case in which M can be ambiguous. We will show that the problem is
PSPACE–complete. This immediately implies that Problems 2 and 3 are PSPACE–
hard in the general case.
Theorem 5 Problem 1 for the general case is PSPACE–complete, for an alphabet
with at least 4 letters. The hardness holds for every fixed k = 1, 2, 3,

Proof. To show its membership to PSPACE, we will use the brute–force, exhaus-
tive search approach as in [2]. Given an NFA M = (Q, Σ, δ, q0, F), we generate all
possible k–delegators and check if one of them is a valid k–delegator. For a fixed k,
the size of a k–delegator is bounded by O(|M |) and thus each one of them can be
successively generated in PSPACE. Since whether a given k–delegator M ′ correctly
simulates an NFA M can be checked in PSPACE (this problem is equivalent to NFA
equivalence problem), it follows that Problem 1 is in PSPACE.

To show that it is PSPACE–hard, we will reduce to it the problem “Is L(N) ⊆
L0 ?” where N is an NFA and L0 is a fixed unbounded language. It is known ([7])
that this problem is PSPACE–hard when the size of the alphabet over which N is
defined is at least 2 (if the alphabet size of N is 1, it is easy to see that the test “Is
L(N) ⊆ L0 ?” can be done in co–NP). The reduction is as follows: we describe a
polynomial time algorithm that, given N , constructs an NFA M such that M has
a 1–delegator if and only if L(N) ⊆ L0.

Let Q′′ be the state set of N , q′′0 be its start state, and let M ′ be a DFA that
accepts the language L0, Q′ be the state set of M ′ and q0

′ be its start state. De-
note Σ′ to be the alphabet over which M ′ is defined. We define an automaton
M = (Q, Σ, δ, s, F) as following. We choose the alphabet Σ to be Σ′ ∪ {a, c}, where
a and c are two new symbols. We set Q = {s, 1, 2, 3, 4, 5, 6} ∪ Q′ ∪ Q′′, where s,
1, 2, 3, 4, 5 and 6 are new state symbols. The transition relation δ is defined as
follows: δ(s, a) = {1, q′′0}, δ(1, ε) = {q′0}, δ(1, c) = {6}, δ(q′′0 , c) = {2, 4}, and for all
b ∈ Σ′ we have δ(2, b) = {3}, δ(3, b) = {2}, δ(4, b) = {5}, δ(5, b) = {4} and δ(6, b)
= {6}. In addition, δ includes all the transitions of N and M ′. Figure 8 details
the construction of M in terms of N and M ′. The set of accepting states of M will
be the set of accepting states of M ′ and N , to which we add the states 2, 5 and 6.
To finalize the construction of M we remove the only ε–transition from state 1 us-
ing the standard ε–removal algorithm. The proof is complete by the following claim:

Claim. M has a 1–delegator if and only if L(N) ⊆ L0.

Proof. Suppose M has a 1–delegator, which reads the input a from the initial state
s. The delegator has two choices, namely 1 and q0

′′. Note that the choice q0
′′ is

not a valid one since all strings in cΣ′∗ are in its blind set. Thus, the delegator is
forced to choose f(s, a) = 1. At this point (being in state 1), in order to correctly
simulate M it is necessary that L(N) ⊆ L0. Indeed, if this was not true, then there
would be a string w ∈ L(N) \ L0 with aw ∈ L(M), and the delegator would reject
aw (since there would be no successful computation starting at state 1 and labeled

17

q′0

q′′0

Σ′

Σ′

Σ′

Σ′

6

M ′, for L0

N

Q′′

Q′, Σ′

Σ′

a

a

c ε

c

c

1

s

4 5

32

Figure 8: The construction of M , accepting a
(
cΣ′∗ ∪ L0 ∪ L(N)

)
.

w).
Conversely, suppose L(N) ⊆ L0. Then, it is easy to see that M has a 1–

delegator. Starting at state s and on input a, the delegator chooses f(s, a) = 1,
and from this point it continues the simulation of M deterministically, since the set
of states reachable from 1 have deterministic transitions. This simulation is correct
since all the strings that can be accepted by taking the other branch (namely via
q0
′′) can also be accepted from state 1.
This completes the proof for k = 1. The proof for the other values of k can

be obtained by minor modifications of the above proof, hence the details will be
omitted. 2

Remark 6 In the above construction, we needed a 4–letter alphabet for the con-
struction of M . It would be interesting to extend the PSPACE–completeness proofs
to smaller size alphabets.

Next, we describe a more efficient algorithm for Problem 1 in the general case.
We start with a simple, yet important remark.
Remark 7 Let p be a state of M , av ∈ Σk, and δ(p, a) = {q1, . . . , qt} (t > 0). If a
k–delegator for M reaches state p with av in its buffer, it must/will choose a state
qi ∈ δ(p, a) such that

v−1Lqi ⊇
⋃

l∈{1,...,t},l 6=i

v−1Lql
.

If two such choices, qi and qj, were possible in two delegator instance, then

v−1Lqi = v−1Lqj .

18

Consequently, an algorithm that aims at constructing a k–delegator would consider
all state choices qi as above, and test each against a same test set W = {vb | vb ∈
pref(Lqi

)} which is independent of qi:

{vb | vb ∈ pref(Lqi)} = {vb | vb ∈ pref(Lqj)} .

To improve algorithm’s formalism, we give the following definition.
Definition 9 Let q be a state in M , w = a1 . . . ak and δ(q, a1 . . . ak) = {q1, . . . qt},
t ≥ 1. A state qi is potential for (q, w) if it verifies:

(a2 . . . ak)−1Lqi
⊇

⋃

l∈{1,...,t},l 6=i

(a2 . . . ak)−1Lql
.

Denote P (q, w) the set of all potential states for (q, w).
Notice that the above condition is related to “state blindness”, in the sense that a
state q is w–blind if and only if P (q, w) = ∅. Notice also that P (q, w) is obviously
computable for any q and w.
Lemma 10 For any nonempty word u and state p of M we have

P (p, uv) ⊇ P (p, u), ∀v ∈ Σ∗ .

Proof. Let uv = a1 . . . ak and u = a1 . . . al (l ≤ k). Let P (p, a1 . . . al) =
{q1, . . . , qt} and take qi ∈ P (p, a1 . . . al). This implies that (a2 . . . al)−1Lqi ⊇⋃

j∈{1,...,t},j 6=i(a2 . . . al)−1Lqj . Assume by contradiction that qi 6∈ P (p, a1 . . . ak).
This means that there exists a word z such that z 6∈ (a2 . . . ak)−1Lqi and z ∈
(a2 . . . ak)−1Lqj for some qj ∈ δ(p, a1). Denoting z′ = al+1 . . . akz, it is easy to
observe that z′ 6∈ (a2 . . . al)−1Lqi and z′ ∈ (a2 . . . al)−1Lqj , which further implies
that qi 6∈ P (p, a1 . . . al) – a contradiction. 2

The following algorithm computes a k–delegator for a given trim NFA M and
an integer k > 0. It uses a vector V which stores, for every state p of M , a set of
words w ∈ prefk(Lp) for which a hypothetical delegator must not reach p with w

in its buffer (w is called a “forbidden” word for p). The first part of the algorithm
decides whether a k–delegator for M exists, by constructing V and testing whether
V [q0] = ∅, where q0 is the initial state of M . If V [q0] = ∅, the second part of
the algorithm constructs a k–delegator stored in a table T [Q, Σ≤k]. It does so in
two phases: first, it computes the values in T [Q, Σ=k], which are filled recursively
by procedure CONSTRUCT, after which it completes the table with the values in
T [Q, Σ<k] – done by procedure EXTEND.

Algorithm 1 – Computing a k-delegator.

Input: a trim NFA M = (Q, Σ, δ, q0, F) and an integer k > 0
Output: “YES” and a k–delegator T , if it exists; “NO” otherwise

for all q ∈ Q

do V [q] ← ∅

19

compute prefk(Lq)
for all w ∈ prefk(Lq)

do compute P (q, w)
while V is updated

do for all q ∈ Q and a1 . . . ak ∈ prefk(Lq) \ V [q]
do if P (q, a1 . . . ak) = ∅

then append a1 . . . ak to V [q] (*)
else

if ∀p ∈ P (q, a1 . . . ak) : a2 . . . akΣ ∩ V [p] ∩ prefk(Lp) 6= ∅
then append a1 . . . ak to V [q]

if V [q0] 6= ∅
then print “NO”
else print “YES”

for all q ∈ Q and w ∈ Σ≤k

do T [q, w] = nil

CONSTRUCT(q0, prefk(Lq0))
EXTEND(T)
return T

2

CONSTRUCT(q,W)
for all a1 . . . ak ∈ W

do if T [q, a1 . . . ak] = nil

then choose p ∈ P (q, a1 . . . ak)s.t. a2 . . . akΣ ∩ V [p] ∩ prefk(Lp) = ∅
T [q, a1 . . . ak] ← p, W ′ ← {a2 . . . akb | a2 . . . akb ∈ prefk(Lp)} (**)
CONSTRUCT(p,W ′)

2

EXTEND(T)
if k > 1

then for all states q ∈ Q reachable in T

do for all w ∈ Lq ∩ Σ<k

do Find a successful path c in M starting with q and
labeled with w. Then, assign to T values such that
the k–delegator will follow the path c, once being
in state q and having w in its buffer.

2

In the following we prove the correctness of Algorithm 1. We start by making
the following observations:

1. If the algorithm responds “YES”, then the obtained k–delegator is trim. In
some sense, this shows an improvement from the brute–force algorithm which
tests for any imaginable k–delegator whether it is or it is not equivalent with
M .

2. Lemma 4 and Remark 7 are the theoretical support for the step denoted by

20

(**) in the definition of CONSTRUCT.

3. Corollary 4 justifies why after the initialization of T there is no more need to
set cells of T to NIL.

Definition 10 For w ∈ pref(Lq), we say that (q, w) is forbidden, or that w =
a1 . . . ak is a forbidden word for q, if one of the following two conditions is satisfied,
recursively:

1. q is w–blind;

2. for every state p ∈ P (q, w) there exists bp ∈ Σ such that a2 . . . akbp ∈ pref(Lp)
and (p, a2 . . . akbp) is known to be forbidden.

We denote by Fq the set of all forbidden words for q.
Lemma 11 For any state p of M , the language Fp, of forbidden words for p, is
prefix–closed, except for the empty word.
Proof. We proceed by structural induction on Definition 10. Let a1 . . . ak ∈ Fp,
and l ≤ k.

(1) If p is a1 . . . ak–blind, then by Lemma 3, it is certainly a1 . . . al–blind, hence
a1 . . . al ∈ Fp.

(2) If the word a1 . . . ak has been proven to be forbidden for p by applying the
recursive rule of Definition 10 with a recursive depth of at most one, we have the
following situation:

∀q ∈ P (p, a1 . . . ak), ∃bq ∈ Σ : q is a2 . . . ak blind .

By Lemma 10 we know that P (p, a1 . . . ak) ⊇ P (p, a1 . . . al), and since the set of
blind words is prefix–closed, the property follows shortly.

(3) We assume that the property holds for all words proven to be forbidden for
p by applying the recursive rule in the definition with a recursive depth of at most
n, and we prove it for n+1. Let a1 . . . ak ∈ Fp, such that p is proven to be forbidden
for p by applying the recursive rule with a recursive depth of at most n + 1, and
let 1 ≤ l ≤ k. Choose arbitrarily a state q ∈ P (p, a1 . . . al). By Lemma 10 we have
that q ∈ P (p, a1 . . . ak) and since a1 . . . ak is forbidden for p, it follows that there
exists bq such that a2 . . . akbq ∈ pref(Lq) ∩ Fq. But by our assumption, a2 . . . akbq

is proven to be forbidden for q by applying the recursive rule with a depth of at
most n, hence by the induction hypothesis a2 . . . alx is forbidden for q, where x = bq

if l = k or x = al+1 otherwise. Since q ∈ P (p, a1 . . . al) was chosen arbitrarily, we
conclude that a1 . . . al is forbidden for p. 2

Remark 8 Let q be a state in M and a1 . . . ak 6∈ Fq. There exists p ∈ P (q, a1 . . . ak)
such that

∀b ∈ Σ s.t. a2 . . . akb ∈ pref(Lp) : a2 . . . akb 6∈ Fp .

The set of all states p verifying this condition will be denoted by C(q, a1 . . . ak),
called the set of chosen states for q and a1 . . . ak. Intuitively, if M was in state
q, a delegator for M would necessarily “choose” a state in C(q, w), if the lookahead
buffer contained w. Convention–wise, if w ∈ Fq then C(q, w) = ∅.

21

Lemma 12 With the above notations, if u is a nonempty word and p a state of M ,
then

C(p, uv) ⊇ C(p, u), ∀v ∈ Σ∗ .

Proof. Let uv = a1 . . . ak, u = a1 . . . al and l ≤ k. If q is a state in P (p, a1 . . . ak)\
C(p, a1 . . . ak) then there exists bq ∈ Σ such that a2 . . . akbq ∈ pref(Lq) ∩ Fq. Then
a2 . . . alx ∈ pref(Lq)∩Fq, where x = bq if l = k and x = al+1 otherwise, since Fq is
prefix closed by Lemma 11. This directly implies that q 6∈ C(p, a1 . . . al). We have
proven that q 6∈ C(p, a1 . . . ak) ⇒ q 6∈ C(p, a1 . . . al), hence the conclusion follows.
2

Lemma 13 At the end of the “while–loop” of Algorithm 1 we have V [q] = Fq ∩Σk,
for all states q of M .
Proof. We first notice that Definition 10 establishes recursively that a word is
forbidden based on forbidden words of same length (it is “length aware”). We also
notice that Bq ∩ Σk ⊆ V [q]. Indeed, if a1 . . . ak ∈ Bq then P (q, a1 . . . ak) = ∅ and
a1 . . . ak is among the first words added to V [q] at the step denoted by (*). Then
it suffices to observe that the test

if ∀p ∈ P (q, a1 . . . ak) : a2 . . . akΣ ∩ V [p] ∩ prefk(Lp) 6= ∅
then append a1 . . . ak to V [q]

used for updating V [q] checks whether condition 2 of Definition 10 is satisfied. 2

Lemma 14 If the start state q0 of M verifies Fq0 ∩ prefk(L) = ∅ then M has a
k–delegator and Algorithm 1 terminates with an “YES” answer and returns a k–
delegator.
Proof. If Fq0∩prefk(L) = ∅, then the algorithm prints “YES” since the test V [q0] 6=
∅ fails as a consequence of Lemma 13. It remains to prove that the procedures
CONSTRUCT and EXTEND deliver a delegator. We first make the point that the
recursive call to CONSTRUCT(q,W) always verifies W ⊆ prefk(Lq) \ Fq. This is
true for q0 and it holds for subsequent calls to CONSTRUCT(p,W ′) by virtue of
the code lines:

choose p ∈ P (q, a1 . . . ak) s.t. a2 . . . akΣ ∩ V [p] ∩ prefk(Lp) = ∅
T [q, a1 . . . ak] ← p, W ′ ← {a2 . . . akb | a2 . . . akb ∈ prefk(Lp)}

which ensure that W ′ ∩ V [p] = ∅. By Remark 8, p is chosen such that p ∈
C(q, a1 . . . ak).

It is clear that the recursive call to CONSTRUCT will end in a finite number
of steps, due to the finiteness of T and to the fact that each subsequent call is
preceded by filling an empty (NIL) cell of T . It remains to prove that at the end
of Algorithm 1, T provides indeed a k–delegator. T represents the transition table
of a k–lookahead DFA A, since each cell of T stores at most one state. We give
an informal reason for why L(M) = L(A). It is clear that L(M) ⊇ L(A). If
a1 . . . an ∈ L(M) with n < k, then by definition of procedure EXTEND it follows

22

that a1 . . . an ∈ L(A). When n ≥ k, we make the observation (which can be proven
by induction) that there is a deterministic computation in A labeled a1 . . . an. In
order to show that this computation is successful, we notice that after scanning the
fist n− k symbols, A will have in its buffer the word an−k+1 . . . an and will be in a
state q such that an−k+1 . . . an 6∈ Fq. After scanning another input symbol, A will
be in a state p, with an−k+2 . . . an in its buffer and an−k+2 . . . an ∈ Lp. Then, yet
again by definition of EXTEND, A will finish the scanning in a final state. 2

Lemma 15 If M has a k–delegator, then the start state q0 of M verifies Fq0 ∩
prefk(L) = ∅ and Algorithm 1 terminates with an “YES” answer and returns a
k–delegator.
Proof. Assume f : Q × Σ≤k → Q is a trim delegator for M . We first prove the
following:

Claim. With the previous notations, the following implication holds:

f(p, w) 6= ∅ ⇒ w 6∈ Fp .

Suppose that f contradicts the claim for some instance of p and w = a1 . . . ak,
hence f(p, a1 . . . ak) = p1 and a1 . . . ak ∈ Fp. Since f is a trim delegator, we have
the following sequence:

f(p, a1 . . . ak) = p1, a1 . . . ak ∈ Fp ⇒
⇒ ∃b1 : a2 . . . akb1 ∈ Fp1

f(p1, a2 . . . akb1) = p2, a2 . . . akb1 ∈ Fp1 ⇒
⇒ ∃b2 : a3 . . . akb1b2 ∈ Fp2

. . .

f(pn−1, av) = pn, av ∈ Fpn−1 ⇒
⇒ ∃bn : vbn ∈ Fpn

. . .

Notice that by the recursive definition of forbidden words (Definition 10), there ex-
ists a choice for the letters b1, . . . , bn, . . . such that in the above sequence there exists
a step n for which vbn ∈ Bpn (with the above notations). Observe that there may
also exist cycles in this sequence, that is, pairs (p, v) which are repeated. However,
by a proper choice of b1, . . . , bn, . . . we can enforce that the situation n : vbn ∈ Bpn

appears before any repetition, fact ensured by Definition 10. Now it suffices to
notice that vbn ∈ Bpn contradicts Corollary 4 by the fact that f(pn−1, av) = pn,
and yet there exists bn : vbn ∈ Bpn .

We now use the proven claim as following: since f is defined in all (q0, w) with
w ∈ prefk(L), we have w 6∈ Fq0 for all w ∈ prefk(L), hence Fq0 ∩ prefk(L) = ∅.
The fact that the algorithm terminates with an “YES” answer and it returns a
k–delegator can now be proven similar to the proof of Lemma 14. 2

Corollary 7 If no k–delegator exists for M then Algorithm 1 answers “NO”.

23

Proof. Assume by contradiction that the Algorithm answers “YES”. Then by
Lemma 13 we have Fq0 ∩ Σk = ∅, and by Lemma 14 the Algorithm returns a
k–delegator, which contradicts that such delegator does not exist. 2

The previous two lemmas prove more than the correctness of Algorithm 1,
namely:
Corollary 8 There exists a k–delegator for M if and only if Fq0 ∩ prefk(L) = ∅ .

Consequently, we give the following characterization of NFA delegation:
Theorem 6 There exists a delegator for M if and only if

| Fq0 |< ℵ0 .

Proof. The “if” part is straightforward: | Fq0 |< ℵ0 implies that for a k large
enough we have Fq0 ∩ Σk = ∅, and by the virtue of Lemma 14 there exists a k–
delegator for M . For the “only if” part, we know that there exists k such that M

has a k–delegator and, by Corollary 8, that Fq0 ∩ prefk(L) = ∅. But having a
k–delegator implies that for any l > k there exists an l–delegator for M . Then,
Fq0 ∩ pref≥k(L) = ∅, and since Fq0 ⊆ pref(L), it follows that | Fq0 |< ℵ0. 2

It is not hard to see that there is an exponential space algorithm to determine
membership in Fq (for any q). The reason is as follows: From the foregoing dis-
cussion, it is clear that there is a PSPACE algorithm to determine if a string w is
q–blind. It is also clear that it can be determined in PSPACE the set of states in
P (q, w). Now, we will describe an algorithm to determine membership of a string
w1w2...wk in Fq. w1w2...wk is in Fq if and only if condition (1) or (2) of Defini-
tion 10 is true. (1) can be checked in PSPACE. To check (2), we can create a table
(as in the memorized version of dynamic programming algorithm) that corresponds
to various instances of the form (p, x1x2...xk). When the decision about an instance
is reached, the table entry is filled (with ‘yes’ or ‘no’). When a new instance needs
to be solved, the table is checked to see if the decision is already reached. It is
clear that the total space of this algorithm is dominated by the table required to
maintain the solutions of various instances and hence the resulting algorithm is an
exponential space algorithm. Thus, Fq is recursive.

If we can show that Fq0 is regular or context–free, then clearly, the decidability
of Problem 3 will follow since finiteness problem is decidable for both these classes.
We do not know if the former is true.

5. Conclusion and Future Work

In this paper we have addressed the question of whether an NFA can be simu-
lated deterministically using only its states and transitions, by taking advantage of
reading ahead a fixed number of input symbols. This problem complements the ex-
tensive prior work on methods of simulating nondeterminism by using exponentially
augmented state sets. We have provided a characterization of when this is possible,
and have presented an efficient algorithm to determine when such a simulation is
possible in restricted cases.

The problem that remains unsolved is the decidability of Problem 3 for general
NFA. We believe that this problem is decidable, and Theorem 6 may provide a

24

direction to establish such a result. Indeed, if we can show that Fq0 is regular or
context–free, then clearly, the decidability of Problem 3 will follow since finiteness
problem is decidable for both these classes. We do not know if the former is true;
however, presently there are promising efforts to solve the general problem, and we
believe that a solution will be given sooner rather than later.

The complexity of Problems 2 and 3 (in the case of unambiguous NFA) have not
been completely resolved. Specifically, are the problems complete for co–NP and
PSPACE respectively?

References

1. D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella. Au-
tomatic Composition of e-Services that Export their Behavior. In E. Orlowska,
M. Papzoglou, S. Weerawarana, and J. Yang, editors, ICSOC 2003, volume 2910 of
Lecture Notes in Computer Science, pages 43–58. Springer, 2003.

2. Z. Dang, O. H. Ibarra, and J. Su. Composability of Infinite-State Activity Au-
tomata. In Rudolf Fleischer and Gerhard Trippen, editors, ISAAC 2004, volume
3341 of Lecture Notes in Computer Science, pages 377–388. Springer, 2004.

3. C. E. Gerede, R. Hull, O. H. Ibarra, and J. Su. Automated Composition of e-
Services: Lookaheads. In Traverso and Weerawarana [12], pages 252–262.

4. C. E. Gerede, O. H. Ibarra, B. Ravikumar, and J. Su. On-line and Ad-hoc Minimum
Cost Delegation in e-Service Composition. In C. K. Chang and L.-J. Zhang, editors,
IEEE SCC, pages 103–112. IEEE Computer Society, 2005.

5. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation - 3rd edition. Addison-Wesley Longman Publishing
Co. Inc., Boston, MA, 2006.

6. R. Hull and J. Su. Tools for Design of Composite Web Services. In G. Weikum,
A. C. König, and S. Deßloch, editors, SIGMOD 2004, pages 958–961. ACM Press,
2004.

7. H. Hunt, D. J. Rosenkrantz, and T. G. Szymanski. On the Equivalence, Contain-
ment, and Covering Problems for the Regular and Context-Free Languages. Journal
of Computer and Systems Sciences, 12(2):222–268, 1976.

8. O. H. Ibarra, B. Ravikumar, and C. E. Gerede. Quality-Aware Service Delega-
tion in Automated Web Service Composition. To appear in Journal of Automata,
Languages and Combinatorics, 2006.

9. M. Mecella and G. D. Giacomo. Service Composition: Technologies, Methods
and Tools for Synthesis and Orchestration of Composite Services and Processes
(tutorial). In Traverso and Weerawarana [12].

10. G. Rozenberg and A. Salomaa. Handbook of Formal Languages. Springer-Verlag,
Berlin Heidelberg New York, 1997.

11. R. E. Stearns and H. Hunt. On the Equivalence and Containment Problems for
Unambiguous Regular Expressions, Regular Grammars and Finite Automata. SIAM
Journal on Computing, 14(3):598–611, 1985.

12. P. Traverso and S. Weerawarana, editors. Service Oriented Computing, 2nd In-
ternational Conference, ICSOC 2004, New York City, NY, USA, November 15-18,
2004, Proceedings. ACM Press, 2004.

13. S. Yu. Regular Languages. In [10], 1:41–110, 1997.

25

